
1

Ray Casting

Based on slides of Thomas
Funkhouser

3D Rendering

• The color of each pixel on the view plane
depends on the radiance emanating from
visible surfaces

View plane

Eye position

Simplest method
is ray casting

Rays
through

view plane

2

Ray Casting

• For each sample …
� Construct ray from eye position through view plane
� Find first surface intersected by ray through pixel
� Compute color sample based on surface radiance

Ray Casting

• For each sample …
� Construct ray from eye position through view plane
� Find first surface intersected by ray through pixel
� Compute color sample based on surface radiance

Samples on
view plane

Eye position

Rays
through

view plane

3

Ray Casting

• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

Ray Casting

• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

4

Constructing Ray Through a Pixel

right

back

Up direction

P0

towards

View
Plane

P

V

Ray: P = P0 + tV

Constructing Ray Through a Pixel

• 2D Example

d
� towardsP0

right

right = towards x up

� = frustum half-angle
d = distance to view plane

P1 = P0 + d*towards - d*tan(�)*right
P2 = P0 + d*towards + d*tan(�)*right

P1

P2

2*d*tan(�
�

P

P = P1 + (i/width + 0.5) * 2*d*tan (�)*right
V = (P - P0) / ||P - P0 ||

V

Ray: P = P0 + tV

5

Ray Casting

• Simple implementation:

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

Ray-Scene Intersection

• Intersections with geometric primitives
� Sphere
� Triangle
� Groups of primitives (scene)

• Acceleration techniques
� Bounding volume hierarchies
� Spatial partitions

• Uniform grids
• Octrees
• BSP trees

6

Ray-Sphere Intersection

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

P0

V

O

P

r

P’

Ray-Sphere Intersection I

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

Substituting for P, we get:
|P0 + tV - O|2 - r 2 = 0

Solve quadratic equation:
at2 + bt + c = 0

where:
a = 1
b = 2 V • (P0 - O)
c = |P0 - C|2 - r 2 = 0

P0

V

O

P

r

P’

Algebraic Method

P = P0 + tV

7

Ray-Sphere Intersection II

Ray: P = P0 + tV
Sphere: |P - O|2 - r 2 = 0

L = O - P0

tca = L • V
if (tca < 0) return 0

d2 = L • L - tca
2

if (d2 > r2) return 0

thc = sqrt(r2 - d2)
t = tca - thc and tca + thc

P0

V

O

P

r

P’

rdthc

tca

L

Geometric Method

P = P0 + tV

Ray-Sphere Intersection

P0

V

O

P
r

N = (P - O) / ||P - O||

N

• Need normal vector at intersection
for lighting calculations

8

Ray-Scene Intersection

• Intersections with geometric primitives
� Sphere
» Triangle
� Groups of primitives (scene)

• Acceleration techniques
� Bounding volume hierarchies
� Spatial partitions

• Uniform grids
• Octrees
• BSP trees

Ray-Triangle Intersection

• First, intersect ray with plane

• Then, check if point is inside triangle

P

P0

V

9

Ray-Plane Intersection

Ray: P = P0 + tV
Plane: P • N + d = 0

Substituting for P, we get:
(P0 + tV) • N + d = 0

Solution:
t = -(P0 • N + d) / (V • N)

N

P

P0

V

Algebraic Method

P = P0 + tV

Ray-Triangle Intersection I

• Check if point is inside triangle algebraically

P

P0

N1

T1

T2

T3

V2

V1

For each side of triangle
V1 = T1 - P
V2 = T2 - P
N1 = V2 x V1
Normalize N1
d1 = -P0 • N1
if ((P • N1 + d1) < 0)

return FALSE;
end

10

Ray-Triangle Intersection II

• Check if point is inside triangle parametrically

P

P0

Compute �����
P = � (T2-T1) + � (T3-T1)

Check if point inside triangle.
0 � ��� 1 and 0 � ��� 1
��	����

V
�

�
T1

T2

T3

Other Ray-Primitive Intersections

• Cone, cylinder, ellipsoid:
� Similar to sphere

• Box
� Intersect 3 front-facing planes, return closest

• Convex polygon
� Same as triangle (check point-in-polygon algebraically)

• Concave polygon
� Same plane intersection
� More complex point-in-polygon test

11

Ray-Scene Intersection

• Find intersection with front-most primitive in group

A

B

C

D

E

F

Intersection FindIntersection(Ray ray, Scene scene)
{

min_t = infinity
min_primitive = NULL
For each primitive in scene {

t = Intersect(ray, primitive);
if (t < min_t) then

min_primitive = primitive
min_t = t

}
}
return Intersection(min_t, min_primitive)

}

Ray-Scene Intersection

• Intersections with geometric primitives
� Sphere
� Triangle
� Groups of primitives (scene)

» Acceleration techniques
� Bounding volume hierarchies
� Spatial partitions

• Uniform grids
• Octrees
• BSP trees

Next Time!

12

Summary

• Writing a simple ray casting renderer is easy
� Generate rays
� Intersection tests
� Lighting calculations

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, i, j);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);

}
}
return image;

}

Constructing Ray Through a Pixel

right

back

Up direction

P0

towards

View
Plane

P

V

Ray: P = P0 + tV

Vy

Vx

P0

13

We need to determine Vx and Vy

right

back

Up direction

P0

towards

View
Plane

P

V

Ray: P = P0 + tV

Vy

Vx

P0

Camera Coordinate System

• Find the transformation matrix M that rotate the
world coordinate system to the camera coordinate
system (Vx,Vy,Vz) (normalized)

Vy

Vx

Vz

y

x

z

M (0,0,1) = Vz

14

Camera Coordinate System

• The vector X and Y are rotated by M

Vy

Vx

Vz

y

x

z

M (0,0,1) = Vz

The definition of the Matrix M

1 0 0

0 C x S x

0 -S x C x

C y 0 S y

0 1 0

-S y 0 C y
•

CxCySx-CxSy-

SxCyCxSxSy-

Sy0Cy

=M =

Cz Sz 0

Sz Cz 0

0 0 1

�(0,0,1) • = (0,0,1)

Rotate around x

Rotate around z

Rotate around y

Let Cx and Sx denote sin(x), cos(x), respectively

15

The definition of the Matrix M

Since:

(0,0,1) � M = (-CxSy, -Sx, CxCy) =
(Vz.x,Vz.y,Vz.z) = Vz = (a,b,c).

We get:

a = -CxSy; b = -Sx; c = CxCy,

or

Sx = -b; Cx = sqrt(1 - sqr(Sx));
Sy = -a/Cx;Cy = c/Cx;

Compute the Camera Coordinate System

Now, use M to rotate the world coordinate
vectors:

Vx = (1,0,0) • M

Vy = (0,1,0) • M

Vz = (0,0,1) • M

Note that the vector V is normalized.

16

We need to determine Vx and Vy

E
towards

View
Plane

P

Vy

Vx

P0

f

Vz

P = E + Vz * f

P0 = P - wVx - hVy

Let f be the distance between
the eye E and the plane along
Vz, and w and h the lengths
of half the screen size.

The main loop

Image RayCast(Camera camera, Scene scene, int width, int height)
{

Image image = new Image(width, height);
Set P0 (as in the previous slide);

for (int i = 0; i < height; i++) {
p = P0;
for (int j = 0; j < width; j++) {

Ray ray = E + t * (p – E);
Intersection hit = FindIntersection(ray, scene);
image[i][j] = GetColor(hit);
p += Vx; // move one pixel along the vector Vx

}
P0 += Vy; // move one pixel along the vector Vy
}
return image;

}

