
Clipping

 קורס גרפיקה ממוחשבת
'אסמסטר 2009/2010

 ליאור שפירא

3D Polygon
Rendering Pipeline

 6שיעור

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

2D Rendering Pipeline

Viewport
Transformation

Scan
Conversion

Clipping

2D Primitives

Image

Clip portions of geometric primitives
residing outside the window

Fill pixels representing primitives
in screen coordinates

Transform the clipped primitives
from screen to image coordinates

3D Primitives

2D Rendering Pipeline

Viewport
Transformation

Scan
Conversion

Clipping

2D Primitives

Image

Clip portions of geometric primitives
residing outside the window

Fill pixels representing primitives
in screen coordinates

Transform the clipped primitives
from screen to image coordinates

3D Primitives

Clipping
 Avoid drawing parts of primitives outside window
◦ Window defines part of scene being viewed

◦ Must draw geometric primitives only inside window

Screen Coordinates

Window

Clipping
 Avoid drawing parts of primitives outside window
◦ Window defines part of scene being viewed

◦ Must draw geometric primitives only inside window

Viewing
Window

Clipping
 Avoid drawing parts of primitives outside window
◦ Points

◦ Lines

◦ Polygons

◦ Circles

◦ etc.

Viewing
Window

Point Clipping
 Is point (x,y) inside the clip window?

Window
wx1 wx2

wy2

wy1

(x,y)

inside =
 (x >= wx1) &&
 (x <= wx2) &&
 (y >= wy1) &&
 (y <= wy2);

Line Clipping
 Find the part of a line inside the clip window

P1

P10

P9

P8

P7

P4 P3

P6

P5

P2

Before Clipping

P’8

P’7

P4 P3

P6

P’5
After Clipping

Line Clipping
 Find the part of a line inside the clip window

Cohen-Sutherland Line Clipping
 Use simple tests to classify easy cases first

P1

P10

P9

P8

P7

P4 P3

P6

P5

P2

Cohen-Sutherland Line Clipping
 Use simple tests to classify easy cases first

Clipping is performed by the computation of the
intersections with four boundary segments of the
window: Li, i=1,2,3,4

Purpose: Fast treatment of lines that are trivially
inside/outside the window.
Let P=(x,y) be a point to be classified against
window W.

Idea: Assign P a binary code consisting of a bit for
each edge of W, whose value is determined
according to the following table:

bit 1 0

1
2
3

y < ymin
y > ymax
x > xmax

y ≥ ymin
y ≤ ymax
x ≤ xmax

4 x < xmin x ≥ xmin

0101

0001

0110 0100

1001

0010

1010

0000

1000
ymin

ymax

xmin xmax

1

2

3 4

0101

0001

0110 0100

1001

0010

1010

0000

1000

 Given a line segment S from p0=(x0,y0) to p1=(x1,y1) to be clipped

against a window W.

 If code(p0) AND code(p1) is not zero - then S is trivially rejected.

 If code(p0) OR code(p1) is zero - then S is trivially accepted.

Cohen Sutherland Line Clipping
 Classify some lines quickly by AND of bit codes

representing regions of two endpoints (must be 0)

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P1

P10

P9

P8

P7

P4 P3

P6

P5

P2

Cohen Sutherland Line Clipping
 Classify some lines quickly by AND of bit codes

representing regions of two endpoints (must be 0)

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P1

P10

P9

P8

P7

P4 P3

P6

P5

P2

Cohen Sutherland Line Clipping
 Classify some lines quickly by AND of bit codes

representing regions of two endpoints (must be 0)

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P8

P7

P4 P3

P6

P5

Cohen Sutherland Line Clipping
 Classify some lines quickly by AND of bit codes

representing regions of two endpoints (must be 0)

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P8

P7

P4 P3

P6

P5

Cohen Sutherland Line Clipping
 Compute intersections with window boundary for lines

that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P8

P7

P4 P3

P6

P5

Cohen Sutherland Line Clipping
 Compute intersections with window boundary for lines

that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P8

P7

P4 P3

P6

P5

Cohen Sutherland Line Clipping
 Compute intersections with window boundary for lines

that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P8

P7

P4 P3

P6

P’5

Cohen Sutherland Line Clipping
 Compute intersections with window boundary for lines

that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P8

P7

P4 P3

P6

P’5

Cohen Sutherland Line Clipping
 Compute intersections with window boundary for lines

that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P8

P7

P4 P3

P6

P’5

Cohen Sutherland Line Clipping
 Compute intersections with window boundary for lines

that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P8

P7

P4 P3

P6

P’5

Cohen Sutherland Line Clipping
 Compute intersections with window boundary for lines

that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P8

P’7

P4 P3

P6

P’5

Cohen Sutherland Line Clipping
 Compute intersections with window boundary for lines

that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P8

P’7

P4 P3

P6

P’5

Cohen Sutherland Line Clipping
 Compute intersections with window boundary for lines

that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P’8

P’7

P4 P3

P6

P’5

Cohen Sutherland Line Clipping
 Compute intersections with window boundary for lines

that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P’8

P’7

P4 P3

P6

P’5

Cohen Sutherland Line Clipping
 Compute intersections with window boundary for lines

that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P’8

P’7

P4 P3

P6

P’5

Cohen Sutherland Line Clipping
 Compute intersections with window boundary for lines

that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P’8

P’7

P4 P3

P6

P’5

Cohen Sutherland Line Clipping
 Compute intersections with window boundary for lines

that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P’8

P’7

P4 P3

P6

P’5

Cohen Sutherland Line Clipping
 Compute intersections with window boundary for lines

that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P10

P9

P’8

P’7

P4 P3

P6

P’5

Cohen Sutherland Line Clipping
 Compute intersections with window boundary for lines

that can’t be classified quickly

Bit 1 Bit 2

Bit 3

Bit 4

0000 0100 1000

0001 0101 1001

0010 0110 1010

P’8

P’7

P4 P3

P6

P’5

CompOutCode (x, y : real; var code : outcode);
/* Compute outcode for the point (x,y) */
begin
 code := 0;
 if Y > Ymax then code := code | B1000
 else
 if Y < Ymin then code := code | B0100;
 if X > Xmax then code := code | B0010
 else
 if X < Xmin then code := code | B0001;
end;

Cohen-Sutherland Algorithm

CS (x0,y0,x1,y1,xmin,xmax,ymin,ymax)
{
 boolean accept, done :;
 float outcode0, outcode1, x, y;
 accept := false ;
 done := false ;
 CompOutCod (x0,y0,outcode0);
 CompOutCod (x1,y1,outcode1);
 repeat
 if ((outcode0 | outcode1) == 0)
 {
 /* Trivial accept */
 accept := true ;
 done := true ;
 }
 else
 if ((outcode0 & outcode1) <> 0){
 /* Trivial reject */
 done := true
 }
 else
/* Failed both tests, so calculate the line segment to clip from an outside
point to an intersection with clip edge */

Cohen-Sutherland Algorithm (cont.)

/* At least one endpoint is outside the clip rectangle, pick it*/
if (outcode0 <> 0) {
 outcodeOut := outcode0
else
 outcodeOut := outcode1;

/* now find the intrsection point by using the formulas:
y= y0 + slope*(x-x0), and
x = x0 + (1/slope)*(y-y0) */

if (outcodeOut & 0x1000) then
 divide line at top of clip rectangle;

else if (outcodeOut & 0x0100) then
 divide line at bottom of clip rectangle;

else if (outcodeOut & 0x0010) then
 divide line at right edge of clip rectangle;

else if (outcodeOut & 0x0001) then
 divide line at left edge of clip rectangle;

Cohen-Sutherland Algorithm (cont.)

/* Now we move outside point to intersection point to
clip,
and get ready for next pass */
if (outcodeOut == outcode0)
{
 x0:=x;y0:=y;CompOutCod (x0,y0,outcode0);
}
 else {
 x1:=x;y1:=y;CompOutCod (x1,y1,outcode1);
}

} /* Subdivide */
 until (done) ;

 if (accept) draw_line (x0,y0,y0,y1);
} /* end */

Cohen-Sutherland Algorithm (cont.)

Vector Calculus - Preliminaries

A 2D vector V is defined as: V=(Vx,Vy).

Scalar (dot) product between two vectors V and U is defined:

If then V and U are perpendicular to each other.

x
x y

y

x x y y

U
V U V V

U

V U V U V cosU θ

 ⋅ = =

+ =

0=⋅UV

P0

P1

P1 - P0

Vector Subtraction

P0
P1

Vector Addition

P0=P(t=0)

P1=P(t=1)

Parametric Line

P(t)=P0+(P1-P0)t

V(t=0)

V(t=1)

Changing the Origin

V(t)=P(t)-Q

Q

Inside/Outside Test

 Assume WLOG that V=(V1-V0) is the border vector where
"inside" is to its right.

 If V=(Vx,Vy), N is a prep' vector pointing outside, where we
define:

 N=(-Vy,Vx)

 Vector U points "outside" if

 Otherwise U points "inside".

V0

V1
inside

N

U

0>⋅UN

Segment-Line Intersection

 The parametric line P(t)=P0+(P1-P0)t

 The parametric line V(t)=P(t)-Q

 The segment intersects the line L at t0 satisfying V(t0)·N=0.

 The intersection point is P(t0).

 The vector ∆=P1-P0 points "inside" if (P1-P0)·N<0.

 Otherwise it points "outside".

 If L is vertical, intersection can be computed using the explicit equation.

P0

inside

N Q

P1 V(t)

L

Cyrus-Beck Line Clipping

 Denote p(t)=p0+(p1-p0)t t∈[0..1]

 Let Qi be a point on the edge Li with outside pointing
normal Ni.

 V(t) = p(t)-Qi is a parameterized vector from Qi to the
segment P(t).

 Ni· V(t) = 0 iff V(t) ⊥ Ni

 We are looking for t satisfying the above equation:

p0

p1

Ni Qi

Cyrus-Beck Clipping (cont.)

0 = Ni· V(t) = Ni· (p(t)-Qi)

 = Ni· (p0+(p1-p0)t-Qi) = Ni· (p0-Qi) + Ni· (p1-p0)t

Solving for t we get:

where ∆=(p1-p0)

• Comment: If Ni· ∆=0, t has no solution.
However, in this case V(t) ⊥ Ni and there is no intersection.

Ni· (p0-Qi)
-Ni· (p1-p0) t =

Ni· (p0-Qi)
-Ni· ∆

=

p0

p1

PE
PE

PL

PL

potentially Entering and potentially Leaving

Cyrus-Beck Algorithm:
 The intersection of p(t) with all four edges Li is computed,

resulting in up to four ti values.

 If ti<0 or ti>1 , ti can be discarded.

 Based on the sign of Ni· ∆, each intersection point is classified as PE
(potentially entering) or PL (potentially leaving).

 PE with the largest t and PL with the smallest t provide the domain of
p(t) inside W.

 The domain, if inverted, signals that p(t) is totally outside.

p1

p0

PL

PE

p0

p1

PE
PE

PL

PL

p1
PL

PE
p0

precalculate Ni and select a Pei for each edge;

for each line segment to be clipped
 if (P1 = P2) then
 line is degenerate so clip as a point;
 else {
 tPE = 0; tPL = 1;
 for each candidate intersection with a clip edge
 if ((<Ni, D>) <> 0) then {
 /* Ignore edges parallel to line for now */
 calculate t;
 sign of <Ni, D> categorizes as PE or PL ;
 if PE then tPE = max (tPE, t);
 if PL then tPL = min (tPL, t);
 }
 if (tPE > tPL) return null
 else
 return P(tPE) and P(tPL) ;
 /* as true clip intersections */
 };

Cyrus-Beck Line Clipping

Polygon Clipping

Clipping
 Avoid drawing parts of primitives outside

window
◦ Points
◦ Lines
◦ Polygons
◦ Circles
◦ etc.

2D Screen Coordinates

Window

Polygon Clipping
 Find the part of a polygon inside the clip

window?

Before Clipping

Polygon Clipping
 Find the part of a polygon inside the clip

window?

After Clipping

Sutherland Hodgeman Clipping
 Clip to each window boundary one at a time

After each clipping a new set of vertices is produced.

Sutherland Hodgeman Clipping
 Clip to each window boundary one at a time

Sutherland Hodgeman Clipping
 Clip to each window boundary one at a time

Sutherland Hodgeman Clipping
 Clip to each window boundary one at a time

Sutherland Hodgeman Clipping
 Clip to each window boundary one at a time

Clipping to a Boundary
 Do inside test for each point in sequence,

Insert new points when cross window boundary,
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1
P2

P5

P4

P3

Clipping to a Boundary
 Do inside test for each point in sequence,

Insert new points when cross window boundary,
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1
P2

P5

P4

P3

Clipping to a Boundary
 Do inside test for each point in sequence,

Insert new points when cross window boundary,
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1
P2

P5

P4

P3

Clipping to a Boundary
 Do inside test for each point in sequence,

Insert new points when cross window boundary,
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1
P2

P5

P4

P3

Clipping to a Boundary
 Do inside test for each point in sequence,

Insert new points when cross window boundary,
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1
P2

P5

P4

P3

P’

Clipping to a Boundary
 Do inside test for each point in sequence,

Insert new points when cross window boundary,
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1
P2

P5

P4

P3

P’

Clipping to a Boundary
 Do inside test for each point in sequence,

Insert new points when cross window boundary,
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1
P2

P5

P4

P3

P’

Clipping to a Boundary
 Do inside test for each point in sequence,

Insert new points when cross window boundary,
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1
P2

P5

P4

P3

P’ P’’

Clipping to a Boundary
 Do inside test for each point in sequence,

Insert new points when cross window boundary,
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1
P2

P’ P’’

For each clip edge - consider the relation between successive
vertices of the polygon; Assume vertex s has been dealt with,
vertex p follows:

clip
boundary

inside outside
s

p
clip
boundary

inside outside

s

p

clip
boundary

inside outside
p s i

s
clip
boundary

inside outside

p i

p added to
 output list

i added to
 output list no output i and p added to

 output list

type
 vertex = point; /* point holds real x, y */
 edge = array [1..2] of vertex;
 /* Max declared as constant */
 vertexArray = array [1..MAX] of vertex;

procedure SutherlandHodgmanPolygonClip (
inVertexArray: vertixArray; /* input vertex array */
var outVertexArray: vertexArray; /*output vertex array */
inLength: integer; /* num of entries in inVertexArray */
var outLength:integer; /*num of entries in outVertexArray */
clipBoundary : edge /* Edge of clip polygon */
);

 Sutherland - Hodgman
 polygon Cliping Algoruthm

var
 s, p /* Start, End point of current polygon edge */
 i : vertix; /* Intersection point with clip boundary */
 j : integer; /* vertex loop counter */
begin
 outLength :=0;
 s := inVertexArray [inLength];
 /* Start with the kast vertex in inVertexArray*/
 for j:=1 to inLength do
 begin
 p := inVertexArray[j];
 if Inside (p, clipBoundary) then
 if Inside (s, clipBoundary) then
 Output (p,outLength, outVertexArray) /*case #1*/
 else
 begin /* case # 4 */
 Intersect (s, p, clipBoundary, i);
 Output (i, outLength, outVertexArray);
 Output (p, outLength, outVertexArray);
 end
 else
 if Inside (s, clipBoundary) then
 begin /* case # 2 */
 Intersect (s, p, clipBoundary, i);
 Output (i, outLength, outVertexArray);
 end;
 s := p ; /* Advance to next pair of vertices */
 end /* for */
end; /* SutherlandHodgmanPolygonClip */

Sutherland - Hodgman (cont.)

2D Rendering Pipeline

Viewport
Transformation

Scan
Conversion

Clipping

2D Primitives

Image

Clip portions of geometric primitives
residing outside the window

Fill pixels representing primitives
in screen coordinates

Transform the clipped primitives
from screen to image coordinates

3D Primitives

Viewport Transformation
 Transform 2D geometric primitives from

screen coordinate system (normalized device
coordinates) to image coordinate system (pixels)

Image Screen

Viewport

Window

Viewport Transformation
 Window-to-viewport mapping

vx1 vx2
vy1

vy2

wx1 wx2
wy1

wy2
Window Viewport

Screen Coordinates Image Coordinates

(wx,wy) (vx,vy)

vx = vx1 + (wx - wx1) * (vx2 - vx1) / (wx2 - wx1);
vy = vy1 + (wy - wy1) * (vy2 - vy1) / (wy2 - wy1);

Summary of Transformations

Modeling
Transformation

Viewing
Transformation

2D Image Coordinates

Projection
Transformation

Window-to-Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

p(x,y,z)

p’(x’,y’)

}Viewing transformations

}Modeling transformation

} Viewport transformation

Summary

Viewport
Transformation

Scan
Conversion

Clipping

2D Primitives

Image

Clip portions of geometric primitives
residing outside the window

Fill pixels representing primitives
in screen coordinates

Transform the clipped primitives
from screen to image coordinates

3D Primitives

Summary
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Viewing
Window

	Slide Number 1
	3D Rendering Pipeline (for direct illumination)
	3D Rendering Pipeline (for direct illumination)
	2D Rendering Pipeline
	2D Rendering Pipeline
	Clipping
	Clipping
	Clipping
	Point Clipping
	Line Clipping
	Line Clipping
	Cohen-Sutherland Line Clipping
	Cohen-Sutherland Line Clipping
	Slide Number 14
	Slide Number 15
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Cohen Sutherland Line Clipping
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Vector Calculus - Preliminaries
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Segment-Line Intersection
	Cyrus-Beck Line Clipping
	Slide Number 46
	Slide Number 47
	Cyrus-Beck Algorithm:
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Clipping
	Polygon Clipping
	Polygon Clipping
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Sutherland Hodgeman Clipping
	Sutherland Hodgeman Clipping
	Sutherland Hodgeman Clipping
	Sutherland Hodgeman Clipping
	Sutherland Hodgeman Clipping
	Clipping to a Boundary
	Clipping to a Boundary
	Clipping to a Boundary
	Clipping to a Boundary
	Clipping to a Boundary
	Clipping to a Boundary
	Clipping to a Boundary
	Clipping to a Boundary
	Clipping to a Boundary
	Slide Number 76
	Slide Number 77
	Slide Number 78
	2D Rendering Pipeline
	Viewport Transformation
	Viewport Transformation
	Summary of Transformations
	Summary
	Summary

