
1

Scan Conversion
& Shading

Taken from Thomas Funkhouser

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Scan Conversion
& Shading

P1

P2

P3

Overview

• Scan conversion
� Figure out which pixels to fill

• Shading
� Determine a color for each filled pixel

Scan Conversion

• Render an image of a geometric primitive 
by setting pixel colors

• Example: Filling the inside of a triangle

P1

P2

P3

void SetPixel(int x, int y, Color rgba)

Scan Conversion

• Render an image of a geometric primitive 
by setting pixel colors

• Example: Filling the inside of a triangle

P1

P2

P3

void SetPixel(int x, int y, Color rgba)

Triangle Scan Conversion

• Properties of a good algorithm
� Symmetric
� Straight edges
� Antialiased edges
� No cracks between adjacent primitives
� MUST BE FAST!

P1

P2

P3

P4



2

Triangle Scan Conversion

• Properties of a good algorithm
� Symmetric
� Straight edges
� Antialiased edges
� No cracks between adjacent primitives
� MUST BE FAST!

P1

P2

P3

P4

Simple Algorithm

P1

P2

P3

void ScanTriangle(Triangle T, Color rgba){
for each pixel P at (x,y){

if (Inside(T, P)) 
SetPixel(x, y, rgba);

}
}

• Color all pixels inside triangle 

Inside Triangle Test

• A point is inside a triangle if it is in the 
positive halfspace of all three boundary lines
� Triangle vertices are ordered counter-clockwise
� Point must be on the left side of every boundary line

P
L1

L2

L3

Inside Triangle Test

Boolean Inside(Triangle T, Point P)
{

for each boundary line L of T {
Scalar d = L.a*P.x + L.b*P.y + L.c;
if (d < 0.0) return FALSE;

}
return TRUE;

}

L1

L2

L3

Simple Algorithm

P1

P2

P3

void ScanTriangle(Triangle T, Color rgba){
for each pixel P at (x,y){

if (Inside(T, P)) 
SetPixel(x, y, rgba);

}
}

• What is bad about this algorithm? 

Triangle Sweep-Line Algorithm

• Take advantage of spatial coherence
� Compute which pixels are inside using horizontal spans
� Process horizontal spans in scan-line order

• Take advantage of edge linearity
� Use edge slopes to update coordinates incrementally

dx
dy



3

Triangle Sweep-Line Algorithm
void ScanTriangle(Triangle T, Color rgba){

for each edge pair {
initialize xL, xR;
compute dxL/dyL and dxR/dyR;
for each scanline at y 

for (int x = xL; x <= xR; x++) 
SetPixel(x, y, rgba);

xL += dxL/dyL;
xR += dxR/dyR;

}
}

xL xR

dxL
dyL

dxR

dyR

Polygon Scan Conversion

• Fill pixels inside a polygon
� Triangle
� Quadrilateral
� Convex
� Star-shaped
� Concave
� Self-intersecting
� Holes

What problems do we encounter with arbitrary polygons?

Polygon Scan Conversion

• Need better test for points inside polygon
� Triangle method works only for convex polygons

Convex Polygon

L1

L2

L3

L4

L5

L1

L2

L3A

L4

L5

Concave Polygon

L3B

Inside Polygon Rule

Concave Self-Intersecting With Holes

• What is a good rule for which pixels are inside?

Inside Polygon Rule

Concave Self-Intersecting With Holes

• Odd-parity rule
� Any ray from P to infinity crosses odd number of edges

Polygon Sweep-Line Algorithm

• Incremental algorithm to find spans, 
and determine insideness with odd parity rule
� Takes advantage of scanline coherence

xL xR

Triangle Polygon



4

Polygon Sweep-Line Algorithm
void ScanPolygon(Triangle T, Color rgba){

sort edges by maxy
make empty “active edge list”
for each scanline (top-to-bottom) { 

insert/remove edges from “active edge list”
update x coordinate of every active edge
sort active edges by x coordinate
for each pair of active edges (left-to-right)

SetPixels(xi, xi+1, y, rgba);
}

}

Hardware Scan Conversion

• Convert everything into triangles
� Scan convert the triangles

Hardware Antialiasing

• Supersample pixels
� Multiple samples per pixel
� Average subpixel intensities (box filter)
� Trades intensity resolution for spatial resolution

P1

P2

P3


