Texture Mapping

- ◆ Motivation: Add interesting and/or realistic detail to surfaces of objects.
- ◆ Problem: Fine geometric detail is difficult to model and expensive to render.
- ◆ Idea: Modify various shading parameters of the surface by mapping a function (such as a 2D image) onto the surface.

Texture Mapping Example

- ♦ Given an image, think of it as a 2D function from $[0,1]^2$ (texture coordinates) to the RGB color space: $T(u,v) \rightarrow (r,g,b)$
- ♦ For each geometric primitive, define a mapping M that maps points on the surface to texture coordinates: M(x, y, z) = (u, v)
- ◆ To shade a pixel corresponding to a point (x,y,z) on the surface, use the color:

$$(r,g,b) = T(M(x,y,z))$$

Texture Mapping Example

◆ Texture:

◆ Result:

Affected Parameters

- ◆ Final color
- ◆ Reflectance (either diffuse or specular)
- ◆ Surface normal (bump mapping)
- ◆ Transparency
- ◆ Reflected color (environment mapping)
- ◆ Any combination of the above

Bump Mapping (Blinn 78)

Smooth surface:

Bumpy surface:

Bump-mapped surface:

Parametrizing Objects

- ◆ Certain objects have a natural parametrization (e.g., Bezier patches)
- ◆ Polygons (triangles): each vertex is assigned a pair of texture coordinates (u,v). Inside, linear interpolation is used.
- ♦ How do we handle a more complex object?

Two-Step Texture Mapping (Bier and Sloan 1986)

- ◆ Step I: define a mapping between the texture and some intermediate surface:
 - ◆ plane
 - ◆ cylinder
 - ◆ sphere
 - ◆ cube
- ◆ Step II: Project intermediate surface onto object surface

Intermediate Surface Projections (x_i, y_i, z_i) (x, y, z)(1) Reflected ray (2) Object normal (3) Object centroid Figure 6.4 The four possible θ -mappings that map the intermediate surface texture T' onto the object. (4) Intermediate surface normal

Texture Anti-Aliasing

 A single screen space pixel might correspond to many texels:

Filtered Texture:

Texture Pre-Filtering

- ◆ Problem: filtering the texture during rendering is too slow for interactive performance.
- ◆ Solution: pre-filter the texture in advance
 - ◆ Summed area tables gives the average value of each axis-aligned rectangle in texture space
 - ◆ Mip-maps (tri-linear interpolation) supported by most of today's texture mapping hardware

Solid Textures (Peachey 1985, Perlin 1985)

- ◆ Problem: mapping a 2D image/function onto the surface of a general 3D object is a difficult problem:
 - ◆ Distortion
 - ◆ Discontinuities
- ◆ Idea: use a texture function defined over a 3D domain - the 3D space containing the object
 - ◆ Texture function can be digitized or procedural

Procedural Textures

- ◆ Advantages:
 - compact representation (code vs. data)
 - ◆ unlimited resolution
 - unlimited extent
 - ◆ controllable via parameters
- ◆ Disadvantages:
 - ◆ Can be difficult to program and debug
 - ◆ Can be difficult to predict and control
 - ◆ Typically slower to evaluate
 - ◆ Can be difficult to pre-filter

Reaction-Diffusion Textures Turk 91: Witkin & Kass 91

- Reaction-diffusion is a mathematical model for generation of natural patterns, arising due to local non-linear interactions of excitation and inhibition.
- ◆ First proposed by Alan Turing in 1952

