
Scan Conversion

(Chapter 3 in Foley & Van Dam)

Lines and Circles

2D Line

• Implicit representation:

• Explicit representation:

• Parametric representation:

0��� ��� yx

]1..0[)(010 ���� ttPPPP

01

01

xx

yy
mBmxy

�
�

���

x

y

P0

P1

x0

y1

y0

x1

��
�

�
��
	

�

y

x
P

B

Scan Conversion - Lines

(x0,y0)

(x1,y1)

slope = m =
y1 - y0
x1 - x0

Assume |m| d 1

Assume x0 d x1

offset= B = y1-mx1

y = mx + B

Scan Conversion - Lines

Basic naïve algorithm

For x = x0 to x1

y = mx + B

PlotPixel (x,round(y))

end;

For each iteration: 1 float multiplication, 1 addition, 1 Round

y = mx + B

4-adjacency

8-adjacency

4-connectivity

8-connectivity

A 4-connected open arc
with a hole

An 8-conncected closed
curve with a hole

Symmetric Cases:

|m| t 1

For y = y0 to y1

x = x + 1/m
PlotPixel(round(x),y)

end;

x = x0

Special Cases:

m = ± 1 (diagonals)
m = 0, f (horizontal, vertical)

Symmetric Cases:

if x0 > x1 for |m| d 1 or y0 > y1 for |m| t 1

swap((x0,y0),(x1,y1))

Basic Line Drawing:
For each iteration: 1 addition, 1 Round.
Drawback:

• Accumulated error
• float arithmetic
• Round operations

yi+1 = mxi+1 + B = m(xi + 'x) + B = yi + m'x

if 'x = 1 then yi+1 = yi + m

Incremental Algorithm:

Algorithm

For x = x0 to x1

PlotPixel(x,round(y))

end;

y=y0

y = y + m

(xi,Round(yi))

(xi+1, yi+m)
(xi, yi)

(xi+1,Round(yi+m))

Pseudo Code for Basic Line Drawing:

Assume x1>x0 and line slope absolute value is d 1

Line(x0,y0,x1,y1)
begin

float dx, dy, x, y, slope;
dx := x1-x0;
dy := y1-y0;
slope := dy/dx;
y := y0;
for x:=x0 to x1 do
begin

PlotPixel(x,Round(y));
y := y+slope;

end;
end;

Midpoint (~Bresenham) Line Drawing

Assumptions:
• x0 < x1 , y0 < y1
• 0 < slope < 1

M
Q

E

NE

(xp,yp)

Given (xp,yp):
next pixel is E = (xp +1,yp) or NE = (xp+1,yp+1)

Bresenham: sign(M-Q) determines NE or E

M = (xp +1,yp +1/2)

The vertical distance is equivalent to the Euclidean distance

xi xi+1

yi

yi+1
d2

d1y

d1 = y - yi = m(xi +1) + b - yi

d2 = (yi + 1) - y = yi + 1 - m (xi + 1) - b

y = m(xi + 1) + b

d1 - d2 > 0 ?

Bresenham’s Line Algorithm

Bresenham’s Line Algorithm

d1 - d2 = 2m(xi + 1) - 2yi + 2b -1

d1 - d2 = 2(dy/dx)(xi + 1) - 2yi + 2b -1

dx(d1-d2) = 2dy*xi + 2dy - 2dx*yi + 2dx*b - dx

fi = dx(d1-d2)

fi+1 - fi = 2dy(xi+1 - xi) - 2dx(yi+1 - yi)

If y is incremented then fi+1 = fi + 2dy-2dx

else fi+1 = fi + 2dy

Bresenham’s Line Algorithm

Const1 = 2dy;
Const2 = 2dy - 2dx;
f = 2dy - dx;
set_pixel(x1,y1);
x = x1; y = y1;

while (x++ < x2){
if (f < 0)

f += Const1;
else {

f += Const2;
y++;

}
set_pixel(x,y);
}

Offsets

• The image is a linear memory…

l-n

Address = l

l+n

l-n+1

l-n-1

Bresenham’s Line Algorithm

Const1 = 2dy;
Const2 = 2dy - 2dx;
p = A + n*y + x;
offset_h = sign(dx);
offset_d = sign(dx) + n*sign(dy)
f = 2dy - dx;
*p = color;
d8 = dx;

while (d8--){
if (f < 0){

f += Const1;
p += offset_h;

}
else {

f += Const2;
p += offset_d;
}

*p = color;
}

Mid-point

In 8-connected choose either a h or d move

Current pixel

The midpoint M is located at (x +1,y +1/2)

M

Mid-point

The line passes above M so it is a d
move to

Current pixel

M

Mid-point

Current pixel

M

The line passes below M so it is a h
move to

Mid-point

In 4-connected choose either a h or v move

Current pixel

The midpoint M is located at (x + 1/2,y +1/2)

M

Mid-point

Current pixel

M

The line passes above M so it is a v
move to

Mid-point

Current pixel

M

The line passes Below M so it is a h
move to

Midpoint Line Drawing (cont.)

y = x + B
dy
dx

Implicit form of a line:

f(x,y) = ax + by + c = 0

Decision Variable :

f = f(M) = f(xp +1,yp +1/2) = a(xp +1) + b(yp +1/2) + c

The sign of f defines the move

f(x,y) = dy x - dx y + B dx = 0

f(x,y) = 0

f(x,y) > 0

f(x,y) < 0

If was chosen

How to update f - the value at M

Mi = (x,y)
Mi+1 = (x+1,y), thus

= ax + by + c, and

= a(x+1) + by + c, or

= + a.

Since a is constant we denote
it with 'h, and we have:

f += 'h

M

MM

if

1if
�

1if
� if

If was chosen

How to update f - the value at M

Mi = (x,y)
Mi+1 = (x+1,y+1), thus

= ax + by + c, and

= a(x+1) + b(y+1) + c, or

= + a + b.

Since a and b are constants
we denote their sum with 'd,
and we have:

f += 'd

M

MM

if

1if
�

1if
� if

Incremental Algorithm:

Initialization:

First point = (x0,y0), first MidPoint = (x0+1,y0+1/2)

fstart = f(x0 +1,y0+1/2) = a(x0 +1) + b(y0 +1/2) +c
= ax0 + by0 + c + a + b/2
= f(x0,y0) + a + b/2 = a + b/2

dstart =dy - dx/2

Enhancement:

To eliminate fractions, define:

f(x,y) = 2(ax + by + c) = 0

dstart =2dy - dx

Mid-point Line Algorithm

�h = 2dy;

�d = 2dy - 2dx;
f = 2dy - dx;
set_pixel(x1,y1);
x = x1; y = y1;

while (x++ < x2){
if (f < 0)

f += �h;
else {

f += �d;
y++;

}
set_pixel(x,y);
}

• The sign of f(x0+1,y0+1/2) indicates
whether to move East or North-East.

• At the beginning d=f(x0+1,y0+1/2)=2dy-dx.

• The increment in d (after this step) is:

– If we moved East: �E=2dy
– If we moved North-East: �

1(
=2dy-2dx

• Comments:

– Integer arithmetic (dx and dy are
integers).

– One addition for each iteration.

– No accumulated errors.

Midpoint Line Drawing -
Summary

Drawing Circles

• Implicit representation (centered
at the origin with radius R):

• Explicit representation:

• Parametric representation:

0222 ��� Ryx

�

�
]2..0[

sin

cos
����

�

�
��
	

���
�

�
��
	

t

tR

tR

y

x

22 xRy ���

x

R

Scan Conversion - Circles

Basic Algorithm

For x = -R to R
y = sqrt(R2-x2)
PlotPixel(x,round(y))
PlotPixel(x,-round(y))

end;

Comments:
• square-root operations are expensive.
• Float arithmetic.
• Large gap for x values close to R.

Exploiting Eight-Way Symmetry

For a circle centered at the origin:
If (x,y) is on the circle then -
(y,x) (y,-x) (x,-y) (-x,-y) (-y,-x) (-y,x) (-x,y)

are on the circle as well.
Therefore we need to compute only
one octant (45o) segment.

(x,y)

(y,x)

(y,-x)

(x,-y)(-x,-y)

(-y,x)

(-y,-x)

(-x,y)

Circle Midpoint (for one octant)

• We start from (x0,y0)=(0,-R).
• One can move either h or d.
• Again, f(x,y) will be a decision variable at

the midpoint.

(The circle is located at (0,0) with radius R)

d(x,y)=f(x,y) = x2 + y2 -R2 = 0

f(x,y) = 0

f(x,y) < 0

f(x,y) > 0

Threshold Criteria

Mid-point

Current pixel

M

The arc passes above M so it is a v
move to

If was chosen, as in lines we update M

How to update f - the value at M

Mi+1 = (x+1,y), thus

= (x+1) + y - R,

and

= + 2x + 1.

Now, 'h is NOT a constant ,
but a linear term, so we update
it as well:

'h+1 = 2(x+1) + 1, which is

'h+1 = 'h + 2.

1if
� if

1if
�

Similarly if was chosen

2 2 2

Mid-point circle (for one octant) Algorithm

Initialize �h and �d (home exercise)

f =

set_pixel(x = x1,y = y1);
while (in the octant){

if (f < 0) {
f += �h; �h += 2;

�X++;
else {

f += �v; �h += 2;

Y++;
}

set_pixel(x,y);
}

222)2/1()2/1(RR ����

One may mirror (*), creating the other seven octans.

