

Animation & Physically-Based Simulation

0368-3236, Spring 2019 Tel-Aviv University Amit Bermano

Computer Animation

 Describing how 3D objects (& cameras) move over time

Computer Animation

• Challenge is balancing between ...

- Animator control
- Physical realism

Computer Animation

- Manipulation
 - Posing
 - Configuration control

- Interpolation
 - Animation
 - In-betweening

https://blenderartists.org/

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshape rigging
 - Skeleton+Envelope rigging

- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture
 - Energy minimization
 - Physical simulation
 - Procedural

https://blenderartists.org/

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshape rigging
 - Skeleton+Envelope rigging

- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture
 - Energy minimization
 - Physical simulation
 - Procedural

https://blenderartists.org/

<u>https://www.youtube.com/watch?v=oxkf_N-QCNI</u>

• How to change a character's pose?

• Every vertex directly

Deformation

• Intuitive computation

Deformation

- A HUGE variety of methods
 - Laplacian mesh editing
 - ARAP
 - CAGE Base
 - Barycentric coordinates
 - Heat diffusion
 - Variational

• ...

Deformation

- A HUGE variety of methods
 - Laplacian mesh editing
 - ARAP
 - CAGE Base
 - Barycentric coordinates
 - Heat diffusion
 - Variational

•

Laplacian Mesh Editing

- Local detail representation enables detail preservation through various modeling tasks
- Representation with sparse matrices
- Efficient linear surface reconstruction

Overall framework

1. Compute differential representation

$$\delta_i = L(v_i) = v_i - \frac{1}{d_i} \Sigma_{j \in \mathcal{N}(i)} v_j$$

2. Pose modeling constraints

$$v'_i = u_i, \qquad i \in C$$

3. Reconstruct the surface – in least-squares sense

$$\binom{L}{L_c} \boldsymbol{V} = \binom{\boldsymbol{\delta}}{\boldsymbol{U}}$$

Differential coordinates?

• In matricial form:

$$L_{ij} = \begin{cases} -w_{ij} & i \neq j \\ \Sigma_{j \in 1_{ring_i}} w_{ij} & i = j \\ 0 & else \end{cases}$$

- They represent the local detail / local shape description
 - The direction approximates the normal
 - The size approximates the mean curvature

Adding constraints

• In matricial form:

$$L_{ij} = \begin{cases} -w_{ij} & i \neq j \\ \Sigma_{j \in 1_{ring_i}} w_{ij} & i = j \\ 0 & else \end{cases}$$

Adding constraints

• In matricial form:

$$L_{ij} = \begin{cases} -w_{ij} & i \neq j \\ \Sigma_{j \in 1_{ring_i}} w_{ij} & i = j \\ 0 & else \end{cases}$$

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshape rigging
 - Skeleton+Envelope rigging

- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture
 - Energy minimization
 - Physical simulation
 - Procedural

https://blenderartists.org/

Blendshapes

- Blendshapes are an approximate semantic parameterization
- Linear blend of predefined poses

- Usually used for difficult to pose complex deformations
 - Such as faces
- Given:
 - A mesh M = (V, E) with m vertices
 - *n* configurations of the same mesh, $M_b = (V_b, E), b = 1 \dots n$
- A new configuration is simply:
 - $M' = (\Sigma_{b=1\dots n} \mathbf{w}_{\mathbf{b}} \mathbf{V}_{\mathbf{b}}, \mathbf{E})$
- Delta formulation:
 - $M' = (\Sigma_{b=1...n}V_0 + w_b(V_b V_0), E)$
 - A bit more convenient
- M_0 the rest pose, w_b blend weights

Blendshapes

Blendshapes	K
https://www.youtube.com/watch?v=jBOEzXYMugE	20

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshape rigging
 - Skeleton+Envelope rigging

- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture
 - Energy minimization
 - Physical simulation
 - Procedural

https://blenderartists.org/

Articulated Figures

 Character poses described by set of rigid bodies connected by "joints"

Articulated Figures

• Well-suited for humanoid characters

Rose et al. `96

Articulated Figures

• Animation focuses on joint angles, or general transformations

Watt & Watt

Forward Kinematics

- Animator specifies joint angles: Θ_1 and Θ_2
 - Computer finds positions of end-effector: X

 $X = (l_1 \cos \Theta_1 + l_2 \cos(\Theta_1 + \Theta_2), l_1 \sin \Theta_1 + l_2 \sin(\Theta_1 + \Theta_2))$

Example: Walk Cycle

• Hip joint orientation:

Watt & Watt

Example: Walk Cycle

Example: walk cycle

Lague: <u>www.youtube.com/watch?v=DuUWxUitJos</u>

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshape rigging
 - Skeleton+Envelope rigging

- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture
 - Energy minimization
 - Physical simulation
 - Procedural

https://blenderartists.org/

Beyond Skeletons...

SH I

Skinning

Kinematic Skeletons

- Hierarchy of transformations ("bones")
 - Changes to parent affect
 all descendent bones
- So far: bones affect objects in scene or parts of a mesh
 - Equivalently, each point on a mesh acted upon by one bone
 - Leads to discontinuities when parts of mesh animated
- Extension: each point on a mesh acted upon by more than one bone

Linear Blend Skinning

- Each vertex of skin potentially influenced by all bones
 - Normalized weight vector $w^{(v)}$ gives influence of each bone transform
 - · When bones move, influenced vertices also move
- Computing a transformation T_{v} for a skinned vertex
 - For each bone
 - Compute global bone transformation T_b from transformation hierarchy
 - For each vertex
 - Take a linear combination of bone transforms
 - Apply transformation to vertex in original pose

$$T_{v} = \sum_{b \in B} w_{b}^{(v)} T_{b}$$

 Equivalently, transformed vertex position is weighted combination of positions transformed by bones

$$Y_{transformed} = \sum_{b \in B} w_b^{(v)} (T_b v)$$

Assigning Weights: "Rigging"

- Painted by hand
- Automatic: function of relative distances to nearest bones
 - Smoothness of skinned surface depends on smoothness of weights!

Assigning Weights: "Rigging"

- Painted by hand
- Automatic: function of relative distances to nearest bones
 - Smoothness of skinned surface depends on smoothness of weights!
 - Other problems with extreme deformations
 - Many solutions

Assigning Weights: "Rigging"

- Painted by hand
- Automatic: function of relative distances to nearest bones
 - Smoothness of skinned surface depends on smoothness of weights!
 - Other problems with extreme deformations

Skinning comparisons

hp

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshape rigging
 - Skeleton+Envelope rigging

- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture
 - Energy minimization
 - Physical simulation
 - Procedural

https://blenderartists.org/

focus.gscept.com

N

 Define character poses at specific time steps called "keyframes"

- **K**
- Interpolate variables describing keyframes to determine poses for character in between

A Contraction of the second se

Inbetweening:

• Linear interpolation - usually not enough continuity

H&B Figure 16.16

A Contraction of the second se

- Inbetweening:
 - Spline interpolation maybe good enough

Temporal Enhancement

Results – Hand Animated Rig

Example: Ball Boy

"Ballboy"

Fujito, Milliron, Ngan, & Sanocki Princeton University

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshape rigging
 - Skeleton+Envelope rigging

- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture
 - Energy minimization
 - Physical simulation
 - Procedural

https://blenderartists.org/

focus.gscept.com

K

- Animator specifies end-effector positions: X
- Computer finds joint angles: Θ_1 and Θ_2 :

K

• End-effector postions can be specified by spline curves

- Problem for more complex structures
 - System of equations is usually under-constrained
 - Multiple solutions

X

- Solution for more complex structures:
 - Find best solution (e.g., minimize energy in motion)
 - Non-linear optimization

58

Kinematics

- Advantages
 - Simple to implement
 - Complete animator control
- Disadvantages
 - Motions may not follow physical laws
 - Tedious for animator

59

Kinematics

- Advantages
 - Simple to implement
 - Complete animator control
- Disadvantages
 - Motions may not follow physical laws
 - Tedious for animator

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshape rigging
 - Skeleton+Envelope rigging

- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture
 - Energy minimization
 - Physical simulation
 - Procedural

https://blenderartists.org/

focus.gscept.com

Motion Capture

 Measure motion of real characters and then simply "play it back" with kinematics

Captured Motion

- **Motion Capture**
- Measure motion of real characters and then simply "play it back" with kinematics

63

Motion Capture

Could be applied on different parameters

- Skeleton Transformations
- Direct mesh deformation
- Advantage:
 - Physical realism
- Challenge:
 - Animator control

Character Animation Methods

- Modeling (manipulation)
 - Deformation
 - Blendshape rigging
 - Skeleton+Envelope rigging

- Interpolation
 - Key-framing
 - Kinematics
 - Motion Capture
 - Energy minimization
 - Physical simulation

https://blenderartists.org/

focus.gscept.com

Animation Techniques

Keyframing

- good for characters and simple motion
- but many physical systems are too complex

Physically Based Simulation

- Equations known for a long time
 - Motion (Newton, 1660)
 - Elasticity (Hooke, 1670)
 - Fluids (Navier, Stokes, 1822)
- Simulation made possible by computers
 1938: Zuse Z1
 2014: Tianhe-2 @ NUDT (China)

 $d/dt(m\mathbf{v}) = \mathbf{f}$

 $\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -k \nabla \rho + \rho \mathbf{g} + \mu \nabla^2 \mathbf{v}$

 $\sigma = E\epsilon$

PBS and Graphics

Physically-based simulation

- Computational Sciences
 - **Reproduction** of physical phenomena
 - Predictive capability (accuracy!)
 - Substitute for expensive experiments
- Computer Graphics
 - Imitation of physical phenomena
 - Visually plausible behavior
 - Speed, stability, art-directability

Simulation in Graphics

• Art-directability

https://www.youtube.com/watch?v=tT81VPk_ukU

Applications in Graphics

Offline physically-based simulation

- Visual quality
- Controllability

Animated movies

Applications in Graphics

Real-time physically-based simulation

- Performance and stability
- Accuracy according to application

K

Mass-Spring Systems

Steps towards simulation

- 1. Spatial discretization: sample object with mass points
- 2. Forces: define internal (springs!) and external forces
- 3. Dynamics: set up equations of motion
- 4. Temporal discretization: solve equations of motion

Spatial Discretization

- Total mass of object: M
- Number of mass points: *n*
- Mass of each point: m=M/n (uniform distribution)

Each point holds properties

- Mass m_i
- Position $\mathbf{x}_i(t)$
- Velocity $\mathbf{v}_i(t)$

Forces

What are the forces that act on particle i?

External forces - Gravity $\mathbf{F}_{i}^{g} = m_{i} \begin{pmatrix} 0 \\ 0 \\ 9.81 \end{pmatrix} \frac{m}{s^{2}}$

Internal forces

- Elastic spring forces
- Viscous damping forces

Forces

Initial spring lengthLCurrent spring lengthlSpring stiffnessk
Forces

Internal forces **F**^{int}

External forces **F**^{ext}

- Gravity
- Contact forces
- All forces that are not caused by springs

Total spring force

$$\mathbf{F}_{\mathbf{0}}^{\text{int}} = -\sum_{i|i \in \{1,2,3\}} k_i (l_i - L_i) \frac{\mathbf{X}_i - \mathbf{X}_0}{l_i}$$

D	emo	
		82

Equations of Motion

- Newton's Law for a point mass
 f = ma
- Computing particle motion requires solving second-order differential equation

$$\ddot{x} = \frac{f(x, \dot{x}, t)}{m}$$

 Add variable v to form coupled first-order differential equations: "state-space form"

 $\dot{x} = v$ $\dot{y} = \frac{f}{f}$

- Initial value problem
 - Know x(0), v(0)
 - Can compute force (and therefore acceleration) for any position / velocity / time
 - Compute x(t) by forward integration

• Forward (explicit) Euler integration

Euler Step (1768) $y_{n+1} = y_n + h \cdot f(t_n, y_n)$

- Idea: start at initial condition and take a step into the direction of the tangent.
- Iteration scheme: $y_n \rightarrow f(t_n, y_n) \rightarrow y_{n+1} \rightarrow f(t_{n+1}, y_{n+1}) \rightarrow \dots$

- Forward (explicit) Euler integration
 - $x(t+\Delta t) \leftarrow x(t) + \Delta t v(t)$
 - $v(t+\Delta t) \leftarrow v(t) + \Delta t f(x(t), v(t), t) / m$

- Forward (explicit) Euler integration
 - $x(t+\Delta t) \leftarrow x(t) + \Delta t v(t)$
 - $v(t+\Delta t) \leftarrow v(t) + \Delta t f(x(t), v(t), t) / m$
- Problem:
 - Accuracy decreases as Δt gets bigger

Single Particle Demo

Mass Spring Systems

- Can be used to model arbitrary deformable objects, and are easy to understand and implement, but...
 - Behavior depends on mesh tessellation
 - Find good spring layout
 - Find good spring constants
 - Different types of springs interfere
 - Limited accuracy
 - No explicit volume or area preservation

Alternative

- Start from continuum mechanics principles
- Discretize with Finite Elements
 - Decompose model into simple elements
 - Setup & solve system of algebraic equations
- Advantages
 - Accurate and controllable material behavior
 - Largely independent of mesh structure

https://www.youtube.com/watch?v=BOabEZXm9IE

Principle of minimum potential energy

A mechanical system in static equilibrium will assume a state of minimum potential energy.

1D Continuous Elasticity

- Discretize domain into elements
- Element strain: $\varepsilon_i = \frac{x'_{i+1} x'_i L_i}{L_i}$ with $L_i = x_{i+1} x_i$ Element strain energy: $W_i = \Psi_i \cdot L_i = \frac{1}{2}k\varepsilon_i^2 \cdot L_i$
- Total strain energy: $W = \sum W_i$

1D Continuous Elasticity

Minimum energy principle: at equilibrium

- system assumes a state of minimum total energy
- total forces vanish for all nodes

•
$$W_i = \frac{1}{2} k \varepsilon_i^2 \cdot L_i$$
 and $\varepsilon_i = \frac{x'_{i+1} - x'_i - L_i}{L_i}$
• $f_i = -\frac{\partial W}{\partial x'_i}$

•
$$f_1 = k\varepsilon_1$$
 and $f_n = -k\varepsilon_{n-1}$

1D Continuous Elasticity

Equilibrium conditions $f_i = \begin{cases} 0 & \forall i \in 2 \dots n-1 \\ t & i = 1 \\ -t & i = n \end{cases}$

→ n-2 linear equations for n-2 unknowns x'_i → solve linear system of equations to obtain deformed configuration.

Material Models – Linear

$$\Psi = \frac{1}{2}\lambda tr(\varepsilon)^2 + \mu tr(\varepsilon^2)$$

Lame parameters λ and μ are material constants related to the fundamental physical parameters: Poisson's Ratio and Young's modulus (http://en.wikipedia.org/wiki/Lamé_parameters)

Young's modulus (E), measure of stiffness

Poisson's ratio (v), captures transverse deformation relative to axial deformation

Negative Poisson's Ratio

https://www.youtube.com/watch?v=5wpRszZZhYQ

Nonlinear Elasticity

• Idea: replace Cauchy strain with Green strain

- → *St. Venant-Kirchhoff material* (StVK)
- Energy $\Psi_{StVK} = \frac{1}{2}\lambda tr(\mathbf{E})^2 + \mu tr(\mathbf{E}^2)$
- Component *l* of force on node *k* is $\mathbf{f}_{kl}^e = -\frac{\partial W^e}{\partial \mathbf{x}_k} = -\sum_{ij} \frac{\partial W^e}{\partial \mathbf{F}_{ij}^e} \frac{\partial \mathbf{F}_{ij}^e}{\partial \mathbf{x}_{kl}}$
- Note:
 - \bullet Energy is quartic in x, forces are cubic
 - Solve system of nonlinear equations

Nonlinear Elasticity

- Green Strain $\mathbf{E} = \frac{1}{2}(\mathbf{F}^t\mathbf{F} \mathbf{I}) = \frac{1}{2}(\mathbf{C} \mathbf{I})$
- Split into deviatoric (i.e. volume-preserving shape changing/distortion) and volumetric (dilation, volume changing) deformations

Volumetric: $J = det(\mathbf{F})$ Deviatoric: $\mathbf{C} = \mathbf{F}^t \mathbf{F}$

• *Compressible* Neo-Hookean material:

$$\Psi_{NH} = \frac{\mu}{2} (\operatorname{tr}(\mathbf{C}) - 3) - \mu \ln J + \frac{\lambda}{2} \ln(J)^2$$

Observations:

- the first term penalizes all deformations equally (since $tr(\mathbf{C}) = |\mathbf{F}|_F^2$)
- the third term goes to infinity for increasing compression (faster than the second)
- the stress-strain behavior is initially linear, but goes into plateau for larger deformations
- Rule of thumb: NH is good for deformations of up to 20%

• Real-world materials are not perfectly (hyper)elastic

- Viscosity (stress relaxation, creep)
- Plasticity (irreversible deformation)
- Mullins effect (stiffness depends on strain history)
- Fatigue, damage, ...

Figure 13, Multiple Strain Cycles of a Thermoplastic Elastomer at 2 Maximum Strain Levels

Finite Elements

What is a finite element?

A finite element is a triplet consisting of

- a closed subset $\Omega_e \subset \mathbf{R}^d$ (in d dimensions)
- *n* vectors of nodal variables $\overline{x}_i \in \mathbf{R}^d$ describing the reference geometry
- *n* nodal basis functions, $N_i: \Omega_e \to \mathbf{R}$

 $\rightarrow n$ vectors of degrees of freedom (e.g., deformed positions x_i)

FEM – 1D – Basis Functions

What basis functions should be used in $u(x) = \sum_{i} u_i N_i(x)$

- Smooth enough -> *once differentiable*
- Simple -> polynomial functions
- Interpolation $\rightarrow N_i(\mathbf{x}_j) = \delta_{ij}$
- Compact support -> defined piecewise on simple geometry

- reference geometry \overline{x}_i and
- interpolation requirement $N_i(\overline{x}_j) = \delta_{ij}$

108

Computing Basis Functions – 2D

- Basis functions are linear: $N_i(x, y) = a_i x + b_i y + c$
- Due to $N_i(\mathbf{x}_j) = \delta_{ij}$, we have

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} \cdot \begin{bmatrix} a_i \\ b_i \\ c_i \end{bmatrix} = \begin{bmatrix} \delta_{1i} \\ \delta_{2i} \\ \delta_{3i} \end{bmatrix} \longrightarrow \begin{bmatrix} a_i \\ b_i \\ c_i \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}^{-1} \cdot \begin{bmatrix} \delta_{1i} \\ \delta_{2i} \\ \delta_{3i} \end{bmatrix}$$

Computing Basis Functions – 3D

• Basis functions are linear, $N_i(\bar{x}, \bar{y}, \bar{z}) = a_i \bar{x} + b_i \bar{y} + c_i \bar{z} + d_i$

• From
$$N_i(\overline{x}_j) = \delta_{ij}$$
 we obtain

$$N_{i}(\bar{x}, \bar{y}, \bar{z}) = a_{i}\bar{x} + b_{i}\bar{y} + c_{i}\bar{z} + d_{i}$$

$$\begin{pmatrix} x_{1} & y_{1} & z_{1} & 1 \\ x_{2} & y_{2} & z_{2} & 1 \\ x_{3} & y_{3} & z_{3} & 1 \\ x_{4} & y_{4} & z_{4} & 1 \end{pmatrix} \begin{pmatrix} a_{i} \\ b_{i} \\ c_{i} \\ d_{i} \end{pmatrix} = \begin{pmatrix} \delta_{1i} \\ \delta_{2i} \\ \delta_{3i} \\ \delta_{4i} \end{pmatrix}$$

Example	
Towards Real-time Simulation of Hyperelastic Materials	
(contains narration)	

https://www.youtube.com/watch?v=I46ly-ubzYQ

Stable Neo-Hookean Flesh Simulation

Breannan Smith Fernando de Goes Theodore Kim Pixar Animation Studios Pixar Animation Studios Pixar Animation Studios

https://vimeo.com/245424174