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What is 3D Modeling?

Topics in computer graphics
• Imaging = representing & manipulating 2D images

• Rendering = constructing 2D images from 3D models

• Modeling = representing & manipulating 3D objects

• Animation = simulating changes over time



3
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• Imaging = representing & manipulating 2D images
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Modeling

Blender demoreel 2018/2019

https://www.youtube.com/watch?v=HBwtw3J4mhA

https://www.youtube.com/watch?v=HBwtw3J4mhA
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Modeling

• Blender demoreel 2018/2019

https://www.youtube.com/watch?v=HBwtw3J4mhA
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Modeling

How do we ...
• Represent 3D objects in a computer?

• Acquire computer representations of 3D objects?

• Manipulate computer representations of 3D objects?

Stanford Graphics Laboratory H&B Figure 10.46
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3D Object Representations

How can this object be represented in a computer?



19

How about this one?

3D Object Representations
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3D Object Representations

Wallpapersonly.net

And this one?
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3D Object Representations

Solidworks
This one?
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3D Object Representations

The visible human
This one?

https://www.youtube.com/watch?v=0gmJYugUJU8

https://www.youtube.com/watch?v=0gmJYugUJU8
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3D Object Representations

FumeFx

This one?
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3D Object Representations

• Points
• Range image

• Point cloud

• Surfaces
• Polygonal mesh

• Subdivision 

• Parametric

• Implicit

• Solids
• Voxels

• BSP tree

• CSG

• Sweep

• High-level structures
• Scene graph

• Application specific
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Equivalence of Representations

Thesis:
• Each representation has enough expressive power 

to model the shape of any geometric object

• It is possible to perform all geometric operations 
with any fundamental representation
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Manipulation

• Animation

Data structures determine algorithms
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Computer Vision

• Rendering 

• Analysis

• Manipulation

• Animation

USC
Indiana 
University
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Range Scanning

• Rendering 

• Analysis

• Manipulation

• Animation

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Tomography

• Rendering 

• Analysis

• Manipulation

• Animation

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering

• Intersection 

• Analysis

• Manipulation

• Animation

Autodesk
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Curvature,

smoothness

• Manipulation

• Animation

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Fairing

• Manipulation

• Animation

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Parametrization

• Manipulation

• Animation

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Texture mapping

• Manipulation

• Animation

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Reduction

• Manipulation

• Animation

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Structure

• Manipulation

• Animation

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Symmetry 

detection

• Manipulation

• Animation

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Correspondence

• Manipulation

• Animation

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Shape 

retrieval

• Manipulation

• Animation

Shao et al. 2011
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Segmentation

• Manipulation

• Animation

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Composition

• Manipulation

• Animation

Lin et al. 2008
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Manipulation

• Deformation

• Animation

IGL
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Manipulation

• Deformation

• Animation

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Manipulation

• Control

• Animation
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Manipulation

• Healing

• Animation

DGP course notes, Technion
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Manipulation

• Animation

• Rigging

Animation 
Buffet
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Manipulation

• Animation

• Deformation 

transfer

Sumner et al. 2004
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Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Manipulation

• Animation

• Simulation

Physically Based Modelling course notes, USC



49

Why Different Representations?

Efficiency for different tasks

• Acquisition

• Rendering 

• Analysis

• Manipulation

• Animation

• Fabrication

DGP course notes, Technion
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3D Object Representations

• Points
• Range image

• Point cloud

• Surfaces
• Polygonal mesh

• Subdivision 

• Parametric

• Implicit

• Solids
• Voxels

• BSP tree

• CSG

• Sweep

• High-level structures
• Scene graph

• Application specific
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3D Object Representations

• Points
• Range image

• Point cloud

• Surfaces
• Polygonal mesh

• Subdivision 

• Parametric

• Implicit

• Solids
• Voxels

• BSP tree

• CSG

• Sweep

• High-level structures
• Scene graph

• Application specific
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Range Image

Set of 3D points mapping to pixels of depth image
• Can be acquired from range scanner

Brian Curless
SIGGRAPH 99 

Course #4 Notes

Range Image Tesselation Range Surface

Cyberware

Stanford

http://www.aranz.co.nz/
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Point Cloud

Unstructured set of 3D point samples
• Acquired from range finder, computer vision, etc

Hoppe

HoppeMicroscribe-3D

Polhemus

Meshlab demo

http://www.polhemus.com/trackers/3drawds.htm
http://www.immerse.com/microscribe/comparison.html
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3D Object Representations

• Points
• Range image

• Point cloud

• Surfaces
• Polygonal mesh

• Subdivision 

• Parametric

• Implicit

• Solids

• Voxels

• BSP tree

• CSG

• Sweep

• High-level structures

• Scene graph

• Application specific
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Polygonal Mesh

Connected set of polygons (often triangles)

Stanford Graphics Laboratory
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3D Polygonal Mesh

Set of polygons representing a 2D surface embedded in 3D

Zorin & Schroeder

Face

Vertex
(x,y,z)

Edge

Meshlab demo
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Parametric Surfaces

Applications
• Design of smooth surfaces in cars, ships, etc.
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Parametric Surfaces

Applications
• Design of smooth surfaces in cars, ships, etc.

• Creating characters or scenes for movies

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=utWIhTI1gBaBcM&tbnid=W4fd8YwibvZloM:&ved=0CAUQjRw&url=http://www.headus.com.au/samples/killeroo/nurbs.fig.html&ei=7wkGU6uoJvKlsQShoIAQ&bvm=bv.61725948,d.aWc&psig=AFQjCNG4bMXaFiLZBs_2r1zdENuPO1qKsg&ust=1392991070177277
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Parametric Curves

Applications
• Defining motion trajectories for objects or cameras

AutoDesk
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Parametric Curves

• Defined by parametric functions:
• x = fx(u)

• y = fy(u)

• Example: ellipse

H&B Figure 10.10

fx (u) = rx cos(2pu)

fy(u) = ry sin(2pu)

uÎ [0..1]

x

y

u rx

ry
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Parametric curves

How to easily define arbitrary curves?

x = fx(u)

y = fy(u)

Use functions that “blend” control points

x = fx(u) = V0x*(1 - u) + V1x*u

y = fy(u) = V0y*(1 - u) + V1y*u

V0

V1

u
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Parametric curves

More generally:
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Cubic B-Spline Blending Functions

• Four cubic polynomials for four vertices
• 16 variables (degrees of freedom)

• Variables are ai, bi, ci, di for 
four blending functions
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Cubic B-Spline Blending Functions
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Cubic B-Spline Blending Functions

Solving the system of equations yields:
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Parametric Patches

• Each patch is defined by blending control points

Same ideas as parametric curves!
FvDFH Figure 11.44
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Parametric Patches

• Point Q(u,v) on the patch is the tensor product of 
parametric curves defined by the control points

Watt Figure 6.21

Q(u,v)?

Q(0,0)

Q(1,0)

Q(0,1)
Q(1,1)
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Parametric Patches

• Point Q(u,v) on the patch is the tensor product of 
parametric curves defined by the control points

Watt Figure 6.21

Q(0,0)

Q(1,0)

Q(0,1)
Q(1,1)
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Parametric Patches

• Point Q(u,v) on the patch is the tensor product of 
parametric curves defined by the control points

Watt Figure 6.21

Q(0,0)

Q(1,0)

Q(0,1)
Q(1,1)

u=0.4
u=0.4
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Parametric Patches

• Point Q(u,v) on the patch is the tensor product of 
parametric curves defined by the control points

Watt Figure 6.21

Q(0,0)

Q(1,0)

Q(0,1)
Q(1,1)

u=0.4
u=0.4
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Parametric Patches

• Point Q(u,v) on the patch is the tensor product of 
parametric curves defined by the control points

Watt Figure 6.21

Q(0,0)

Q(1,0)

Q(0,1)
Q(1,1)

Q(u,v)

u=0.4
u=0.4

v=0.5
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NURBS Surfaces
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Subdivision Surface

Coarse mesh & subdivision rule
• Smooth surface is limit of sequence of refinements 

Zorin & Schroeder
SIGGRAPH 99 
Course Notes
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Subdivision

How do you make a surface with guaranteed continuity?

Zorin & Schroeder
SIGGRAPH 99 
Course Notes
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Subdivision Surfaces

Repeated application of
• Topology refinement (splitting faces)

• Geometry refinement (weighted averaging)

Zorin & Schroeder
SIGGRAPH 99 
Course Notes
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Subdivision Surfaces – Examples

Base mesh

Scott Schaefer
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Subdivision Surfaces – Examples

Topology refinement

Scott Schaefer
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Subdivision Surfaces – Examples

Geometry refinement

Scott Schaefer
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Subdivision Surfaces – Examples

Topology refinement

Scott Schaefer
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Subdivision Surfaces – Examples

Geometry refinement

Scott Schaefer
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Subdivision Surfaces – Examples

Topology refinement

Scott Schaefer
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Subdivision Surfaces – Examples

Geometry refinement

Scott Schaefer
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Subdivision Surfaces – Examples

Limit surface

Scott Schaefer
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Meshlab demo

Subdivision Surfaces – Examples

Base mesh + limit surface

Scott Schaefer
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Subdivision Schemes

• Common subdivision schemes
• Catmull-Clark

• Loop

• Many others

• Differ in ...
• Input topology

• How refine topology

• How refine geometry

… which makes differences in …
• Provable properties

8

7

87
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Catmull-Clark Subdivision

Scott Schaefer
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Subdivision Surfaces

• Used in movie and game industries

• Supported by most 3D modeling software

Geri’s Game © Pixar Animation Studios
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Geri’s Game

• “served as a demonstration of a new animation tool 
called subdivision surfaces” (Wikipedia)

• Subdivision used for head, hands & some clothing

• Academy Award winner
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Geri’s Game

• Guest performance in Toy Story 2

Toy Story 2 © Pixar Animation Studios
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Subdivision Surfaces

• An alternative to NURBS, overcoming:
• Many patches

• Difficult to mark sharp features

• Irregularities after deformation

Stanford Graphics course notes
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Implicit Surfaces

• Surface defined implicitly by function:
• f (x, y, z) = 0 (on surface)

• f (x, y, z) < 0 (inside)

• f (x, y, z) > 0 (outside)

f(x,y) = 0 on curve

f(x,y) < 0  inside

f(x,y) > 0  outside
Turk
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Implicit Surface Properties

Efficient check for whether point is inside
• Evaluate f(x,y,z) to see if point is inside/outside/on

• Example: ellipsoid

H&B Figure 10.10
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Implicit Surfaces

• Represent surface with function 
over all space

Kazhdan
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Implicit Surfaces

• Surface defined implicitly by function

Kazhdan
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Implicit Surface Properties

Efficient topology changes
• Surface is not represented explicitly!

Bourke



98

Implicit Surface Properties

Efficient topology changes
• Surface is not represented explicitly!

Bloomenthal
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Applications

Online Reconstruction of 3D Objects from Arbitrary Cross-Sections
[Bermano et al. 2011]
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Applications

Robust Inside-Outside Segmentation using Generalized Winding Numbers
[Jacobson et al. 2013]
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3D Object Representations

• Points
• Range image

• Point cloud

• Surfaces
• Polygonal mesh

• Subdivision 

• Parametric

• Implicit

• Solids
• Voxels

• BSP tree

• CSG

• Sweep

• High-level structures

• Scene graph

• Application specific
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Voxels

• Regular array of 3D samples (like image) 
• Samples are called voxels (“volume pixels”)

www.volumegraphics.com
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FvDFH Figure 12.20

Voxel grid

Uniform volumetric grid of samples:
• Occupancy

(object vs. empty space)

• Density

• Color

• Other function
(speed, temperature, etc.)

• Often acquired via
simulation or from
CAT, MRI, etc.

Stanford Graphics Laboratory
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Voxel Boolean Operations

• Compare objects voxel by voxel
• Trivial

 =

 =
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Octree

The adaptive version of the voxel grid
• Significantly more space efficient

• Makes operations more cumbersome

Thomas Diewald
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BSP Tree

Hierarchical Binary Space Partition with
solid/empty cells labeled

• Constructed from polygonal representations

a

b

c

d

e

f

1

2

3

7

4

5

6

a

b
c

de

f

g

Object

a

b

cde

f

1

2

3

4

5

6

7

Binary Spatial Partition

Binary Tree

Naylor
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Constructive Solid Geometry (CSG)

• Represent solid object as hierarchy of 
boolean operations
• Union

• Intersection

• Difference

FvDFH Figure 12.27
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CSG

• Interactive modeling programs
• Intuitive way to

design objects

SUNY Stoney Brook
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CSG

• Interactive modeling programs
• Intuitive way to

design objects

H&B Figure 9.9
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CSG
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3D Object Representations

• Points
• Range image

• Point cloud

• Surfaces
• Polygonal mesh

• Subdivision 

• Parametric

• Implicit

• Solids
• Voxels

• BSP tree

• CSG

• Sweep

• High-level structures
• Scene graph

• Application specific
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Scene Graph

Union of objects at leaf nodes

Bell Laboratories

avalon.viewpoint.com
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Scene Graph
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Application Specific

Apo A-1
(Theoretical Biophysics Group,

University of Illinois at Urbana-Champaign)

Architectural Floorplan
(CS Building, Princeton University)
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Computational Differences

• Efficiency
• Representational complexity (e.g. surface vs. volume)
• Computational complexity (e.g. O(n2) vs O(n3) )
• Space/time trade-offs  (e.g. tree data structures)
• Numerical accuracy/stability (e.g. degree of polynomial)

• Simplicity
• Ease of acquisition
• Hardware acceleration
• Software creation and maintenance

• Usability
• Designer interface vs. computational engine


