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Scan Conversion
& Shading

Taken from Thomas Funkhouser
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Overview

• Scan conversion
� Figure out which pixels to fill

• Shading
� Determine a color for each filled pixel

Scan Conversion

• Render an image of a geometric primitive 
by setting pixel colors

• Example: Filling the inside of a triangle
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void SetPixel(int x, int y, Color rgba)
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Triangle Scan Conversion

• Properties of a good algorithm
� Symmetric
� Straight edges
� Antialiased edges
� No cracks between adjacent primitives
� MUST BE FAST!
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Triangle Scan Conversion

• Properties of a good algorithm
� Symmetric
� Straight edges
� Antialiased edges
� No cracks between adjacent primitives
� MUST BE FAST!
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Simple Algorithm
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void ScanTriangle(Triangle T, Color rgba){
for each pixel P at (x,y){

if (Inside(T, P)) 
SetPixel(x, y, rgba);

}
}

• Color all pixels inside triangle 

Inside Triangle Test

• A point is inside a triangle if it is in the 
positive halfspace of all three boundary lines
� Triangle vertices are ordered counter-clockwise
� Point must be on the left side of every boundary line
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Inside Triangle Test

Boolean Inside(Triangle T, Point P)
{

for each boundary line L of T {
Scalar d = L.a*P.x + L.b*P.y + L.c;
if (d < 0.0) return FALSE;

}
return TRUE;

}
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Simple Algorithm
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void ScanTriangle(Triangle T, Color rgba){
for each pixel P at (x,y){

if (Inside(T, P)) 
SetPixel(x, y, rgba);

}
}

• What is bad about this algorithm? 

Triangle Sweep-Line Algorithm

• Take advantage of spatial coherence
� Compute which pixels are inside using horizontal spans
� Process horizontal spans in scan-line order

• Take advantage of edge linearity
� Use edge slopes to update coordinates incrementally

dx
dy
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Triangle Sweep-Line Algorithm
void ScanTriangle(Triangle T, Color rgba){

for each edge pair {
initialize xL, xR;
compute dxL/dyL and dxR/dyR;
for each scanline at y 

for (int x = xL; x <= xR; x++) 
SetPixel(x, y, rgba);

xL += dxL/dyL;
xR += dxR/dyR;

}
}
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Polygon Scan Conversion

• Fill pixels inside a polygon
� Triangle
� Quadrilateral
� Convex
� Star-shaped
� Concave
� Self-intersecting
� Holes

What problems do we encounter with arbitrary polygons?

Polygon Scan Conversion

• Need better test for points inside polygon
� Triangle method works only for convex polygons

Convex Polygon
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Concave Polygon
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Inside Polygon Rule

Concave Self-Intersecting With Holes

• What is a good rule for which pixels are inside?

Inside Polygon Rule

Concave Self-Intersecting With Holes

• Odd-parity rule
� Any ray from P to infinity crosses odd number of edges

Polygon Sweep-Line Algorithm

• Incremental algorithm to find spans, 
and determine insideness with odd parity rule
� Takes advantage of scanline coherence

xL xR

Triangle Polygon
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Polygon Sweep-Line Algorithm
void ScanPolygon(Triangle T, Color rgba){

sort edges by maxy
make empty “active edge list”
for each scanline (top-to-bottom) { 

insert/remove edges from “active edge list”
update x coordinate of every active edge
sort active edges by x coordinate
for each pair of active edges (left-to-right)

SetPixels(xi, xi+1, y, rgba);
}

}

Hardware Scan Conversion

• Convert everything into triangles
� Scan convert the triangles

Hardware Antialiasing

• Supersample pixels
� Multiple samples per pixel
� Average subpixel intensities (box filter)
� Trades intensity resolution for spatial resolution
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