Image Warping

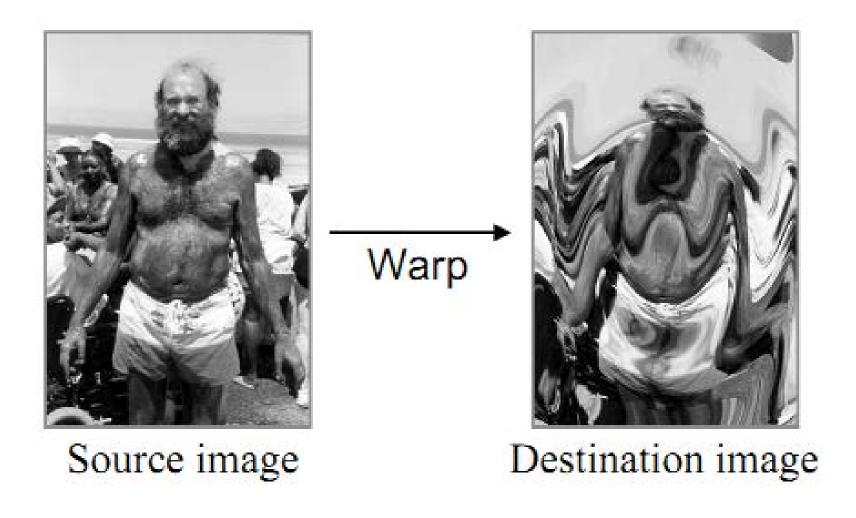


Image Mapping

- Define transformation
 - Describe the destination (x,y) for every location (u,v) in the source (or vice-versa, if invertible)

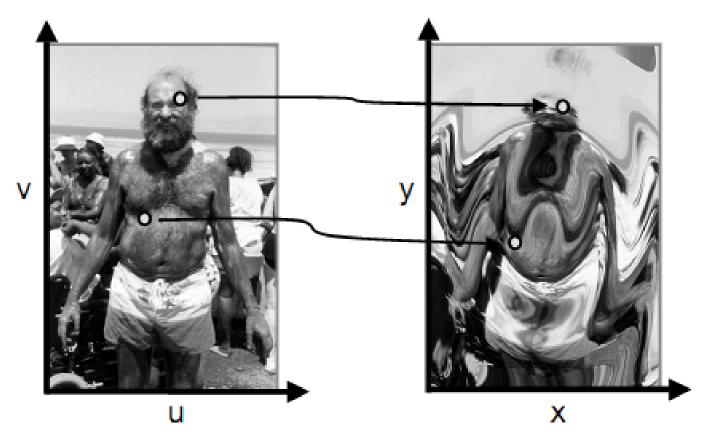
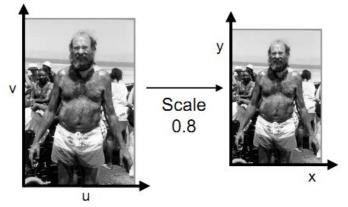
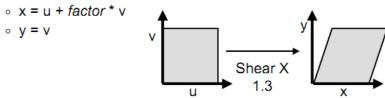


Image Mapping - Examples

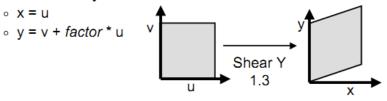
- · Scale by factor:
 - x = factor * u
 - y = factor * v



• Shear in X by factor:



· Shear in Y by factor:



- Rotate by Θ degrees:
- $x = u\cos\Theta v\sin\Theta$ • $y = usin\Theta + vcos\Theta$ Rotate 30 u х
- Any function of u and v:
 - $x = f_x(u,v)$ • $y = f_v(u,v)$

"Rain"

45°

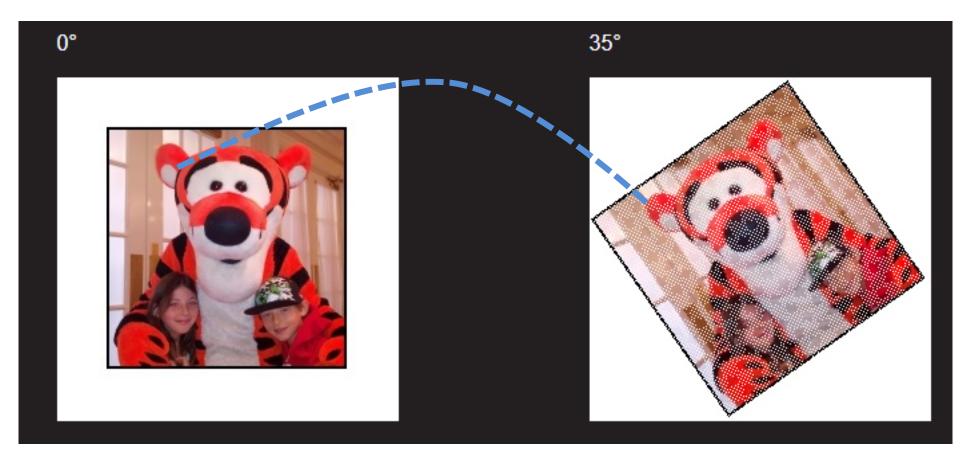


170°

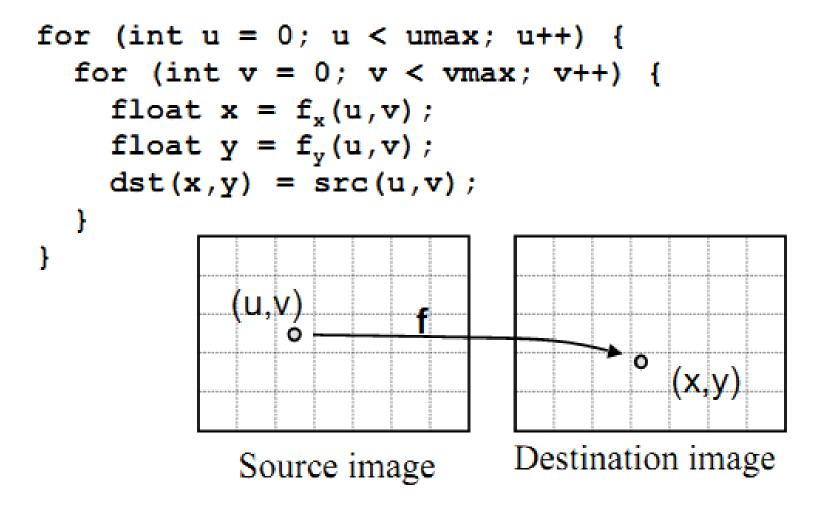
0°

$$\begin{bmatrix} x^* \\ y^* \end{bmatrix} = \begin{bmatrix} 1 & -\tan(\theta/2) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \sin\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & -\tan(\theta/2) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

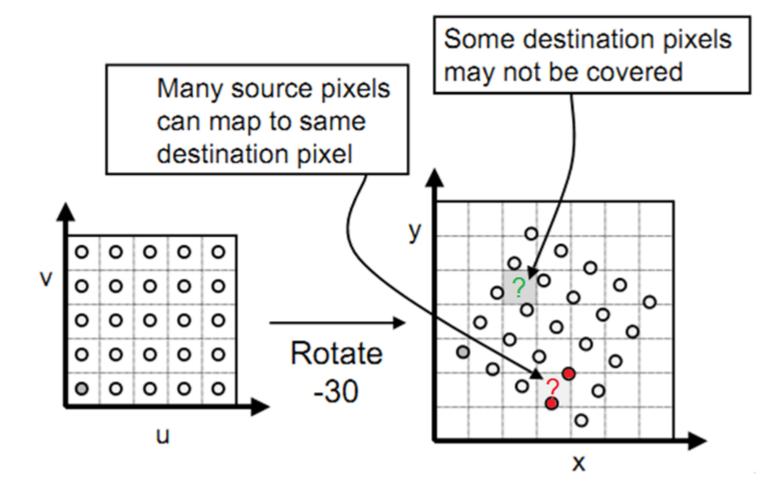
Forward Mapping



Forward Mapping

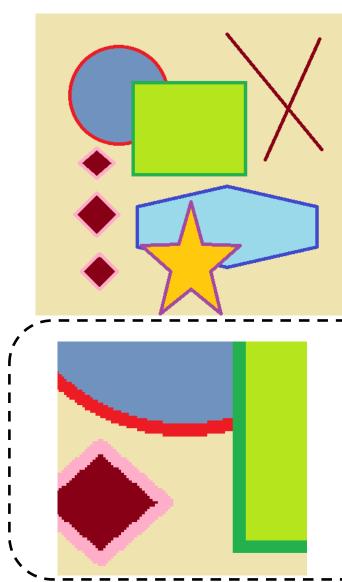


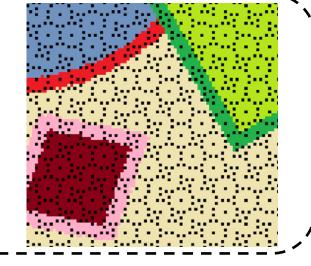
Forward Mapping - Disadvantages



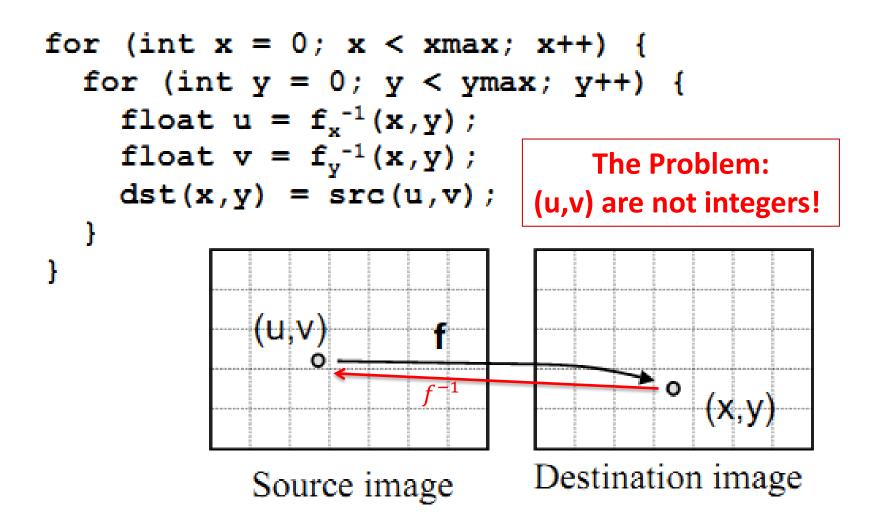
Example – Forward Mapping

Zoom In





Backward Mapping

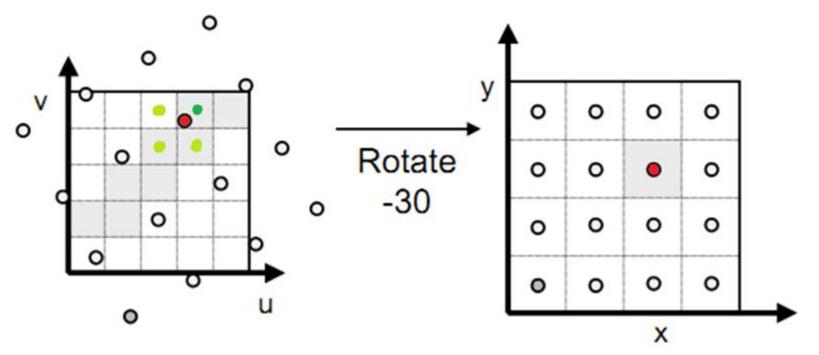


Nearest Neighbor

Take value at closest pixel:

- int iu = trunc(u+0.5);
- int iv = trunc(v+0.5);
- dst(x,y) = src(iu,iv);

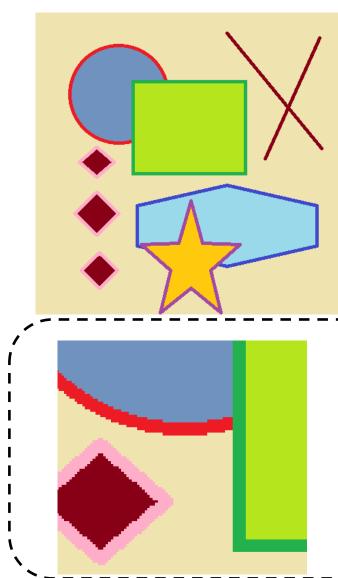
This method is simple, but it causes aliasing

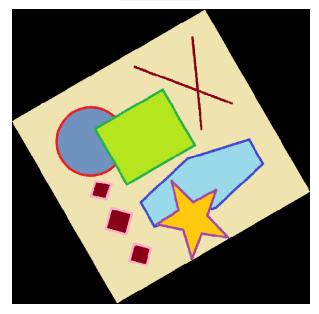


Example - Nearest Neighbor

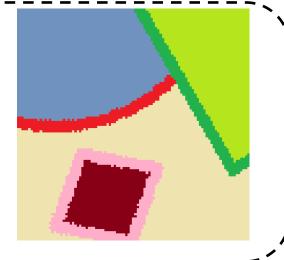
Original

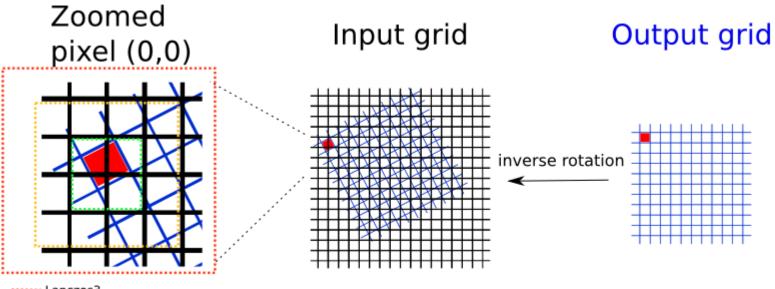
Rotated





Zoom In

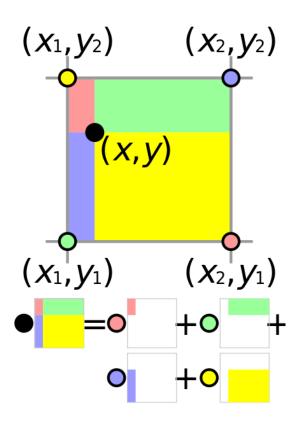




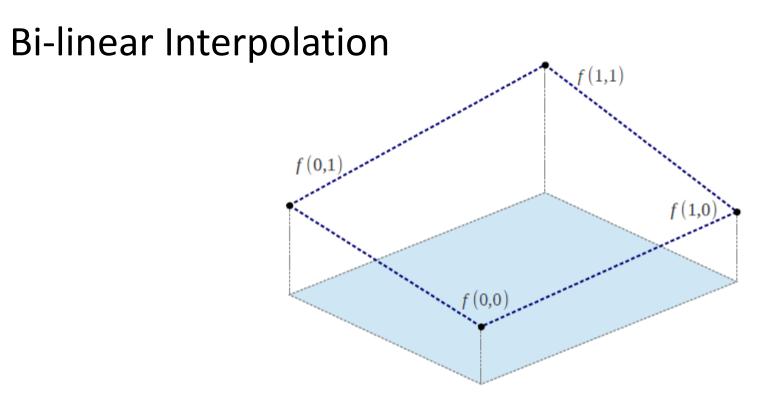
Lanczos3 Bicubic & Lanczos 2 Bilinear

Bi-linear

- Bi-linear interpolates four closest pixels.
- The weight for each pixel is proportional to its distance from the sampling point (x,y)

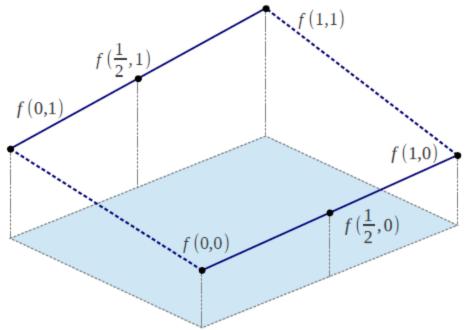


Bi-linear Interpolation f(0,1)f(0,0)



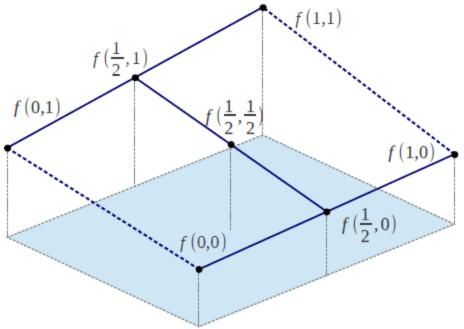
• Model f(x, y) as a bilinear surface

Bi-linear Interpolation



- Model f(x, y) as a bilinear surface
- Interpolate $f(\frac{1}{2},0)$ using f(0,0) and f(1,0) Interpolate $f(\frac{1}{2},1)$ using f(0,1) and f(1,1)

Bi-linear Interpolation



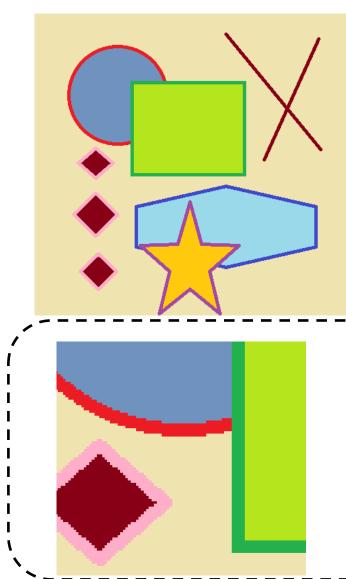
- Model f(x, y) as a bilinear surface
- Interpolate $f(\frac{1}{2}, 0)$ using f(0, 0) and f(1, 0)Interpolate $f(\frac{1}{2}, 1)$ using f(0, 1) and f(1, 1)

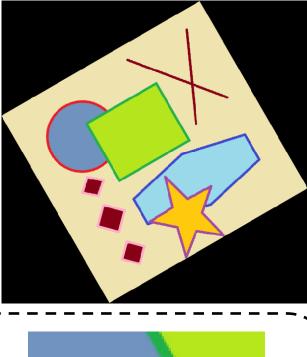
 \bullet Interpolate $f(\frac{1}{2},\frac{1}{2})$ using $f(\frac{1}{2},0)$ and $f(\frac{1}{2},1)$

Example Bi-linear

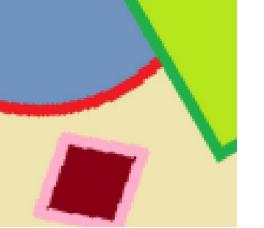
Original

Rotated



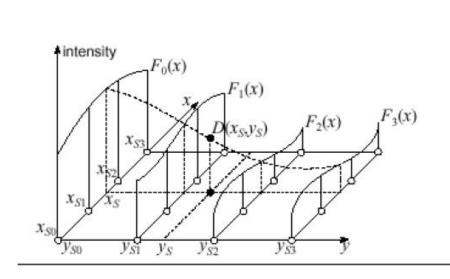


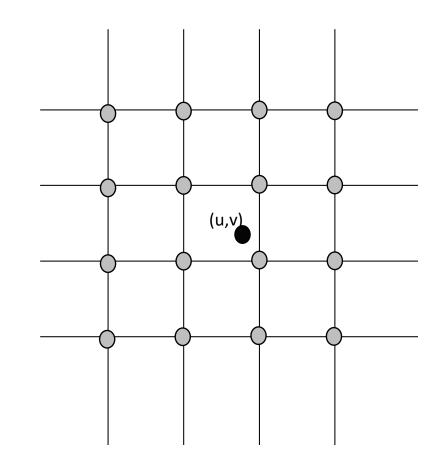
Zoom In



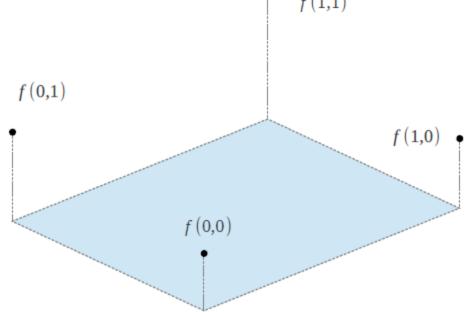
Bi-cubic

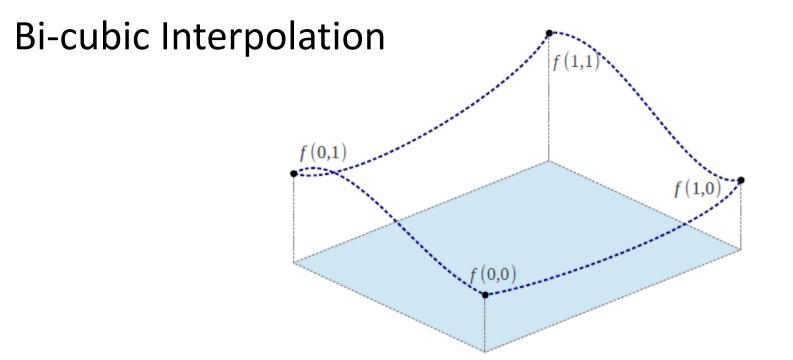
- Bicubic interpolates 16 closest neighbors (4x4 neighborhood)
 - The result is much more smooth





Bi-cubic Interpolation







Interpolate

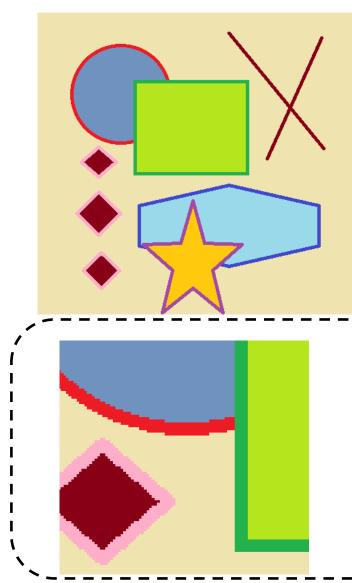
- $f(\frac{1}{2}, 0)$ using f(0, 0), f(1, 0), $\partial_x f(0, 0)$ and $\partial_x f(1, 0)$ $f(\frac{1}{2}, 1)$ using f(0, 1), f(1, 1), $\partial_x f(0, 1)$ and $\partial_x f(1, 1)$
- $\partial_y f(\frac{1}{2},0)$ using $\partial_y f(0,0)$, $\partial_y f(1,0)$, $\partial_{xy} f(0,0)$ and $\partial_{xy} f(1,0)$
- $\partial_u f(\frac{1}{2},1)$ using $\partial_u f(0,1)$, $\partial_u f(1,1)$, $\partial_{xy} f(0,1)$ and $\partial_{xy} f(1,1)$

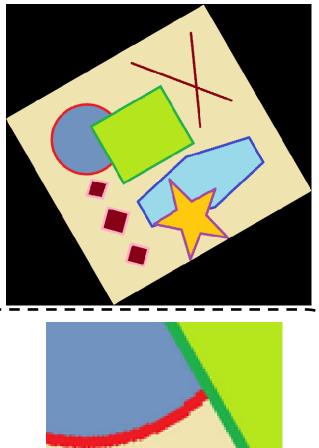
• Interpolate $f(\frac{1}{2},\frac{1}{2})$ using $f(\frac{1}{2},0)$, $f(\frac{1}{2},1)$, $\partial_y f(\frac{1}{2},0)$ and $\partial_y f(\frac{1}{2},1)$

Example Bi-cubic

Original

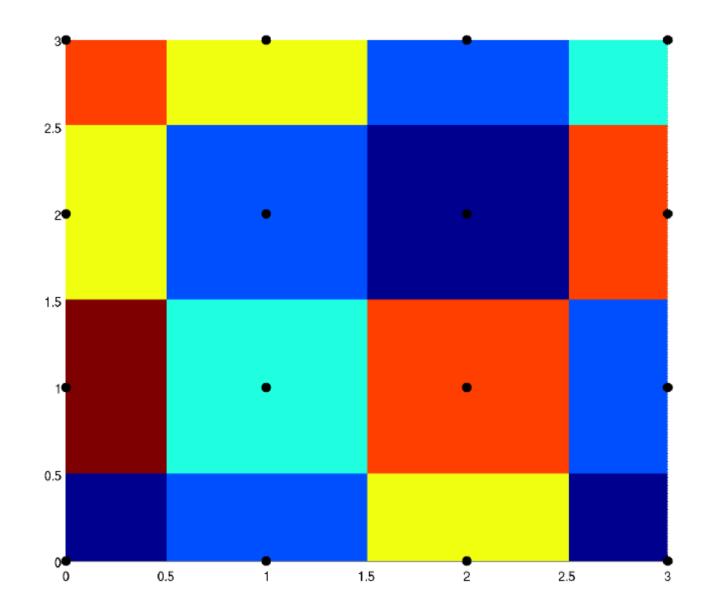
Rotated



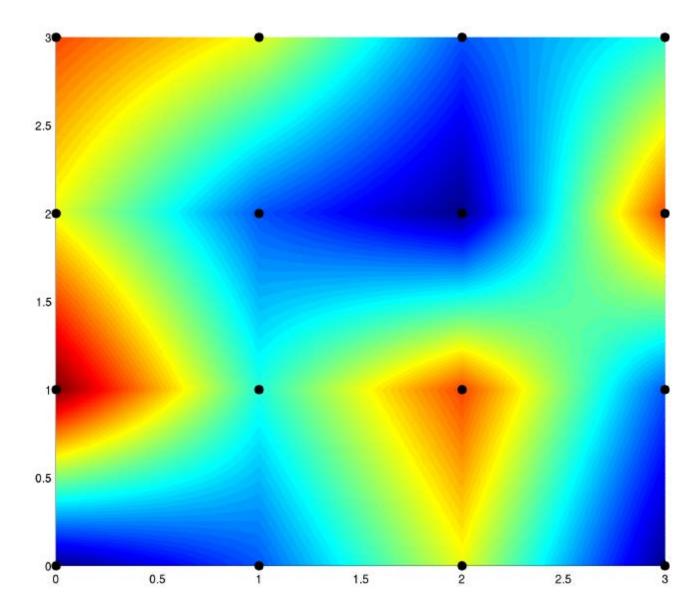


Zoom In

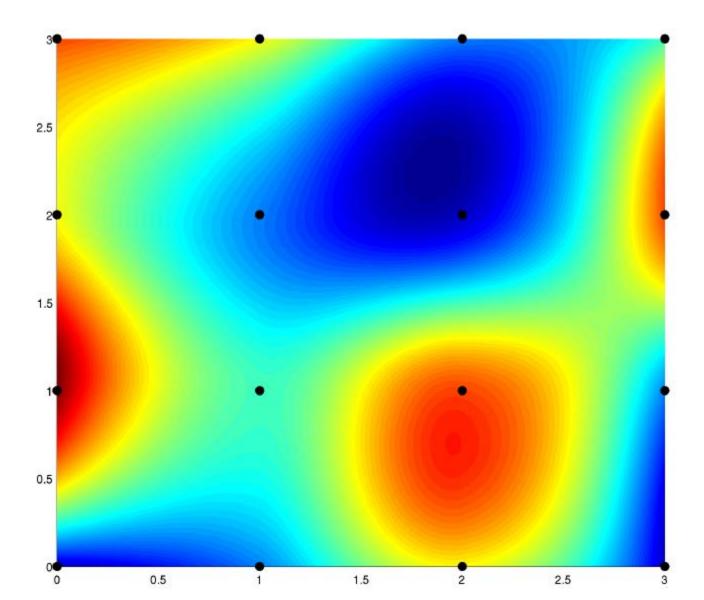
Nearest Neighbor



Bi-Linear Interpolation



Bi-Cubic Interpolation

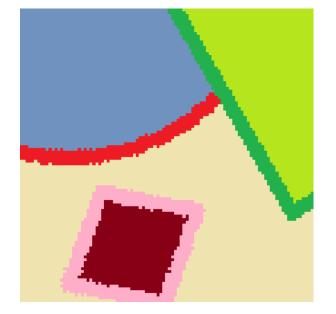


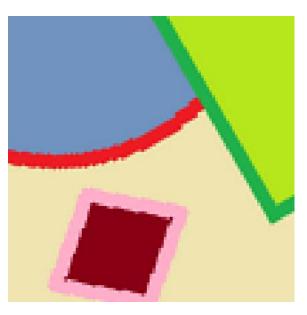
Comparison

Nearest Neighbor

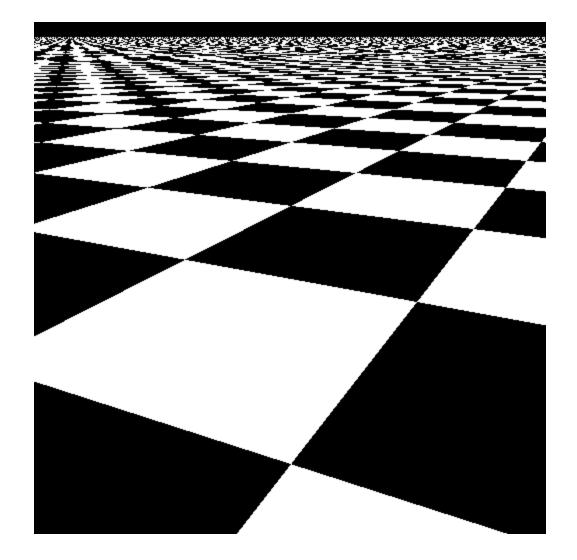
Bi-linear

Bi-cubic

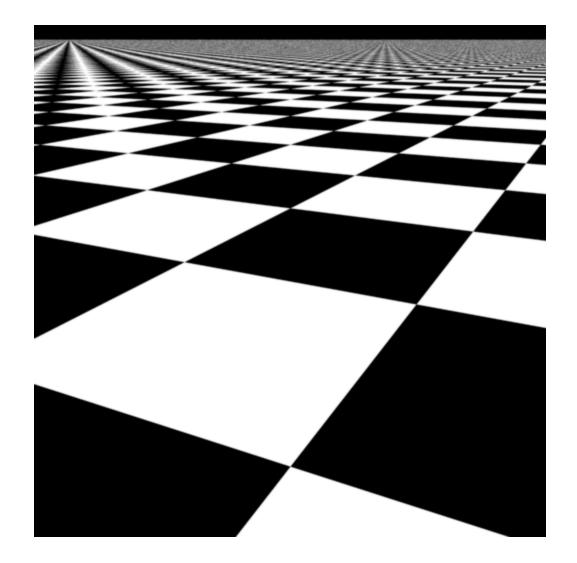




Nearest neighbor sampling

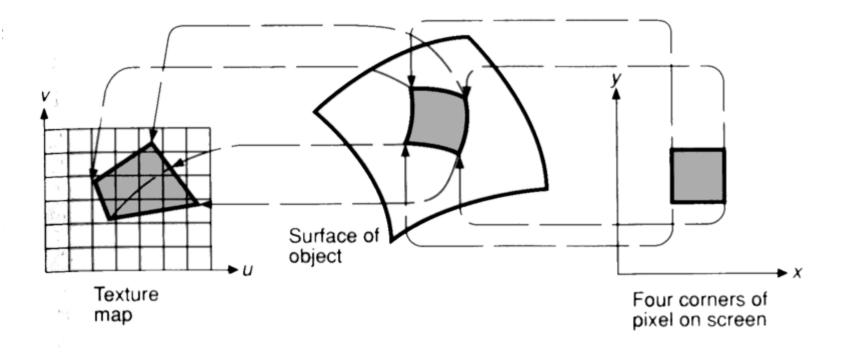


Filtered Texture:

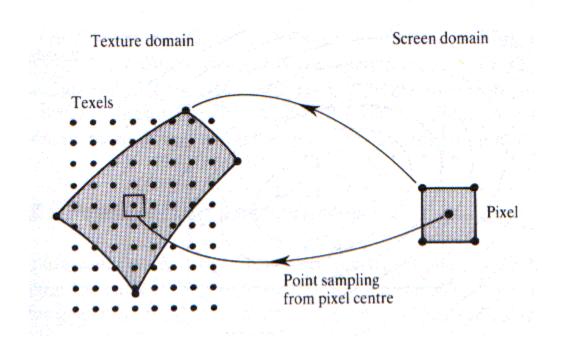


Texture Aliasing

• A single screen space pixel might correspond to many texels (texture elements):



Texture Mapping

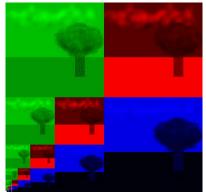


Texture Pre-Filtering

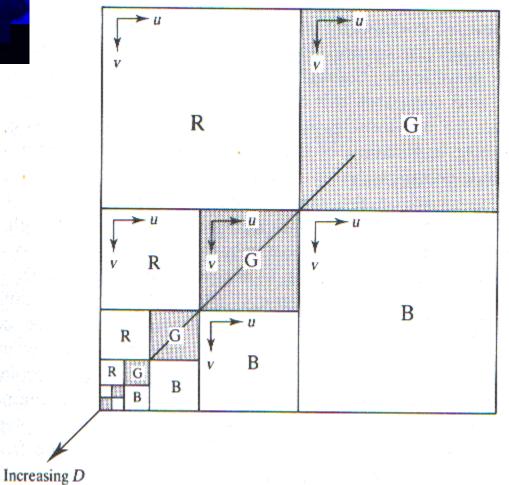
- Problem: filtering the texture during rendering is too slow for interactive performance.
- Solution: pre-filter the texture in advance
 - Summed area tables gives the average value of each axis-aligned rectangle in texture space
 - Mip-maps (tri-linear interpolation) supported by most of today's texture mapping hardware

MIP-Maps

- Precompute a set of prefiltered textures (essentially an image pyramid).
- Based on the area of the pre-image of the pixel:
 - Select two "best" resolution levels
 - Use bilinear interpolation inside each level
 - Linearly interpolate the results
- Referred to as trilinear interpolation

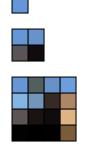


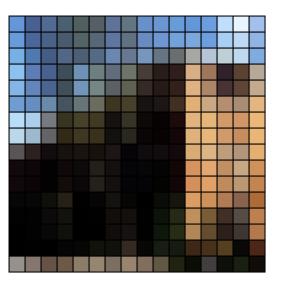
MIP Maps



MIP Mapping

- Lance Williams, 1983
- Create a resolution pyramid of textures
 - Repeatedly subsample texture at half resolution
 - Until single pixel
 - Need extra storage space
- Accessing
 - Use texture resolution closest to screen resolution
 - Or interpolate between two closest resolutions





Texture Aliasing

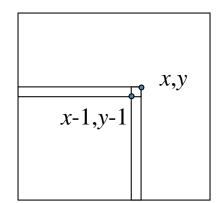
- Image mapped onto polygon
- Occur when screen resolution differs from texture resolution
- Magnification aliasing
 - Screen resolution finer than texture resolution
 - Multiple pixels per texel
- Minification aliasing
 - Screen resolution coarser than texture resolution
 - Multiple texels per pixel

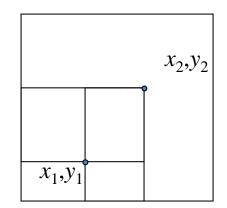
Minification Filtering

- Multiple texels per pixel
- Potential for aliasing since texture signal bandwidth greater than image
- Box filtering requires averaging of texels
- Precomputation
 - MIP Mapping
 - Summed Area Tables

Summed Area Table

- Frank Crow, 1984
- Replaces texture map with summed-area texture map
 - S(x,y) = sum of texels <= x,y
 - Need double range (e.g. 16 bit)
- Creation
 - Incremental sweep using previous computations
 - S(x,y) = T(x,y) + S(x-1,y) + S(x,y-1) S(x-1,y-1)
- Accessing
 - $\Sigma T([x_1, x_2], [y_1, y_2]) = S(x_2, y_2) S(x_1, y_2) S(x_2, y_1) + S(x_1, y_1)$
 - Ave $T([x_1,x_2],[y_1,y_2])/((x_2-x_1)(y_2-y_1))$

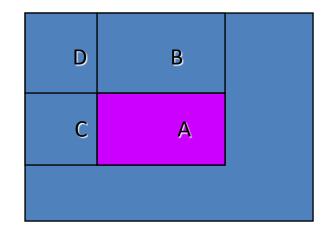




Summed Area Tables

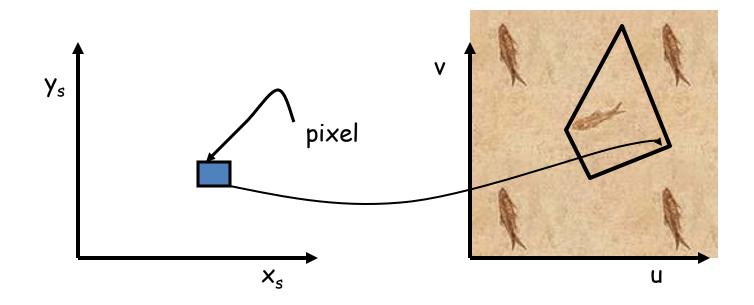
- A 2D table the size of the texture. At each entry (i,j), store the sum of all texels in the rectangle defined by (0,0) and (i,j).
- Given any axis aligned rectangle, the sum of all texels is easily obtained from the summed area table:

area =
$$A - B - C + D$$



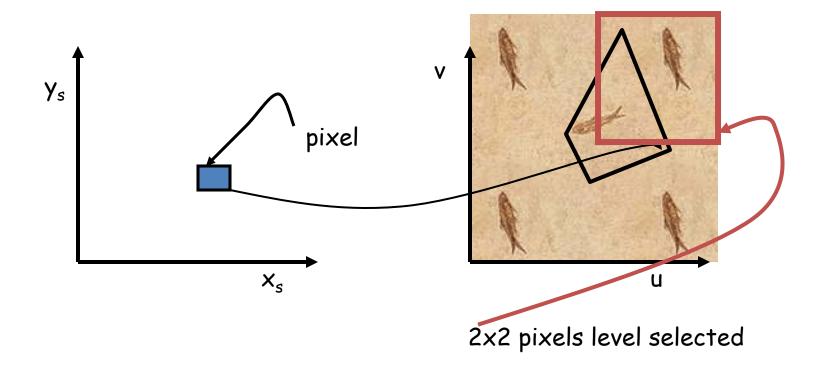
Quality considerations

• Pixel area maps to "weird" (warped) shape in texture space



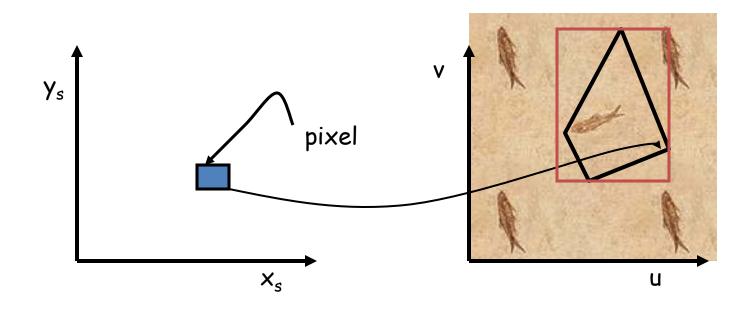
Mip-maps

• Find level of the mip-map where the area of each mip-map pixel is closest to the area of the mapped pixel.



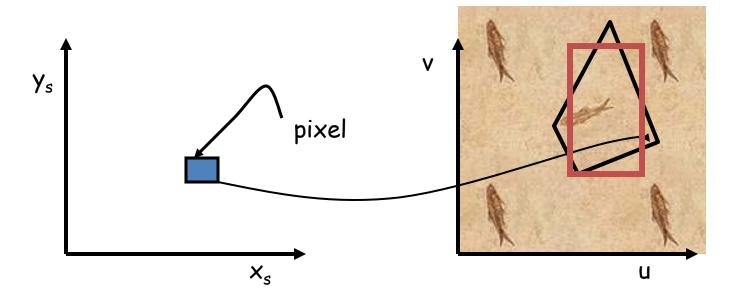
Summed Area Table (SAT)

- Determining the rectangle:
 - Find bounding box and calculate its aspect ratio



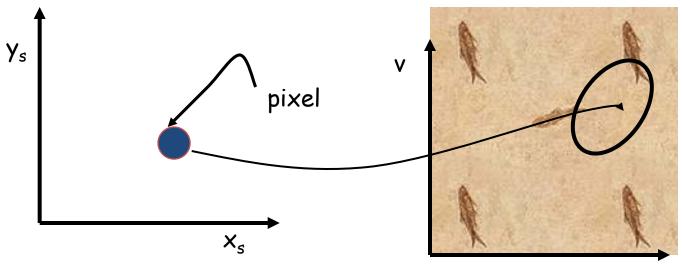
Summed Area Table (SAT)

• Determine the rectangle with the same aspect ratio as the bounding box and the same area as the pixel mapping.

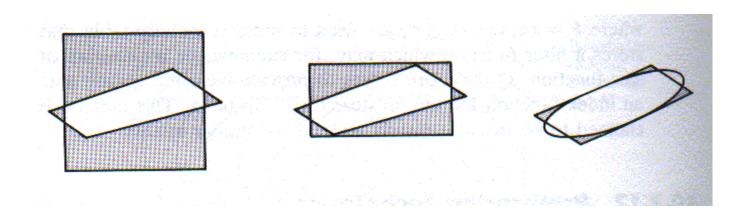


Elliptical Weighted Average (EWA) Filter

- Treat each pixel as circular, rather than square.
- Mapping of a circle is elliptical in texel space.



Texture Domain



Elliptical Weighted Average

