
Computer Graphics – Spring 2019 
 

Exercise 1 – Seam Carving 
Submission: Thursday, April 11th 2019 at 23:55 (no extensions will be given) 

 
 
Seam carving is a novel algorithm for resizing images while maintaining as much 
information as possible from the source image. A "seam" in this context is an 8-
connected path of pixels from the top of the image to the bottom or from the left to 
the right. 
 
Seam carving uses a dynamic programming method to compute a directed energy 
map over the image. Using this map it finds a seam with the least energy. Removing 
this seam produces a smaller image and applying this process repeatedly allows 
reducing the size of the image freely and changing its aspect ratio. 
In order to increase the size of the image, seam carving finds k seams with the least 
energy and duplicates them in ascending order. 
 

 
Part 1 
 
Please read the Seam Carving paper here: 
http://www.faculty.idc.ac.il/arik/papers/imret.pdf 
 
In essence, your seam carving implementation should follow these general steps: 

1. Compute the energy function over the image (see below). This should 
produce a numeric value for every pixel. 

2. Decide on a seam direction – vertical or horizontal. To simplify, you can 
transpose the image when a horizontal seam is chosen (the rest of the steps 
assume a vertical seam). 

3. Compute the dynamic programming map from the second row to the 
bottom. In the paper, a seam is allowed to move diagonally. Before 
implementing that, first implement a simpler version, by only allowing 
straight seams that are either completely vertical or horizontal. Once you 
have implemented both, visually compare their results, and include two 
results for each version in your submission (titled straight_seam_1, 

straight_seam_2, general_seam_1, general_seam_2). 
4. Find the lowest energy seam by selecting the path with the least energy: 

• Start from the bottom most pixel with the lowest value 

• Repeat by proceeding upwards to its lowest energy neighbor 

• Take notice to choose only one pixel per column/row 
5. Remove the seam, adjusting each row to its new size which is one pixel short 

of the old size. 
 
Note that these are the steps for reducing the size of the image by one row or 
column. 

http://www.faculty.idc.ac.il/arik/papers/imret.pdf
http://www.faculty.idc.ac.il/arik/papers/imret.pdf


For increasing the image size, refer to the article for a slightly different procedure. 
When adding a seam, perform two experiments, and include two results for each 
option in your submission: 

1. Add the seam without altering it (titled orig_1, orig_2). 
2. Blend the added seam by interpolation with its neighbors (titled interp_1, 

interp_2). 
 
 
Energy Function 
 

1. Implement the following energy function: for every pixel calculate the Red, 
Green and Blue value differences from the pixel to its 8 neighbors and sum 
up their values. This is essentially the gradient of the pixel. 

2. Add local entropy to the energy function above. The entropy for pixel i is 
computed over a 9x9 window centered at i as follows: 
Let (𝑥, 𝑦) be the coordinates of pixel 𝑖. 

𝐻𝑖 = − ∑ ∑ 𝑝𝑚𝑛𝑙𝑜𝑔(𝑝𝑚𝑛)

𝑦+4

𝑛=𝑦−4

𝑥+4

𝑚=𝑥

 

where: 

𝑝𝑚𝑛 = 𝑓(𝑚, 𝑛)/ ∑ ∑ 𝑓(𝑘, 𝑙)

𝑦+4

𝑙=𝑦−4

𝑥+4

𝑘=𝑥−4

 

and: 
𝑓(𝑚, 𝑛) = 𝑔𝑟𝑒𝑦𝑠𝑐𝑎𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑝𝑖𝑥𝑒𝑙 (𝑚, 𝑛) 

Note that your energy function should be a weighted combination of the two 
terms. 

3. Run your program both with and without the local entropy and qualitatively 
evaluate the difference.  

 

 
Part 2 
 
Please read Section 5 (up to 5.2, not including) in the paper Improved Seam Carving 
for Video Retargeting: 
http://www.faculty.idc.ac.il/arik/SCWeb/vidret/vidretLowRes.pdf 
 
Now incorporate forward energy into your solution from part 1. 
Find images that emphasize the contribution given by forward energy and run both 
parts on them to compare. Include two results (before and after) that emphasize this 
change in your submission (titled backward_1, forward_1, backward_2, 

forward_2). 
 
 

Implementation 
 

http://www.faculty.idc.ac.il/arik/SCWeb/vidret/vidretLowRes.pdf
http://www.faculty.idc.ac.il/arik/SCWeb/vidret/vidretLowRes.pdf


1. Your solution should be implemented in Java (use package ImageIO). 
2. Your program should receive the following command line arguments: 

<input image filename> <output # columns> <output # rows> <energy type> 
<output image filename> 
Where: 
<input image filename> = Full path to the input image 
<output # columns> = Number of columns of the resized output image 
<output # rows> = Number of rows of the resized output image 
<energy type> = An argument with three possible values, where '0' = regular 
energy without entropy term, '1' = regular energy with entropy term and '2' = 
forward energy 
<output image filename> = Full path to the output image (where your 
program will write the output image to) 
Note that you need to be able to deal with all combinations of 
increase/decrease in image size. For example, you may be given an input 
where the number of columns decreases but the number of rows increases. 

3. Energy map computation: 
a. Assume we are now computing the energy value for pixel i (Ri,Gi,Bi). 
Pixel i has 8 neighbors numbered 1-8. Then, for neighbor no. 1 (R1,G1,B1) we 
have: 
val1 = (abs(Ri - R1) + abs(Gi - G1) + abs(Bi - B1)) / 3 
And so the complete energy value for pixel i would be: 
energy_i = val1 + val2 + ... + val8 
In boundary cases (where the pixel is on the image boundary) only take into 
account actual neighbors. Therefore if a pixel has only five neighbors then its 
energy sum will be composed of five terms. 
b. In order to avoid image cropping (from boundary pixels having unfair 
advantage with their low energy), please normalize the energy value per 
pixel by its number of neighbors. For example, if pixel i has 8 neighbors 
and its energy is energy_i, then its normalized energy will be: energy_i / 8 

4. Seam direction selection: 
Section 4.2 in the Seam Carving paper suggests a method to find the optimal 
seam removal order. Implementing this method is a bonus. You may choose 
one of the simple removal orders if you prefer to skip the bonus. 

5. Submit all your code, an executable .jar file titled <id1>_<id2>.jar and the 
required result images inside a zip file titled <id1>_<id2>.zip 
 

 
General instructions 
 

1. Submission is in pairs. 
2. Submit your zip files through the Moodle site of the course. 
3. Questions can be posted on the designated forum in Moodle. 

 
 

 
 



 


