
1

Real-Time
Hard Shadows

Collected by Ronen Gvili.

Most slides were taken from :

Fredu Durand

Stefan Brabec

Shadows

Hard Shadows Planar (Projected) Shadows

Shadow Maps Volume (Stencil) Shadows

2

Soft Shadows Why are Shadows Important?

• Depth cue

• Scene
Lighting

• Realism

• Contact
points

Shadows as a Depth Cue Shadows as Geometry Cue

Shadows as Geometry Cue Shadows Provide Extra Information

3

For Intuition about Scene Lighting

• Position of the light (e.g. sundial)

• Hard shadows vs. soft shadows

• Colored lights

• Directional light vs. point light

Shadows as the Origin of Painting

Approximated Shadows

• Hand-Drawn Geometry

Approximated Shadows

• Polygons / Texture Maps:
– Precomputed shape that moves with object

– Rotation / Translation / Scale

– Blurred (more realistic, soft)

• Pros:
– Fast & simple: no global computation

• Cons:
– Quality not very realistic

Shadows – Ray Tracing

• One shadow ray per
intersection per point
light source

no shadow rays

one shadow ray

Soft Shadows

• Caused by
extended light
sources

• Umbra
– source

completely
occluded

• Penumbra
– Source partially

occluded

• Fully lit

4

Soft Shadows – Ray Tracing

• Multiple shadow rays
to sample area light
source

one shadow ray

lots of shadow rays

Shadows in Ray Tracing

• Shoot ray from visible point to light source

• If blocked, discard light contribution

• Optimization?
– Stop after first

intersection

– Coherence: remember
the previous occluder,
and test that object first

Traditional Ray Tracing Ray Tracing + Soft Shadows

Questions? Planar (Projected) Shadows

5

Stencil Buffer

• Tag pixels in one rendering pass to control their
update in subsequent rendering passes

• "For all pixels in the frame buffer"
"For all tagged pixels in the frame buffer"

• Used for real-time mirrors
(& other reflective surfaces),
shadows & more!

• A “scissoring” tool.

Stencil Buffer

• Can specify different rendering operations
for each of the following stencil tests:
– stencil test fails.

– stencil test passes &
depth test fails.

– stencil test passes &
depth test passes.

image from NVIDIA’s stencil buffer
tutorial (http://developer.nvidia.com)

Planar Shadows

• [Blinn88] Me and my fake shadow.
– Shadows for selected large receiver polygons

• Ground plane

• Walls

Planar Shadows

• Basic algorithm
– Render scene (full lighting).

– For each receiver polygon

• Compute projection matrix M.

• Mult with actual transformation (modelview).

• Render selected (occluder) geometry.
– Darken/Black.

Cast Shadows on Planar Surfaces

• Draw the object primitives a second time,
projected to the ground plane.

Planar Shadows

• Problems
– Z-Fighting

• Use bias when rendering shadow polygons.

• Use stencil buffer (or disable depth test).

– Bounded receiver polygon ?
• Use stencil buffer (restrict drawing to receiver area).

– Shadow polygon overlap ?
• Use stencil count (only the first pixel gets through).

– Does not produce self-shadows, shadows cast on
other objects, shadows on curved surfaces, etc.

6

Planar Shadows

Bad Good

extends off
ground region

Z fighting double blending

Planar Shadows

Planar Shadows

• Wrong Shadows & Anti-Shadows
– Objects behind light source.

– Objects behind receiver.

• Solution
– Clipping

• Use 3D-3D transformation e.g. [Heckbert97]
for valid z coordinates (setting a clipping plane).

occluder behind receiver

receiver

light

occluder behind light

receiver

light

Fake Shadows using Projective Textures

• Separate obstacle and receiver

• Compute b/w image of obstacle from light

• Use image as projective texture for each receiver

Image from light source BW image of obstacle Final image
Figure from Moller & Haines “Real Time Rendering”

Projected Geometry

• Summary
– Only practical for very few, large receivers.

– Easy to implement.

– Use stencil buffer (z fighting, overlap, receiver).

– Efficiency can be improved by rendering
shadow polygons to texture maps.

• Occluders and receiver ‘static’ for some time.

Questions?

7

Shadow Maps Texture Mapping

• Don't have to represent everything with geometry

Texture Mapping

• Like wallpapering or gift-wrapping
with stretchy paper

• Curved surfaces
require extra
stretching or cutting

• More on this in a
couple weeks...

Shadow/View Duality

• A point is lit if it
is visible from
the light source

• Shadow
computation
similar to view
computation

Shadow maps

• [Williams78] Casting curved shadows on curved

surfaces.
– Image-space algorithm

– Well suited for hardware implementation

Shadow Mapping

• Texture mapping with depth information

• � 2 passes through the pipeline
– Compute shadow

map (depth from
light source)

– Render final image
(check shadow map
to see if points are
in shadow)

Figure from Foley et al. “Computer Graphics Principles and Practice”

8

Shadow Maps

• Algorithm:
– Render scene as seen from light source.

– Save back depth buffer (2D shadow map).

– Render scene from viewer’s position:
• Transform pixel coordinates to light source space.

• Compare z with z value stored in shadow map:
– Pixel is in shadow if z(light) < z(viewer).

Shadow Map Look Up

• We have a 3D point (x,y,z)WS

• How do we look up
the depth from the
shadow map?

• Use the 4x4
perspective projection
matrix from the light
source to get (x',y',z')LS

• ShadowMap(x',y') < z'?

Foley et al. “Computer Graphics Principles and Practice”

(x,y,z)WS(x’,y’,z’)LS

Shadow Maps

• Can be done in hardware

• Using hardware texture mapping
– Texture coordinates u,v,w generated using 4x4 matrix

– Modern hardware permits tests on texture values

Volume (Stencil) Shadows

Shadow Volumes

• Six intersections: +1, +1, -1, -1, +1, +1

• Sum = 2: P is inside 2 polyhedra

Q

P

+1-1

+1
+1

+1 -1

Shadow Volumes

• [Crow77] Shadow algorithms for computer graphics.

– Compute regions of shadow in 3D
• Object-space algorithm.

• Cast shadows onto arbitrary receiver geometry
(polygons).

Light Source

Shadow Region

Occluder

9

Shadow Volumes

• Explicitly represent the volume
of space in shadow.

• For each polygon
– Pyramid with point

light as apex.

– Include polygon to cap.

• Shadow test similar
to clipping.

Shadow Volumes

• If a point is inside a shadow
volume cast by a particular light,
the point does not receive any
illumination from that light.

• Naive implementation:

#polygons * #lights.

Shadow Volumes

• Shoot a ray from the eye to
the visible point.

• Increment/decrement a
counter each time we
intersect a shadow
volume polygon
(check z buffer).

• If the counter � 0,
the point is
in shadow.

+1-1

+1

Shadow Volumes

Step 1: Render scene � Z-values

Shadow Volumes

Front face: +1

Step 2: Render shadow volume faces

Back face: -1

Shadow Volumes

Front face: ±0 (Depth test)
Back face: ±0 (Depth test)
� = ±0

10

Shadow Volumes

Front face: +1
Back face: ±0 (Depth test)
� = +1

±0

Shadow Volumes

Front face: +1
Back face: -1
� = ±0

±0
+1

Shadow Volumes

±0
+1
±0

Step 3: Apply shadow mask to scene

Shadow Volumes

Light
source

Shadow Volumes Shadow Volumes w/ the Stencil Buffer

• [Heidmann 91] Real shadows real time.

11

Shadow Volumes w/ the Stencil Buffer

Initialize stencil buffer to 0

Draw scene with ambient light only

Turn off frame buffer & z-buffer updates

Draw front-facing shadow polygons
If z-pass increment counter

Draw back-facing shadow polygons
If z-pass decrement counter

Turn on frame buffer updates

Turn on lighting and
redraw pixels with
counter = 0

0
+2

+1

Shadow Maps

Limitations of Shadow Maps

1. Field of View

2. Resolution in Z

coordinates.

3. Aliasing –

Resolution in XY

coordinates.

Field of View Problem

• What if point to
shadow is outside
field of view of
shadow map?
– Use cubical

shadow map

– Use only
spot lights!

Field of View Problem

• Cubical Shadow Maps

Aliasing In Z Coordinates.

12

Aliasing In Z Coordinates. Aliasing In Z Coordinates.

• For a point visible
from the light source

ShadowMap(x’,y’) � z’

• This happens due to
finite resolution in
the Z-Buffer (8-bit)
and the sampling
(number of pixels of
the Z-Buffer).

Aliasing In Z Coordinates.

• The difference in the depths of the samples is
based on the slope of the polygon in light space.

Recall : Pixel is in shadow if z(light) < z(viewer).

Aliasing In Z Coordinates.

• For a point visible
from the light source

ShadowMap(x’,y’) � z’

• How can we
avoid erroneous
self-shadowing?
– Narrow the light

frustum.

– Add bias (epsilon).

Bias (Epsilon) for Shadow Maps

ShadowMap(x’,y’) + bias < z’

Choosing a good bias value can be very tricky.

Correct image Not enough bias Way too much bias

Bypassing the Bias - Midpoint

• Using an intermediate surface [Woo 92] : instead
of keeping the closest depth value , the 2 closest
values are kept in 2 buffers.

• The 2 buffers are averaged into one – which is
used as the Shadow Map.

13

Bypassing the Bias - Midpoint

• A method to generate those buffers is

Depth Peeling [Everitt 01].
– Requires additional pass and extra memory..

– Requires closed surfaces..

Bypassing the Bias - Midpoint

Bypassing the Bias - Midpoint Bypassing the Bias – DD Layers

• [Weiskopf 03] Shadow Mapping Based On Dual
Depth Layers.

– Define the bias as:

• Zoffset prevents self-unshadowing in case Z2 << Z1 .
• In case Z2 ~ Z1 the bias is determined by the midpoint preventing

self-shadowing.

),
2

min(12
offsetbias Z

zz
Z

�
�

Bypassing the Bias – DD Layers Bypassing the Bias

• Using Priority Buffers [Hourcade 85] : storing
IDs instead of storing depth. Each polygon is
given a different ID , rendered into the color
buffer (from the light’s pov). The Z-buffer
resolves the ordering differences.

- No hardware support..

• Using ID per object and not polygon.

- No self shadows.
• Split the objects into low roughly convex pieces

[valchos 01].

14

Aliasing In XY Coordinates.

• Under-sampling of the shadow map

• Reprojection aliasing – especially bad when the
camera & light are pointing towards each other

Shadow Map Filtering

• [Reeves 87] Percentage closer filtering.
– Filtering depth values makes no sense

– Perform shadow test before filtering

Percentage Closer Filtering

• 5x5 samples

• Nice antialiased
shadow.

• Using a bigger
filter produces
fake soft
shadows.

• Setting bias
is tricky.

Percentage Closer Filtering - Hardware

• [Brabec 01] Hardware-accelerated Rendering of
Antialiased Shadows With Shadow Maps.

fast PCF (filter size 2x2)

Hardware-based PCF

• Multi-channel shadow map
– Use RGBA instead of alpha channel only

• 4 values to sample a 2x2 region

• Increases effective shadow map resolution by a factor of 2
in each dimension

– Shadow map generation:
• Render scene four times where in each pass

– One channel (R,G,B or A) is selected

– Image-plane is jittered (stratified sampling)

• Copy RGBA image to texture

Projective Texturing + Shadow Map

Eye’s ViewLight’s View Depth/Shadow Map

Images from Cass Everitt et al.,
“Hardware Shadow Mapping”

NVIDIA SDK White Paper

15

Shadows in Production

• Often use
shadow maps

• Ray casting as
fallback in case
of robustness
issues

Shadow Maps - Pros

• Simplicity - simple to implement.

• Performance - can achieve (almost) real-time
performance without gpu.

• Flexibility - data representation independent.

• Can be simply implemented in the GPU as a
hardware texture.

• High quality variation made it usable in films .

• Extendable to produce soft shadow.

• Extended to handle non-opaque object
shadowing.

Shadow Maps - Cons

• Quality – aliasing and self shadowing.

• No association information between occluder and
receiver.

• More than a single shadow map is required per
single point light (as so true for spotlights with
large angle of view).

• Low rendering in cases the view region and the
shadow map are poorly overlap.

• Changes in the shadow coverage can result in
changes in the rendering quality (animation).

Shadows Maps In games

Blade Of Darkness

Shadows Maps In games

Half Life 2

Shadows Maps In games

Half Life 2

16

Shadows Maps In games

Splinter Cell

Shadows Maps In games

Silent Hill 3

Shadows Maps In games

Deus Ex 2

Shadows Maps In games

Deus Ex 2

Questions? Volume (Stencil) Shadows

17

If the Eye is in Shadow...

• ... then a counter of 0 does
not necessarily mean lit.

• 3 Possible Solutions:
1. Explicitly test eye

point with respect
to all shadow volumes.

2. Clip the shadow
volumes to the
view frustum.

3. "Z-Fail" shadow
volumes.

-1
0

-1

1. Test Eye with Respect to Volumes

• Adjust initial
counter value

Expensive..

0
+1

0

+1

2. Clip the Shadow Volumes

• Clip the shadow volumes to the view frustum
and include these new polygons

• Messy CSG (Constructive Solid Geometry).

3. "Z-Fail" Shadow Volumes
• [Carmack 01] “Carmack’s Reverse”
Start at infinity
...

Draw front-facing shadow polygons
If z-fail, decrement counter

Draw back-facing shadow polygons
If z-fail, increment counter

... 0
+1

0

3. "Z-Fail" Shadow Volumes

±0
+1
±0

Step 3: Apply shadow mask to scene

3. "Z-Fail" Shadow Volumes

0
+1

0

• Introduces problems
with far clipping plane

18

Z-Fail versus Z-Pass

• When stencil increment/decrements occur:
– Z-Pass: on depth test pass.

– Z-Fail: on depth test fail.

• Increment on:
– Z-Pass: front faces.

– Z-Fail: back faces.

• Decrement on:
– Z-Pass: front faces.

– Z-Fail: back faces.

Z-Fail versus Z-Pass

• Both cases order passes based stencil operation:
– First, render increment pass.

– Second, render decrement pass.

• Which clip plane creates a problem:
– Z-Pass: near clip plane.

– Z-Fail: far clip plane.

Z-Fail versus Z-Pass
• If we could avoid either near plane or far plane view

frustum clipping, shadow volume rendering could be
robust.

• Avoiding near plane clipping:
– Not really possible.
– Objects can always be behind you.
– Moreover, depth precision in a perspective view goes

to hell when the near plane is too near the eye.

• Avoiding far plane clipping:
– Perspective make it possible to render at infinity.
– Depth precision is terrible at infinity, but

we just care about avoiding clipping.

Capping The Volumes ..

• The light point is facing the viewer, yet is
partially

occluded.

Capping the volumes ..

• Incorrect shadows. • A shadow volumes must be bounded not only by
its sides but in its top and bottom ..
– The occluder polygon can be used as the top .

– A polygon connecting the volume edges in the
infinity can be used as the bottom .

19

Avoiding far plane clipping - Hardware

Using NV_depth_clamp :

• All objects that normally clipped by the far plane are
instead drawn on the far plane with maximum
z-depth.
– Hardware dependent (not supported in ATI cards).

– Filling more pixels.. (might be slower than z-pass).

Avoiding far plane clipping - Software

• [Everitt 2002] Robust Stenciled Shadow Volumes.

Replace the far plane with Infinity.

�
�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	
	

�

�
�
��

�
�

�

�

�
�

�

�
�

�

0100

2
00

0
2

0

00
2

NearFar

NearFar

NearFar

NearFar
BottomTop

BottomTop

BottomTop

Near
LeftRight

LeftRight

LeftRight

Near

P

Shadow Volumes

• Counting problems
– Stencil depth

• 8 bits for intersecting volumes
– Stencil wrap mode

» Missing shadows for ‘counter mod 2^n == 0’

– Stencil clamp

» Missing shadows (missing some ‘enter’ events).

• 1 bit enough for non-intersecting volumes
– Generate volumes from silhouette.

– Toggle stencil bit.

Optimizing Shadow Volumes

• Use silhouette edges only (edge where
a back-facing & front-facing polygon meet)

L

A

Optimizing Shadow Volumes Optimizing Shadow Volumes

20

Optimizing Shadow Volumes Optimizing Shadow Volumes - 2

• [McCool00] Shadow volume reconstruction
from depth maps .

– Combine the pros from shadow maps and
shadow volumes:

• Shadow volumes generated from depth maps.

• Reduced number of shadow volumes for very
complex scenes.

• Does not need special hardware features
(standard shadow texture using stencil buffer)

Optimizing Shadow Volumes - 2

• Render the scene from light source.

• Read back Z-Buffer.

• Reconstruct shadow volumes:
– Canny edge detection.

– Surface reconstruction.

• Render shadow volumes with stencil operation.

• Render final scene.

Optimizing Shadow Volumes - 2

Optimizing Shadow Volumes - 2

• Summary
– Better than normal shadow volumes for very complex

scenes:
• Volume for silhouette.

• Only one stencil bit (in-out toggle).

– Needs CPU and memory transfer
• Use CPU’s special instruction set

• OpenGL imaging extensions (convolution)

Optimizing Shadow Volumes - 3

Ultra Shadows:

• Using EXT_depth_bounds_test

the programmer can cull the

shadow pixels by setting

bounds for the light/shadow

region.
– Hardware dependent (not supported in ATI cards).

– Requires scene preprocess .

21

Shadow Volumes - Cons
• Representation dependent (polygonal).
• Introduces a lot of new geometry.
• Limited precision of stencil buffer (counters).
• For optimization purposes (silhouette detection) requires

adjacency information.
• Objects must be watertight to use silhouette trick.
• High fill rate – many long shadow polygons need to be

scan converted.
• The soft shadow extension is non-trivial.
• Aliasing errors in the shadow counts due to scan

conversion of very narrow shadow polygons.
• Handling transparent object can not be easily implanted

in the GPU.

Shadow Volumes - Pros

• Precision – computed in object space, omni-
directional.

• GPU support - stencil buffer (alpha buffer).

• Real time variations required no GPU
development.

• Extendable to produce soft shadows.

• Advanced variations can deal with non-
polygonal objects.

Shadows Volumes In games

Doom 3

Shadows Volumes In games

Neverwinter Nights

Questions? Next Time : Soft Shadows

22

The End…The End…

