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Outline

•Differential surface representation
•Compact shape representation

–Mesh editing and manipulation
•…about surface reconstruction 



Irregular meshes

•In graphics, shapes are mostly 
represented by triangle meshes
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Irregular meshes

•Geometry:
–Vertex coordinates

(x1 , y1 , z1 )
(x2 , y2 , z2 )

.    .    .

(xn , yn , zn )

•Connectivity (the 
graph)

–List of triangles
(i1 , j1 , k1 )
(i2 , j2 , k2 )

.    .    .

( )



Parallelogram Prediction



Parallelogram Prediction



K-way Prediction is better



k-way prediction  is like 
predicting that a vertex 
is in the average of its 
adjacent neighbors



Motivation

•Meshes are great, but:
–Topology is explicit, thus hard to handle
–Geometry is represented in a global 

coordinate system 
•Single Cartesian coordinate of a vertex doesn’t say 

much about the shape



Differential coordinates

•Represent local detail at each surface 
point

–better describe the shape
•Linear transition from global to differential
•Useful for operations on surfaces where 

surface details are important



Differential coordinates

•Detail = surface – smooth(surface)
•Smoothing = averaging
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Laplacian matrix

•The transition between the δ
 

and xyz is 
linear:⎛ ⎞
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Laplacian matrix

•The transition between the δ
 

and xyz is 
linear:
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Basic properties

•Rank(L) = n-c   (n-1 for connected 
meshes)

•We can reconstruct the xyz geometry from 
delta up to translation

L =x δ

1L−=x δ



Quantizing differential coordinates

•Quantization is one of the major methods 
to reduce storage space of geometry data

•What happens if we quantize the δ- 
coordinates?

–Can we still go back to  xyz ?
–How does the reconstruction error behave?L =x δ

ε′→ = +δ δ δ

“High-pass Quantization for Mesh Encoding”, Sorkine et al. 03



Quantizing differential coordinates

1 1( )L L ε− −′ ′= = +x δ δ

How does the reconstruction error behave?



•Find the differences between the horses…

Quantizing differential coordinates



•This one is the original horse model

Quantizing differential coordinates



•This is the model after quantizing  δ to 8 
bits/coordinate

•There is one anchor point (front left leg)

Quantizing differential coordinates



•Original model

Quantizing differential coordinates



•This is the model after quantizing δ to 7 
bits/coordinate, one anchor

Quantizing differential coordinates



Quantizing differential coordinates



Quantizing differential coordinates



Quantization error

•A coarsely-sampled sphere



Quantization error

•After quantization to 8 bits/coordinate



Quantization error

•A finely-sampled sphere:



Quantization error

•After (the same) quantization to 8 
bits/coordinate…



Quantizing differential coordinates



Quantizing differential coordinates



Spectral properties of L

•Sort the eigenvalues in accending order:

•We can represent the geometry in L’s 
eigenbasis:
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The spectral basis

•First functions are smooth and slow, last 
oscillate a lot

“Spectral Mesh Compression”, Karni and Gotsman 00

horse topology

spectral basis of L =
the DCT basis

chain topology

2nd basis 
function

10th basis 
function

100th basis 
function



•[Karni and Gotsman 2000]: progressive 
compression scheme (“3D JPEG”)

–Drop the high-frequency spectral coefficients
–Both the encoder and the decoder perform spectral 

decomposition of L.

Spectral compression



Spectrum of the quantization error

1 1 1( )L L Lε ε− − −′ ′= = + = +x δ δ x

“High-pass Quantization for Mesh Encoding”, Sorkine et al. 03



Spectrum of the quantization error

1L ε−′ = +x x
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“High-pass Quantization for Mesh Encoding”, Sorkine et al. 03



Low frequency error



Low frequency error



Error spectrum matters

•Quantizing Cartesian coordinates produces error 
with mostly high-frequency modes

•This affects the normals and thus the lighting
•Human perception is sensitive to high-frequency 

errors

•Quantizing delta-coordinates produces low- 
frequency error

•Strives to preserve local surface properties
•We are less sensitive to low-frequency errors



Low frequency error – anything we 
can do about it?
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Bounding the low-frequency error

•“Nail” the model in place by adding more 
spatial constraints

•The more anchors – the higher λ1 – the 
lower the error

–Anchors cost additional storage space
–In practice, less than 1% of the model vertices 

need to be anchored for visually good 
reconstruction



Invertible square Laplacian
•We could simply eliminate the anchors from the system, 

erasing the rows and the columns of the anchor vertices
•Use this “reduced” Laplacian instead of L and remember 

the anchors’ (x, y, z) positions separately
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Invertible Laplacian artifacts

•Produces bad results when we quantize δ
 because no smoothness constraints are posed 

on the anchors
•We keep the smoothness constraints and solve 

the system in least-squares sense!



Rectangular Laplacian

•We add equations for the anchor points
•By adding anchors the matrix becomes 

non-square, so we solve the system in 
least-squares sense:
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Low-frequency error

Positive error – 
vertex moves 
outside of the 
surface

Negative error – 
vertex moves 
inside the 
surface

0 –

Cartesian 
quantization 8b/c

δ-quantization 7b/c
4 anchors

δ-quantization 7b/c
20 anchors

δ-quantization 7b/c
2 anchors

“High-pass Quantization for Mesh Encoding”, Sorkine et al. 03



Some results

original δ-quantization,
entropy 6.69

Cartesian quantization,
entropy 7.17

We compare to Touma-Gotsman predictive coder that uses Cartesian quantization



Some results

original δ-quantization,
entropy 7.62

Cartesian quantization,
entropy 7.64

We compare to Touma-Gotsman predictive coder that uses Cartesian quantization



Shape from connectivity

•What if we reduce delta information to 
zero bits??

•Can we still reconstruct some geometry?

“Least-squares Meshes”, Sorkine and Cohen-Or 04
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Shape from connectivity

•What if we reduce delta information to 
zero bits??

•Can we still reconstruct some geometry?

“Least-squares Meshes”, Sorkine and Cohen-Or 04
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Geometry hidden in connectivity

There is geometry in connectivity

“Least-squares Meshes”, Sorkine and Cohen-Or 04



Connectivity Shapes

•Connectivity has geometric information in it
•Isenburg et al. showed how to get a shape from 

connectivity by assuming uniform edge length 
and smoothness 

–Non-linear optimization process to get shape from 
connectivity

“Connectivity Shapes”, Isenburg and et. 01



Least-squares Meshes

•Enrich the connectivity by sparse set of control 
points with geometry

•Solve a linear least-squares problem to 
reconstruct the geometry of all vertices (the 

approximated shape)

“Least-squares Meshes”, Sorkine and Cohen-Or 04



Basis functions

•The geometry reconstructed by

is in fact a combination of  k basis functions:
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“Geometry-aware Bases for Shape Approximation”, Sorkine et al. 05



Basis functions
•The basis functions are defined on the entire mesh

–Connectivity data
–Tagging of the control vertices

•The bases satisfy (in LS sense):
–Smooth everywhere :  Lui

 

= 0
–Large on the i-th control vertex (ui

 

= 1) and vanish on all others
5 basis functions

on a 2D mesh
(simple chain)



Spectral basis vs. LS basis

Spectral Basis
•The spectral basis 

does not take any 
geometric information 

into account

•Requires 
eigendecomposition – 
impractical for today’s 

meshes

LS basis
•The LS basis tags 

specific vertices, 
which makes it 

“geometry-aware”
•Requires solving 

sparse linear least- 
squares problem – 

can be done 
efficiently



Spectral basis vs. LS basis

6 spectral basis vectors 45 spectral basis vectors

6 geometry-aware basis vectors 45 geometry-aware basis vectors



Selecting the control points

•Random selection 
–Faster, but less effective approximation

•Greedy approach 
–Place one-by-one at vertices with highest 

reconstruction error
–Fast update procedure for the system inverse matrix

Random selection Greedy approach

1000 control points



Some results – varying number of control points

100 control points 600 control points 1200 control points 3600 control points

Original camel   
39074 vertices



Some results – varying number of control points

100 control points 500 control points 4000 control points 9000 control points

Original feline   
49864 vertices



Applications

•Progressive geometry compression and 
streaming

100 
control points

1000 
control points

3000 
control points

10000 
control points



Applications

•Progressive geometry compression and 
streaming

•Hole filling



Applications

•Progressive geometry compression and 
streaming

•Hole filling
•Mesh editing



Geometry hidden in connectivity
“Least-squares Meshes”, Sorkine and Cohen-Or 04



Differential coordinates for editing

•Intrinsic surface representation
•Allows various surface editing operations that 

preserve local surface details



Why differential coordinates?

•Local detail representation – enables detail 
preservation through various modeling tasks

•Representation with sparse matrices
•Efficient linear surface reconstruction
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