Encoding Meshes in Differential Coordinates

Daniel Cohen-Or Tel Aviv University

Outline

- Differential surface representation
 - Compact shape representation •

Mesh editing and manipulation -

...about surface reconstruction •

Irregular meshes

In graphics, shapes are mostly • represented by triangle meshes

Irregular meshes

In graphics, shapes are mostly • represented by triangle meshes

Irregular meshes

Geometry: Vertex coordinates – (x_1, y_1, z_1) (x_2, y_2, z_2) (x_{n}, y_{n}, z_{n}) Connectivity (the graph) List of triangles – (i_1, j_1, k_1) (i_2, j_2, k_2)

Parallelogram Prediction

Parallelogram Prediction

K-way Prediction is better

k-way prediction is like predicting that a vertex is in the average of its adjacent neighbors

Motivation

- Meshes are great, but: •
- Topology is explicit, thus hard to handle -
 - Geometry is represented in a *global* coordinate system
- Single Cartesian coordinate of a vertex doesn't say about the shape

Differential coordinates

Represent *local detail* at each surface • point

better describe the shape -

- Linear transition from global to differential
 - Useful for operations on surfaces where are important

Differential coordinates

- Detail = surface smooth(surface)
 - Smoothing = averaging •

Laplacian matrix

The transition between the δ and xyz is •

 $A_{ij} = \begin{cases} 1 & i \in N(j) \\ 0 & otherwise \end{cases}$ $D_{ij} = \begin{cases} d_i & i = j \\ 0 & otherwise \end{cases} \qquad L = I - D^{-1}A$

Laplacian matrix

The transition between the δ and xyz is • linear:

$$\begin{array}{c|c} \mathbf{L} & \mathbf{v}_{\mathbf{x}} & = & \delta_{\mathbf{x}} \\ \hline \mathbf{L} & \mathbf{v}_{\mathbf{y}} & = & \delta_{\mathbf{y}} \\ \hline \mathbf{L} & \mathbf{v}_{\mathbf{z}} & = & \delta_{\mathbf{z}} \end{array}$$

$$\boldsymbol{\delta}_{i} = \sum_{j \in N(i)} w_{ij} \left(\mathbf{v}_{i} - \mathbf{v}_{j} \right)$$

Basic properties

- Rank(L) = n-c (n-1 for connected meshes)
- We can reconstruct the xyz geometry from delta up to translation

$$L\mathbf{x} = \mathbf{\delta}$$

$$\mathbf{x} = L^{-1} \boldsymbol{\delta}$$

"High-pass Quantization for Mesh Encoding", Sorkine et al. 03

- Quantization is one of the major methods to reduce storage space of geometry data
 - What happens if we quantize the δ \bullet coordinates?
 - Can we still go back to xyz? –
 - How does the reconstruction error behave? -
 - $\delta \ \rightarrow \ \delta' = \delta + \mathcal{E}$

How does the reconstruction error behave?

 $\mathbf{x}' = L^{-1} \boldsymbol{\delta}' = L^{-1} (\boldsymbol{\delta} + \boldsymbol{\varepsilon})$

Find the differences between the horses... •

This one is the original horse model •

- This is the model after quantizing δ to 8 bits/coordinate
 - There is one anchor point (front left leg) •

Original model •

This is the model after quantizing δ to 7 • bits/coordinate, one anchor

A coarsely-sampled sphere •

After quantization to 8 bits/coordinate •

A finely-sampled sphere: •

After (the same) quantization to 8 • bits/coordinate...

Spectral properties of L

Sort the eigenvalues in accending order: • "frequencies" $\longrightarrow \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_{n-1} \leq \lambda_n$ eigenvectors $\longrightarrow \mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_{n-1}, \mathbf{e}_n$

[Taubin 95] $\begin{array}{c} (W_1 \mathbf{e} \text{ can represent the geometry in L's } \mathbf{eigenbasis:} \\ x_2 \\ \vdots \\ x_n \end{array} = \underbrace{c_1 \mathbf{e}_1 + c_2 \mathbf{e}_2}_{\text{low frequency}} + \ldots + \underbrace{c_{n-1} \mathbf{e}_{n-1} + c_n \mathbf{e}_n}_{\text{high frequency}} \mathbf{eigenbasis:} \end{array}$

The spectral basis

"Spectral Mesh Compression", Karni and Gotsman 00

First functions are smooth and slow, last •

2nd basis function

horse topology

oscillate a lot

10th basis function

100th basis function

Spectral compression

- [Karni and Gotsman 2000]: progressive
 compression scheme ("3D JPEG")
- Drop the high-frequency spectral coefficients -
- Both the encoder and the decoder perform spectral decomposition of *L*.

Spectrum of the quantization error

"High-pass Quantization for Mesh Encoding", Sorkine et al. 03

Spectrum of the quantization error

"High-pass Quantization for Mesh Encoding", Sorkine et al. 03

Large numbers = amplification

Numbers < 1 = attenuation

Low frequency error

Low frequency error

Error spectrum matters

- Quantizing Cartesian coordinates produces error
 with mostly high-frequency modes
 - This affects the normals and thus the lighting •
- Human perception is sensitive to high-frequency
 errors
 - Quantizing delta-coordinates produces lowfrequency error
 - Strives to preserve local surface properties •
 - We are less sensitive to low-frequency errors •

Low frequency error – anything we can do about it?

Low frequency error – anything we can do about it?

Bounding the low-frequency error

- Nail" the model in place by adding more
 spatial constraints
 - The more anchors the higher λ_1 the lower the error
 - Anchors cost additional storage space -
- In practice, less than 1% of the model vertices need to be anchored for visually good reconstruction

Invertible square Laplacian

- We could simply eliminate the anchors from the system, erasing the rows and the columns of the anchor vertices
- Use this "reduced" Laplacian instead of L and remember the anchors' (x, y, z) positions separately

Invertible Laplacian artifacts

- Produces bad results when we quantize δ -because no smoothness constraints are posed on the anchors
- We keep the smoothness constraints and solve the system in least-squares sense!

Rectangular Laplacian

- We add equations for the anchor points •
- By adding anchors the matrix becomes non-square, so we solve the system in

$$\min_{x'} \|Ax' - \delta'\|$$

Low-frequency error

"High-pass Quantization for Mesh Encoding", Sorkine et al. 03

Some results

We compare to Touma-Gotsman predictive coder that uses Cartesian quantization

Some results

original

 δ -quantization, entropy 7.62

Cartesian quantization, entropy 7.64

We compare to Touma-Gotsman predictive coder that uses Cartesian quantization

Shape from connectivity

"Least-squares Meshes", Sorkine and Cohen-Or 04

What if we reduce delta information to
 zero bits??

Shape from connectivity

"Least-squares Meshes", Sorkine and Cohen-Or 04

What if we reduce delta information to • zero bits??

Geometry hidden in connectivity

"Least-squares Meshes", Sorkine and Cohen-Or 04

There is geometry in connectivity

Connectivity Shapes

"Connectivity Shapes", Isenburg and et. 01

- Connectivity has geometric information in it •
- Isenburg et al. showed how to get a shape from

 connectivity by assuming uniform edge length and smoothness
 - Non-linear optimization process to get shape from -

Least-squares Meshes

"Least-squares Meshes", Sorkine and Cohen-Or 04

- Enrich the connectivity by sparse set of control
 points with geometry
 - Solve a linear least-squares problem to
 reconstruct the geometry of all vertices (the

Basis functions

"Geometry-aware Bases for Shape Approximation", Sorkine et al. 05

The geometry reconstructed by • $\mathbf{x} = A^* \mathbf{b} \quad \left(A^* = (A^T A)^{-1} A^T\right)$

Basis functions

- The basis functions are defined on the entire mesh
 - Connectivity data -
 - Tagging of the control vertices -
 - The bases satisfy (in LS sense): •

Smooth everywhere : $L\mathbf{u_i} = 0$ –

Spectral basis vs. LS basis

LS basis

- The LS basis tags
 specific vertices, which makes it
 "geometry-aware"
- Requires solving sparse linear leastsquares problem – can be done efficiently

Spectral Basis

- The spectral basis does not take any geometric information into account
 - Requires •
- eigendecomposition impractical for today's meshes

Spectral basis vs. LS basis

Selecting the control points

- Random selection •
- Faster, but less effective approximation -
 - Greedy approach •
- Place one-by-one at vertices with highest reconstruction error

or the system inversion x –

Greedy approach

Random selection

Fast update proce

Chains and

1000 control points

Some results – varying number of control points

Some results – varying number of control points

Applications

Progressive geometry compression and •
 streaming

10000 control points

3000 control points

100 control points

1000 control points

Applications

Progressive geometry compression and • streaming

Applications

- Progressive geometry compression and streaming
 - Hole filling •
 - Mesh editing •

Geometry hidden in connectivity

"Least-squares Meshes", Sorkine and Cohen-Or 04

Differential coordinates for editing

- Intrinsic surface representation •
- Allows various surface editing operations that preserve local surface details

Why differential coordinates?

- Local detail representation enables detail preservation through various modeling tasks
 - Representation with sparse matrices •
 - Efficient linear surface reconstruction •

