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Figure 1: An inhomogeneous texture, exhibiting a non-uniform mixture of peeling paint, bare metal, and rust. From left to right: input texture
exemplar, control map extracted from the exemplar, a larger control map synthesized by our approach, and the resulting new texture.

Abstract

Many inhomogeneous real-world textures are non-stationary and
exhibit various large scale patterns that are easily perceived by a
human observer. Such textures violate the assumptions underly-
ing most state-of-the-art example-based synthesis methods. Con-
sequently, they cannot be properly reproduced by these methods,
unless a suitable control map is provided to guide the synthesis
process. Such control maps are typically either user specified or
generated by a simulation. In this paper, we present an alternative:
a method for automatic example-based generation of control maps,
geared at synthesis of natural, highly inhomogeneous textures, such
as those resulting from natural aging or weathering processes. Our
method is based on the observation that an appropriate control map
for many of these textures may be modeled as a superposition of
several layers, where the visible parts of each layer are occupied
by a more homogeneous texture. Thus, given a decomposition of
a texture exemplar into a small number of such layers, we employ
a novel example-based shape synthesis algorithm to automatically
generate a new set of layers. Our shape synthesis algorithm is de-
signed to preserve both local and global characteristics of the exem-
plar’s layer map. This process results in a new control map, which
then may be used to guide the subsequent texture synthesis process.

Keywords: control maps, example-based texture synthesis, non-
stationary textures, shape synthesis

1 Introduction

Computer generated imagery relies heavily on textures to achieve
realism. One easy way to acquire realistic textures is by scanning or

taking photographs of surfaces and materials that surround us in the
real world. Therefore, a large number of methods have been pro-
posed for synthesizing textures from examples, in the last decade
[Wei et al. 2009]. Many of these methods are able to produce im-
pressive results when applied to homogeneous textures that may be
described by stationary Markov random field (MRF) models. Yet
many real world textures are highly inhomogeneous, and are not
modeled well by a stationary stochastic process.

Consider, for example, the rusty metal surface shown on the left in
Figure 1. The texture on this surface is clearly non-stationary, and it
may be seen as a highly non-uniform mixture, or superposition, of
several different textures: peeling paint, bare metal, and rust. While
each of these three textures is roughly homogeneous, the texture
as a whole is not. This is a typical situation for many real world
surfaces, whose texture often results from natural processes, such as
weathering, corrosion, color cracking and peeling, growth of moss,
etc. [Dorsey and Hanrahan 1996; Dorsey et al. 1999; Bosch et al.
2004; Desbenoit et al. 2004; Dorsey et al. 2008].

A common remedy to cope with such textures is to guide the syn-
thesis process by a control map that encodes the large scale varia-
tions and the non-local features of the desired output texture (e.g.,
[Ashikhmin 2001; Hertzmann et al. 2001; Zhang et al. 2003; Wang
et al. 2006; Wei et al. 2008]). However, such control maps are typ-
ically either user-specified or produced by a custom tailored simu-
lation (e.g., biological or physically-based).

In this work we propose a new method for automatically generat-
ing control maps from examples, geared at natural textures such as
the one in Figure 1. As observed above, such textures often look
like a superposition of several layers, where each visible regions of
each layer are occupied by a more homogeneous texture. The shape
of the texture-occupied regions in each layer is far from arbitrary.
Rather, it is the consequence of the specific natural process that pro-
duced this texture, as well as the shape of the layer underneath. Nei-
ther global statistics, nor small neighborhoods are capable of faith-
fully capturing such higher level structures. Such appearances may
be generated by specialized shaders or by physically-based simu-
lations. However, we are not aware of any general fully automatic
way for generating such a shader from a specific example.

Our approach begins by decomposing the input exemplar into a
number of layers, which we order bottom to top. A novel example-
based shape synthesis algorithm is then used to generate a new set
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of layers, whose local and global characteristics visually resemble
those of the exemplar’s layers. This algorithm makes use of a bidi-
rectional measure of similarity between the shapes of the layers,
which is based on the shapes’ boundaries. Starting from some ini-
tial output shape, we iteratively optimize the shape with respect to
this similarity measure. Once the new layers are available, a texture
transfer process based on “texture-by-numbers” [Hertzmann et al.
2001] is invoked, resulting in the final output texture, such as the
result shown in Figure 1.

In summary, the main novelty in our approach lies in example-based
synthesis of a suitable control map, rather than working directly on
the texture, or on some associated appearance space [Lefebvre and
Hoppe 2006]. To our knowledge, such an approach has not been
explored before.

2 Related Work

Example-based texture synthesis has enjoyed considerable research
attention in recent years. Most of the relevant previous meth-
ods may be roughly classified to parametric methods [Heeger
and Bergen 1995], and non-parametric methods, which include
pixel-based methods [Efros and Leung 1999; Wei and Levoy
2000], patch-based methods [Efros and Freeman 2001; Kwatra
et al. 2003], optimization-based methods [Kwatra et al. 2005], and
appearance-space texture synthesis [Lefebvre and Hoppe 2006].
Parametric methods attempt to construct a parametric model of the
texture based on the input sample, which has proven to be a chal-
lenging task, and are mostly successful with structureless station-
ary textures. Non-parametric methods have demonstrated the abil-
ity to handle a wider variety of textures, by growing the texture
one pixel/patch at a time. Optimization-based methods evolve the
texture as a whole, further improving the quality of the results and
making the synthesis more controllable. We refer the reader to [Wei
et al. 2009] for a more comprehensive overview of example-based
texture synthesis.

While non-parametric methods are typically able to reproduce
small scale structure, they have a difficulty coping with highly in-
homogeneous textures, since such textures cannot be modeled by
a stationary Markov Random Field (MRF) model, which provides
the theoretical basis for most of these methods. In order to handle
such textures and control large scale structure, Ashikhmin [2001]
proposed to guide the synthesis process by a user-provided target
image, which specifies the local average colors across the target
texture. Texture-by-Numbers [Hertzmann et al. 2001] extends this
idea further by augmenting the input exemplar with a label map,
where regions with distinct texture are distinguished by different
labels. A suitable label map may be painted manually by the user,
or created automatically using unsupervised image segmentation.
To synthesize a new image, a target label map is provided, which
indicates how the different textures should be arranged in the re-
sulting image. However, that work addressed neither the issue of
automatically generating a label map for natural inhomogeneous
textures, nor the automatic synthesis of the target label map, as we
do in our work.

Many other works since made use of control maps when synthesiz-
ing non-stationary textures, for example [Zhang et al. 2003; Wang
et al. 2006; Gu et al. 2006; Lu et al. 2007; Wei et al. 2008]. How-
ever, in all of these works the control map for the target texture is
either provided by the user, or derived from a specific model of tex-
ture formation across a 3D surface (e.g., [Lu et al. 2007]), and we
are not aware of any previous attempts of example-based control
map generation.

Our shape synthesis approach is related to texture optimization
techniques [Wexler et al. 2004; Kwatra et al. 2005], which synthe-

size textures by minimizing a texture energy function. This func-
tion consists of a sum of local terms measuring how close each
synthesized texture patch is to an exemplar patch. However, this
formulation does not account for the possibility that there may be
many other patches in the exemplar that are not represented at all
in the synthesized result. While this may be adequate for homo-
geneous textures, where most patches are similar to each other, the
quality of the results for inhomogeneous textures is often compro-
mised. While it is possible to inject some global statistics into the
optimization [Kopf et al. 2007], the resulting process still fails to
capture the large scale appearance of highly inhomogeneous natu-
ral textures that are the target of this work. In contrast, we perform
shape synthesis with a bidirectional similarity measure (inspired by
Simakov et al. [2008] and Wei et al. [Wei et al. 2008]), and demon-
strate more faithful reproduction of appearance in the comparisons
we present in Section 4.

Appearance-space texture synthesis [Lefebvre and Hoppe 2006] is
another optimization method that operates in a feature space, rather
than using the values of pixels or small patches directly. A point
corresponding to a pixel in a more general feature space may en-
code more information, allowing structure to be reproduced better.
The layer map that we associate with the input exemplar in our
approach could be viewed as a feature space custom-tailored for
synthesis of layered inhomogeneous textures.

A variety of methods generate textures of weathered surfaces by
assuming and simulating a physical model [Dorsey and Hanrahan
1996; Dorsey et al. 1999; Merillou et al. 2001; Bosch et al. 2004;
Desbenoit et al. 2004; Dorsey et al. 2008]. While such methods
have produced some highly realistic results, they are not geared to-
wards matching a particular appearance given by an example. Also,
controlling the results of the synthesis typically involves specify-
ing a large number of parameters, which are not always intuitive.
In contrast, our approach is example-based, rather than physically-
based.

Our approach synthesizes the boundaries of the layer shapes by ex-
ample. Thus, it is related to the Curve Analogies work of Hertz-
mann et al. [2002], where a similar framework was applied to
reproduce the style of curved shapes. However, our work uses a
different similarity measure and operates on a discrete patch-based
representation of a shape’s boundary, rather than a vector-based rep-
resentation. Also related is the work of Baht et al. [2004], which
uses binary voxel grids in order to synthesize geometric details on
volume surfaces. These voxel grids are similar to the binary neigh-
borhoods that we use to optimize the shape boundaries. However,
their goal is to add smaller-scale detail to an existing global shape,
while we focus on synthesizing the entire shape from scratch.

3 Layered Shape Synthesis

This work deals with example-based generation of control maps
represented as layer maps. A layer map is an image where differ-
ent pixel values indicate to different layers. Let v1 < v2 < .. . < vK
be the values of layer map pixels, sorted in ascending order. Then,
a layer Li is defined as the set of all pixels whose value is greater
than or equal to vi. Note that a pixel with value v j actually belongs
to all layers L1, . . . ,L j. One can think of the layers as stacked on
top of each other, with layers higher in the stack partially “conceal-
ing” lower layers. Each layer has an associated foreground shape
Si, which we encode as a binary image of the same dimensions
as the layer map. Note that the shape Si+1 is always contained in
Si. As may be seen in Figures 1 and 6, the boundaries of these
nested shapes are highly correlated, but not aligned. In the figures
in this paper, we display values corresponding to different layers
using unique colors.
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a b c d e

a b c d e

a 0.0 1.3 3.0 5.3 6.0
b 0.0 2.7 5.0 5.4
c 0.0 5.0 5.3
d 0.0 4.6
e 0.0

Figure 2: Similarity measure between pairs of five different shapes.

Given a set of such shapes, our goal is to synthesize a new set of
shapes, while maintaining both global and local similarity to the
original ones. For this purpose, it is important that each shape oc-
cupies the same relative amount of pixels in the synthesized map
as it did in the exemplar, and that the boundaries of the synthe-
sized shapes locally resemble those in the exemplar. We found that
representing the shape by means of its boundary curve fails to cap-
ture all of the relevant information. Such a representation cannot
predict the spatial relationship between disconnected components
of the shape, and does not prevent self-intersections. Instead, we
represent a binary shape by a collection of patches centered on the
shape’s boundary pixels (at multiple resolutions) in order to cap-
tures the necessary shape properties.

Our shape synthesis approach employs optimization similarly to
[Wexler et al. 2004; Kwatra et al. 2005], where the synthesized re-
sult is iteratively optimized with respect to some measure of its sim-
ilarity with the exemplar. We begin by deriving a suitable bidirec-
tional shape similarity measure, similarly to Simakov et al. [2008]
and Wei et al. [2008]. Next, we describe a novel greedy optimiza-
tion scheme that iteratively modifies an initial shape, so as to in-
crease its similarity to a given exemplar shape. Finally, we dis-
cuss how this mechanism is used to create an entire new layer map,
which is a sequence of nested shapes, from the layer map produced
in the layer decomposition phase described in the previous section.

3.1 Shape similarity measure

Let B1 and B2 be the sets of boundary pixels of shapes S1 and
S2, respectfully. A boundary pixel is a pixel inside a shape with
at least one of its 4-neighbors outside the shape. Let x1 ∈ B1
and x2 ∈ B2 be two boundary pixels, and let Nθ(x1) and Nη(x2)
be the neighborhoods centered around them and rotated by θ,η ∈
{0◦,90◦,180◦,270◦}. We refer to such neighborhoods as boundary
patches. We define the similarity, D, between two boundary pixels
as the L2 distance between their neighborhoods (rotated such that
the distance is minimized). Formally,

D(x1,x2) = min
η

∥∥N0(x1)−Nη(x2)
∥∥

2 (1)

Since we deal with binary images, the L2 norm above is simply
the number of different pixels between two patches. Next, we de-
fine the local similarity between a boundary pixel x1 ∈ B1 and the
boundary of (another) shape S2 as the similarity between x1 and the
pixel most similar to it on the boundary B2:

D(x1,S2) = min
x2∈B2

D(x1,x2). (2)

Note that this similarity measure is not symmetric. While it ensures
that every boundary patch of S1 is similar to a boundary patch in S2,

Figure 3: Iterative assignment of boundary patches. The exemplar
boundary patches (left) are assigned to the synthesized boundary
patches (right). In cases where two patches are assigned to the
same one, the assignment with the larger L2 difference (red arrow)
is discarded and will be assigned to another patch in a future iter-
ation (yellow arrow).

there may be boundary patches in S2 that are not well represented in
S1. For example, a simple shape may be deemed similar to a more
complex one that also happens to contain some simple features.
Thus, we require a bidirectional similarity measure, defined as

D(S1,S2) =
∑x1∈B1 D(x1,S2)+∑x2∈B2 D(x2,S1)

|B1∪B2|
, (3)

which is the average number of different pixels between a bound-
ary patch of one shape to its nearest neighbor on the other. Figure
2 shows several different shapes and reports their pairwise bidirec-
tional similarities.

3.2 Shape optimization

Armed with the similarity measure above, we use an optimization
procedure that iteratively modifies the boundary of a synthesized
shape S to make it more similar to that of the exemplar shape E.
The optimization proceeds from coarse to fine resolution. At each
resolution we alternate between two main steps: (i) matching each
boundary patch of S to a boundary patch of E, and (ii) modifying S
by adding or removing pixels based on the results of the matching
achieved in the previous step. This iterative optimization proce-
dure resembles that of Kwatra et al. [2005], but each of the two
main steps differs significantly from its counterpart, because we
minimize a different (bidirectional) energy function, and work with
binary images, rather than textures. These two steps are discussed
in more detail below.

Boundary patch matching. As pointed out earlier, we would
like every boundary patch of S to resemble one of E, but we would
also like every boundary patch of E to be represented in S. Thus,
assuming we have an equal number of boundary patches in E and
S, we seek a minimum cost assignment, a fundamental combinato-
rial optimization problem [Schrijver 2003]. Solving this problem
exactly is too expensive for our purposes (O(n3), where n is the
number of patches), so we resort to an approximate solution using
the iterative greedy approach described below.

Let BE and BS denote the sets of boundary patches of E and S,
respectively, and assume for now that the two sets have the same
size. Each patch in BE is initially assigned to its nearest neighbor
in BS. As a result, some patches in BS may have more than one
exemplar patch assigned to them, while others may have none (see
Figure 3). In the former case, we keep only the assignment with
the smallest L2 difference, and discard the rest. All of the pairs of
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Figure 5: Refining shape boundaries with our multi-resolution optimization. Two initial shapes (left) are evolved using two different exem-
plars (right).

Figure 4: Left: Shape adjustment. Boundary exemplar patches
are superimposed over their assigned positions. Pixels in regions
of overlap between these superimposed patches may be added to
the shape (green dot), or removed from it (red dot), making the new
boundary more similar to that of the exemplar. Right: Matching
patches from the previous shape (gold) are superimposed again to
seed the new shape (blue).

patches which have been assigned are then removed from further
consideration, and the process is repeated until every patch in BS
has been assigned.

In general, BE and BS differ in size. Typically, the synthesized
shape is larger than the exemplar. Thus, assuming that |BS| =
Q|BE |+ R, we construct a set of exemplar patches of size |BS|
by including each exemplar patch Q times, and randomly select-
ing R additional patches from BE . In this way we ensure that all the
boundary features in the exemplar shape get an equal chance to be
represented in the synthesized shape.

Shape adjustment. After finding the assignment as described
above, our goal is to modify the boundary of S so as to increase
the similarity to E (by reducing D(S,E)). To achieve this, we su-
perimpose each exemplar patch over its counterpart in BS. Consider
a pixel x outside S, which is covered by several overlapping super-

imposed patches from BE . Informally, if these patches agree that x
should be part of the shape, it is added to S. Similarly, a pixel inside
S might be removed if the overlapping patches agree that it should
not belong to the shape. This is illustrated in Figure 4 (left).

More specifically, consider a pixel x in the vicinity of the bound-
ary of S. It is covered by two groups of overlapping superimposed
exemplar patches: one group predicts that x belongs to the shape,
while the other one predicts that x is outside the shape. For each
of these two predictions we compute a score by summing up the
weights of the corresponding group’s patches at x. Let xS be a
boundary pixel of S and xE the exemplar pixel assigned to it. Then
the entire exemplar patch is assigned the following weight

1
1+D(xS,xE)

, (4)

which is further multiplied by a Gaussian falloff function (thus the
weight decreases away from the center of the patch). The sigma
value for this function was chosen to be half of the patches size.
The group with the highest score at x determines whether x should
be included or excluded from the shape.

When the sum of weights accumulated at each pixel x is below
a threshold, its value remains unchanged. This is because patch
weights reflect a degree of certainty, so areas of low weight are
more sensitive to randomness generated by our approximated near-
est neighbor search and the greedy assignment, such that using the
new values may produce noise. This threshold also determines the
final amount of pixels in the shape after the iteration is done. There-
fore, it is set dynamically so that the (relative) amount of the pixels
inside the shape is the same as in the exemplar. Candidates from
the interval [10−2,10−7] are tested and the one which results in the
nearest amount is chosen. After the update is complete, the opti-
mization procedure is repeated until convergence. Convergence is
reached when the number of changed pixels falls below a threshold.

As mentioned earlier, the optimization proceeds from coarse to fine
resolution. The result computed at each resolution level is upsam-
pled to serve as a starting point for the next (finer) level. At coarser
resolutions the global structures are formed, while fine resolutions
fill in the fine details along the shape’s boundary. In our exam-
ples, we use 5 to 6 resolution levels. Figure 5 shows how different
initializations lead to different global shapes. However, in all of
the examples the synthesized shape contains boundary features that
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Figure 6: Our inhomogeneous texture synthesis approach.

are very similar to those present in the exemplar, resulting in close
overall resemblance.

3.3 Layer map synthesis

The shape optimization procedure presented in the previous sec-
tion may be used directly to synthesize the first (bottom) layer. A
randomly generated shape, with the number of foreground pixels
matching that of the corresponding exemplar layer may be used for
initialization. In order to generate the following layers, however,
we must introduce a number of modifications. First, the shape of
each layer is nested inside the shape of the layer beneath it. Sec-
ond, the boundaries of two successive layers are typically highly
correlated. Preserving this correlation is important, as it is instru-
mental for faithfully reproducing the appearance of the exemplar in
the synthesized result. It is not obvious how to initialize the shape
of the next layers under these conditions.

To address these requirements we begin the synthesis of each layer
Li+1 by creating a mask that defines the area (contained inside the
shape of the previous layer Si), where the current shape is allowed
to evolve. Initially, this mask is set to the entire shape Si, but
we use the most recent boundary patch assignments (from the last
shape optimization iteration) to shrink this mask down to a better
initial guess for the region containing Si+1. More specifically, we
again superimpose boundary patches from the exemplar over their
assigned locations on the boundary of Si, but this time we try to pre-
dict which of the pixels inside Si should belong to the mask of Si+1,
as illustrated in Figure 4 (right). Thus, the interior of Si is seeded
with pixels which are predicted to belong to Si+1 with a sufficiently
large weight. The mask is then shrunk to include only these seeded
pixels. Seeded pixels with high weights form the initial guess for
Si+1, while those with somewhat smaller weights define the remain-
ing region of the mask, within which the shape is allowed to evolve
in the course of the optimization.

The initialization of each new layer is done via this seeding mech-
anism in the coarsest resolution, where boundary patches are large
enough to fully cover the interior of the previous shape. A similar
step is repeated at the beginning of each resolution level to recreate
an accurate mask for the current level at the new resolution, and
to refine the shape boundary. After this step, shape optimization
proceeds as described before.

Continuous control maps. In our experiments we found that the
subsequent texture synthesis process can sometimes be improved
by switching from a discrete layer map to a continuous control map.
Specifically, for each pixel x inside the shape Si its continuous map
value is set to

i+
di−1(x)

di−1(x)+di+1(x)
, (5)

where di−1(x) and di+1(x) are the distances from x to Si−1 and Si+1,
respectively (see Figure 7). The distances are obtained by perform-
ing distance transforms over Si. Distance transforms were also used
to create control maps by Lefebvre and Hoppe [2006].

Figure 7: The distances from a point inside a shape to the neigh-
boring shapes are used to convert a discrete label map (left) to a
continuous one (right).

4 Applications and Results

We found the layered shape synthesis approach described in the
previous texture to be effective for synthesis of inhomogeneous tex-
tures, such as those resulting from natural aging or weathering pro-
cesses. The synthesis process for such textures consists of three
successive phases depicted in Figure 6: layer decomposition, shape
synthesis, and texture synthesis.

The layer decomposition phase takes an inhomogeneous texture
sample as input, and generates a layer map which encodes the dis-
tinct homogeneous texture regions (layers) present in the input, by
assigning a unique label to all of the pixels belonging to the same
layer. Following the texture classification approach advocated by
Varma and Zisserman [2003], we first segment the exemplar’s pix-
els by performing K-Means clustering on the N2 dimensional fea-
ture vectors formed by concatenating the values of each pixel’s
N×N neighborhood. We currently rely on the user to specify K
as the number of distinct textures visible in the exemplar, typically
between 3 and 5. N is set to 15 in all of our examples. The re-
sulting clusters should roughly correspond to the distinct textures
present in the exemplar. Points closer to the cluster centers are due
to pixels that are the more typical representatives of the correspond-
ing textures, while points far away from the center come from areas
of transition between textures. Let C1,C2, . . . ,CK be the resulting
clusters, ordered by the user such that C1 is the bottom layer (orig-
inal “clean” surface), and CK is the top layer (most “weathered”
surface). For the layer map, we set the foreground pixels of Li to
be Ci∪Ci+1∪ . . .CK . If the clusters have been ordered properly, the
sequence L1,L2, . . . ,LK expresses a possible natural evolution and
spread over time of the weathering phenomenon captured by the
exemplar.

In the last phase we use the new layer map obtained in the shape
synthesis phase (Section 3) to synthesize a new inhomogeneous
texture. This is done by applying the “texture-by-numbers” frame-
work [Hertzmann et al. 2001]. While applying texture-by-numbers
directly on the layer map often produces satisfactory results, their
visual quality may be further improved by switching from a discrete
layer map to a continuous one, as described in the previous section.
The continuous map may be seen as a heuristic analogue for the
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Figure 8: A variety of results produced by our method. Left: input exemplars and their decompositions to layers; Middle: synthesized layer
map; Right: final synthesized result.
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Figure 9: Terrain generation by height map synthesis using our method. Left : input height map and its decomposition to layers; Middle: the
synthesized layer map; Right: final synthesized result.

input our result [Kopf et al. 2007] [Kwatra et al. 2005]

Figure 10: A comparison of our approach to texture optimization with and without histogram matching. In the top row both methods perform
synthesis directly from the exemplar. In the bottom two rows, we attempt to use texture optimization to synthesize a new layer map.

weathering degree map of [Wang et al. 2006].

We experimented with our method on a variety of natural inhomo-
geneous textures. Some results are shown in Figures 1, 6, and 8.
The examples are quite varied, showcasing phenomena such as cor-
rosion, rust, lichen, and peeling paint. They differ significantly not
only in their appearance, but also in their underlying layer structure,
as may be seen from the layer maps extracted by our method. Our
method successfully reproduces the global layer structures, the lo-
cal fine details of the shape boundaries, and the final appearance of
these textures. Our method is not limited to such textures, however.

Other inhomogeneous textures that exhibits a layered structure with
nested shapes may be synthesized as well. For example, we have
synthesized a plausible fictional satellite image from one of Earth
(bottom row in Figure 8). Since we use patch-based shape synthe-
sis, some repetitions do occur, but they are mostly difficult to spot,
as they are explicitly limited in our approach by our fair boundary
sampling and assignment mechanisms.

Another application of our approach is example-based terrain syn-
thesis, as demonstrated in Figure 9. Height maps used to repre-
sent terrains may also be considered as non-stationary textures for
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Figure 11: Inpainting. Left: original, right: our result.

Figure 12: Example of user control via a painting interface.

which our layered shape synthesis approach fits perfectly. For the
generation of the layer map, a simple quantization of the height
map is used. The boundaries of layers resemble contour lines in
a topographic map. In this application, which is similar to texture
synthesis described before, the shape synthesis phase generates a
new topographic layout for the synthesized terrain and the texture
synthesis phase adds the fine details.

The computation time of our method is dominated by the “texture
by numbers” phase, which takes up to five hours for a 800× 600
image using 5×5 neighborhoods. The time it takes to synthesize a
new layer map depends on the total length of the shape boundaries.
The complexity of the optimization step is linear in the number of
nearest neighbor calls for each boundary patch. We use approxi-
mate nearest neighbor search via locally sensitive hashing [Datar
and Indyk 2004]. It takes our unoptimized code 20–30 seconds on
average to complete one optimization iteration for an 800×600 im-
age. Typically, 5–10 iterations are used at each resolution level, so
the execution time per layer is up to 30 minutes.

We compare our method to two previous example-based texture
synthesis methods: texture optimization [Kwatra et al. 2005] and
texture optimization with color histogram matching [Kopf et al.
2007]. Figure 10 shows the results of the three methods side-by-
side. The top row shows the final synthesis result on a texture of a
rusting surface. Kwatra’s method is suited for stationary textures,
and exhibits multiple obvious repetitions making the result quite
dissimilar from the exemplar. Kopf’s result matches the global
color statistics of the exemplar, and produces a better result, but
some repetitions are still apparent, and some regions of the synthe-
sized texture do not have a similar counterpart in the exemplar (such
as the large region of lighter rust near the center). It is also inter-
esting to examine whether these previous methods are able to syn-
thesize the layer map, rather than synthesizing the texture directly,
and this is done on two examples shown in the two bottom rows of
Figure 10. The middle row is a layer map extracted from a cloudy
sky texture, while in the bottom row the layer map is from the ter-
rain in Figure 9. In both of these examples, the previous methods
generate more repetitions of entire regions of the layer map, and
in several places there are direct transitions between non-adjacent
layers, which are not present in the input map.

Figure 11 shows an inpainting example, where a hole is filled inside
an inhomogeneous texture. While the result is obviously not iden-
tical to the original image, it is quite plausible, and the filled region
blends well with the original parts. The layer map inside the hole
is initialized randomly. Since our method modifies the entire layer
map, after each optimization step we reset the layer map outside the

Figure 13: Examples of failure cases. Top: violation of the layer
model. Bottom: failure to reproduce specific shapes.

hole back to the original one.

Figure 12 demonstrates the feasibility of controlling the result of
the synthesis via a painting interface. The exemplar and its layer
map are shown in the third row of Figure 8. The user sketches
in yellow the approximate position where rust should be, and the
resulting sketch serves as the initialization for the shape synthesis
phase. Thin strips of blue and green pixels are automatically added
by the system, since the yellow layer shape is supposed to be nested
inside the blue and the green layer shapes. In order to avoid chang-
ing the user sketched shape too much, fewer resolution levels are
used by the shape synthesis method, resulting in the middle image
in Figure 12, while the rightmost image is the synthesized texture.

Limitations: Our approach makes two basic assumptions: (1) the
control map consists of an ordered set layers, nested within each
other; (2) the proposed shape similarity measure captures all the
shape characteristics that one aims to reproduce. Violation of either
of these assumptions may lead to a failure, as discussed below.

(1) The first type of failure is demonstrated by the synthetic exam-
ple in the top row of Figure 13. Here we green and blue regions that
are independent of each other in the input (e.g., a natural texture
whose appearance results from two independent processes). Our
approach assumes a layered model and generates the green layer
first, followed by the blue layer. As a result, the relations between
the green and blue regions are not preserved, and several blue re-
gions are synthesized inside green ones.

(2) The proposed similarity measure characterizes shapes by the lo-
cal appearance of their boundaries, without considering the shape
as a whole. Thus, it is better suited for fine-scale unstructured
shapes and fractal-like boundaries. More structured elements might
be better handled by other models. For example, the locations of
the deserts in the bottom row of Figure 8 might have been repro-
duced better using the context-aware textures framework [Lu et al.
2007]. The bottom row of Figure 13 shows another synthetic exam-
ple where the easily recognizable distinct shapes in the input map
appear mixed in the map generated by our method.

5 Conclusion

We have presented a novel example-based method for synthesis of
control maps suitable for non stationary textures, such as those re-
sulting from weathering. To that end, we have developed a new
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powerful example-based shape synthesis algorithm that represents
shapes as a collection of boundary patches at multiple resolution,
and synthesizes a new shape from an example by optimizing a bidi-
rectional similarity function. Applications of our method include
synthesis of natural textures and terrain generation.

In future work we hope to extend the method of shape synthesis to
a larger set of textures, for example, textures that do not exhibit a
clear hierarchy of layers, and textures with larger structures. Our
current measure emphasizes boundary similarity over other prop-
erties, such as area to boundary length ratio, which is maintained
only implicitly. We would like to gain a better understanding of
the relations between such properties, and experiment with various
extensions of our similarity measure.

We would also like to discover additional applications of our shape
synthesis approach. In particular, it would be interesting to explore
the applicability of such an approach to the synthesis of 3D shapes.
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