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a b s t r a c t

In spite of advanced acquisition technology, consumer cameras remain an attractive means
for capturing 3D data. For reconstructing buildings it is easy to obtain large numbers of
photos representing complete, all-around coverage of a building; however, such large pho-
tos collections are often unordered and unorganized, with unknown viewpoints. We pres-
ent a method for reconstructing piecewise planar building models based on a near-linear
time process that sorts such unorganized collections, quickly creating an image graph, an
initial pose for each camera, and a piecewise-planar facade model. Our sorting technique
first estimates single-view, piecewise planar geometry from each photo, then merges these
single-view models together in an analysis phase that reasons about the global scene
geometry. A key contribution of our technique is to perform this reasoning based on a
number of typical constraints of buildings. This sorting process results in a piecewise pla-
nar model of the scene, a set of good initial camera poses, and a correspondence between
photos. This information is useful in itself as an approximate scene model, but also repre-
sents a good initialization for structure from motion and multi-view stereo techniques
from which refined models can be derived, at greatly reduced computational cost com-
pared to prior techniques.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Urban scene modeling from imagery is emerging as an
important problem in computer graphics and vision, with
applications in mapping, virtual tourism, urban planning,
architecture, and many other areas. In spite of advanced
acquisition technology (e.g., laser scanning), image-based
approaches to architectural acquisition and reconstruction
are still extremely attractive, due to the ease and low-cost
of taking photos. Cameras are portable and ubiquitous, and
it is easy to capture images from a wide variety of views to
get complete, all-around coverage of a building; we envi-
sion large groups of people collaborating to capture such
images [1]. Hence, for many buildings we can easily obtain
. All rights reserved.
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large numbers of photos contributed by everyday photog-
raphers. While these collections can represent very rich
and comprehensive visual descriptions of a scene, they also
tend to be unsorted (or weakly sorted) and unorganized,
having been captured by several people from diverse, ini-
tially unknown viewpoints. A key challenge is to recover
structure latent in such unsorted photo sets.

Recent work in computer vision has established new
ways of recovering such structure for architectural scenes,
by using image and feature matching techniques to
establish correspondences between photos, structure from
motion (SfM) techniques for recovering the camera poses
[2], and multi-view stereo (MVS) algorithms to compute
dense geometry [3,4]. However, these algorithms are often
complex and time-consuming. For instance, in order to
recover viewpoints, current SfM techniques build up a
scene model via an inefficient incremental reconstruction
process that can scale poorly with the number of input
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images. In addition, many urban scenes present key chal-
lenges to current approaches, due to symmetries, self-sim-
ilarity, and insufficient texture evident in many building
facades. Hence, given larger and larger photo collections,
there is a need for more efficient, robust reconstruction
methods for large, unordered collections (see Fig. 1).

In this paper, we present a new approach to reconstruc-
tion of architectural scenes that quickly organizes a large
photo collection through a process we call sorting, which
quickly computes a piecewise planar model, estimates a
connectivity graph on the image collection, and establishes
approximate initial camera poses, as shown in Fig. 2. This
information is useful in itself as a simplified building mod-
el for graphics applications; moreover, it organizes the
photos in a way that can dramatically accelerate further
geometric processing. The initial camera poses eliminate
much of the work required by SfM, resulting in a signifi-
cant increase in performance.

Our sorting method is based on a new approach to orga-
nizing and reconstructing photos of architectural scenes
that first estimates single-view geometry from each image
independently, then merges this information to reason
about the photo set as a whole. A key contribution is to
perform this global reasoning based on a graph-based rep-
resentation of the geometry, along with a number of new
constraints given a piecewise planar assumption, allowing
us to quickly derive image matches, approximate global
scene geometry, and initial camera poses. While other re-
cent work reasons about camera networks with graphs,
we reason directly about scene structure. In particular, we
treat a building as an ordered sequence of facades (where
the number of facades is initially unknown), and we re-
cover this sequence from observations across the entire
image set. Our technique first segments out a local, partial
facade ordering from each photo, building single-view geo-
metric models. We then reason about how these models fit
together in a global analysis stage, in which we compute an
ordered set of facades by combining constraints on facade
appearance and ordering, utilizing partial facade orderings
observed in each image, as well as building geometry, i.e.,
the constraint that the ordered facades must yield a phys-
ically possible building. These three constraints are repre-
sented in a facade graph, a compact description of the
Fig. 1. An unorganized photo collection of a building, like the one shown, is sorte
Fig. 2), and to facilitate fast multi-view reconstruction.
underlying geometry, and we propose a new algorithm
that analyzes such a graph to reason about the scene, tak-
ing much greater advantage of these constraints than in
previous work. Our algorithm is very efficient, produces a
useful simplified model, and can significantly accelerate
vision pipelines based on SfM and MVS.

In addition to significantly improving speed, our sorting
technique is also robust to symmetry and self-similarity by
virtue of the proposed geometric constraints. Through
analysis of the facade graph, our method can also handle
occlusion of facades, is robust to clutter, and can work on
scenes with multiple buildings. We integrate our algorithm
into a complete dense modeling pipeline, demonstrating
results on several large, challenging photo collections of
different buildings. These results show that our technique
achieves better performance than previous approaches to
image-based reconstruction, and can avoid problems due
to self-similarity.

As our techniques reason about (planar) facades and
their relationships, our sorting algorithm assumes that
the input building is approximately piecewise-planar,
made up of largely vertical facades. In addition, we make
use of lines to distinguish facades, so our technique de-
pends on line segments being evident in the images. While
not all buildings fit these assumptions, we demonstrate
that our technique works well on a number of real-world
buildings, including scenes that are not strictly piecewise
planar, as well as collections that give incorrect results
using prior methods.
2. Related work

2.1. Efficient image matching

A key ingredient in our work (and any reconstruction
pipeline) is establishing correspondence between input
images; this is the basis for our ‘‘sorting’’ of images. This
correspondence problem is especially challenging for
unstructured photo sets, where it is unknown a priori
which images will match, and where there are often wide
baselines. Much recent work has used local image features
(e.g., SIFT [5]) and efficient indexing schemes to solve this
d to quickly find camera viewpoints, create a piecewise planar model (see



Fig. 2. A facade model produced by our technique applied to the collection summarized in Fig. 1 (shown here as thumbnails). The red arrows represent
recovered camera poses. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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problem. In order to find accurate matches, a simple
approach is to use computationally intensive exhaustive
pairwise image matching [6,2]. More recent work uses
approximation techniques to reduce the complexity of
image matching. Bag-of-words models [7,8] have yielded
fast algorithms for estimating rough visual similarities
between images, and can scale up to large collections
[9,10]. Another approach, related to our own, directly clus-
ters a set of images based on a global descriptor (e.g., GIST)
[11]. Li et al. [12] combine 2D appearance and 3D geomet-
ric constraints to find consistent clusters of matching
photos in Internet collections, first clustering photos using
GIST features. Frahm et al. [13] extended this work to use
GPUs, and to compress GIST features into small codes. In
contrast, our approach is designed for architectural scenes
and explicitly finds facade correspondences, rather than
local feature matches. We find that these facade correspon-
dences often allow for more robust matching than local
features, and allow us to exploit partial geometric informa-
tion about facade ordering during reconstruction.
2.2. Rectifying transforms for matching

Recent work has also used vanishing points (VPs) and
other geometric cues to aid in image matching or recogni-
tion. Wu et al. [14] proposed a viewpoint invariant patch
descriptor that can match 3D scenes under significant
viewpoint changes. Baatz and colleagues [15] address
urban location recognition, by using approximate 3D
building models to project database images onto urban
geometry, rectifying query images according to VPs [16],
and finding local feature matches between rectified imag-
ery. Cham et al. [17] derive ‘‘2.5-D sketches’’ related to our
per-image geometry as geometric descriptors for recogni-
tion. Unlike prior work, we find whole-facade matches
between images, and we do not require a 3D model as in
Baatz et al. [15]; our goal is to construct such a model,
rather than to facilitate recognition.
2.3. Structure from motion and multi-view stereo

Recent years have seen a number of approaches to 3D
reconstruction from unordered image collections. Our
work can be seen as an efficient matching and SfM method
that quickly computes an initial model that can be directly
refined with a single bundle adjustment phase. Most prior
systems for this task separate matching and reconstruction
into two phases; in contrast, in our work the partial geom-
etry extracted in our single-view analysis stage are directly
used in reconstruction. In addition, most prior work uses a
less efficient incremental SfM scheme that gradually builds
up a model a few images at a time (followed each time by a
global optimization) [2,10,13].

While a number of schemes have been proposed to
speed up incremental SfM [18,12], our method can avoid
incremental SfM altogether for approximately planar
scenes, by directly estimating initial camera poses. While
other recent work has also avoided incremental SfM via
global reasoning about camera parameters, our scene-space
reasoning yields much more efficient reconstructions, and
quickly establishes image matches through facade cluster-
ing. Finally, buildings often exhibit self-similarity (e.g.,
similar facades or repetitive elements), which can cause
SfM to produce erroneous 3D models. Recent work related
consistency constraints on image graphs to remove spuri-
ous edges [19,20]. In constrast, our work reasons about a
facade graph, which is often a much more compact descrip-
tion of the fundamental geometric constraints.

2.4. Piecewise-planar stereo

Finally, other work in multi-view stereo has used a Man-
hattan-world or piecewise planar assumption to improve
reconstruction results for architectural scenes after the in-
put photos are registered [21–24]. In contrast, we use a pla-
narity assumption to sort images and reconstruct camera
parameters from the very beginning of the process, in order
to solve for both cameras and approximate scene structure.
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Our model is more flexible than the commonly used Man-
hattan-world model, as we can handle vertical planes of
any orientation; moreover, we show that our technique is
robust to protruding elements (cylinders, balconies, and so
on) that violate a strict planarity assumption.
3. Overview

Our approach to photo set sorting operates in two
stages: (1) a single-view analysis stage and (2) an analysis
of the photo set as a whole, as illustrated in Fig. 3. The sin-
gle-view stage estimates local geometry independently
from each view, yielding a local set of ordered facades
and a camera pose. This pose is relative to the local facades;
we do not yet know the global camera poses, as we do not
know which side of the building the detected facades be-
long to (nor even, initially, how many facades the building
has). The photo set analysis takes this local information
and integrates it to create an unambiguous, globally con-
sistent set of camera poses and an approximate, piecewise
planar building model (a facade model). The combination of
stages operates very quickly, in near-linear time, and pro-
duces initial camera poses and image correspondences that
form a good initialization to SfM and MVS methods.

3.1. Single-view analysis

The single-view analysis stage begins by detecting
vanishing points in each image, as well as a set of line
segments supporting each vanishing point. These clusters
of line segments are then used to segment the image into
an ordered set of facades. Here we assume that the build-
ing is composed of a set of vertical facades that meet at
corners (although not necessarily at 90�), and therefore
only consider the walls of a building (and not the roof,
ground, or other planes). To perform this segmentation,
we first rectify the photo so that the lines of intersection
between planes are vertical, reducing the problem of
facade segmentation into a 1D problem, as illustrated in
Fig. 3 (left). The result is, for each image, an ordered set
of segmented facades. We can then compute the pose of
Fig. 3. From left to right: local geometry is estimated from each view, including v
facades are rectified and clustered, defining a facade graph which is analyzed to
generate a piece-wise planar facade model, compute a viewpoint for each image,
good initialization to SfM and subsequent multi-view stereo methods.
the camera (i.e., position and orientation) with respect to
the detected facades.
3.2. Photo-set analysis

The camera poses extracted in the first stage are relative
to the set of facades visible in the given single view. At this
stage, it is unclear to which side of the building each set of
local facades, and hence each image, belongs. The second,
global photo-set analysis stage seeks to create a unified
model through a combination of photometric and struc-
tural constraints on the photo set. For each image, we com-
pute a set of rectified, cropped facade images, based on the
segmentation from the first stage. We then cluster these
facade images into sets with similar appearance according
to GIST descriptors. This clustering algorithm is tuned to
over-segment the facades, i.e., to produce more clusters
than there are faces of the building (Fig. 3, second box).

These clusters form the nodes of by what we call a
facade graph, which encodes structural constraints on the
facades based on their observed ordering in the images,
as well as cluster similarity. Analysis of the facade graph
is used to determine a maximally consistent ordering of
the facades (via a method that is robust to clutter and
occlusion), a piecewise planar facade model, and finally a
globally consistent set of camera poses. This process of
ordering and reconstructing facades is described in
Sections 5 and 6.
4. Single-view analysis

This section describes how we segment each photo into
regions corresponding to vertical facades and estimate
single-view geometry. Single-view geometry has been
explored for piecewise planar scenes in prior work, e.g.
for indoor scenes by Lee et al. [25]; Wendel et al. segmented
facades based on repetitive elements [26]. Our approach is
designed for a different scenario: detecting and segmenting
sequences of connected vertical planes in an image, for fa-
cades not strictly characterized by repetition.
anishing points, segmented facades, and a local facade model; segmented
produce a simplified set of clusters; given this simplified facade graph, we
and derive an image connectivity graph; this approximate model forms a
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4.1. Line segments and vanishing points

We first remove radial distortion from each image using
PTLens [27], then detect line segments using the Line Seg-
ments Detector algorithm [28], and find vanishing points
(VPs) via a Hough transform using extracted line segments
for voting [29]. We then assign each line segment to at
most one detected VP. The vertical VP is identified by the
slopes of the associated line segments and the y-coordinate
of the detected VPs; the remaining VPs are assumed to cor-
respond to horizontal lines in the scene.

4.2. Facade segmentation

Next, we use the detected line segments and VPs to seg-
ment the image into a set of vertical planar facades. We
first vertically rectify the image, applying a metric rectifi-
cation [30] that maps the vertical VP to the image y-axis
(Fig. 4a). Given our vertical-plane assumption, segmenting
the rectified image into facades can be formulated as a
simple 1D segmentation of the x-axis into intervals, each
interval corresponding to a planar facade of a given orien-
tation. We formulate this as a dynamic programming prob-
lem, as follows.

For each column x = xi in the rectified image, we denote
with Cj(xi) the number of line segments that intersect that
column corresponding to each horizontal VP vj. The total
number of line segments of any orientation is denoted
TðxiÞ ¼

P
jCjðxiÞ. We normalize the Cj’s so that T is in the

range [0,1]. The counts Cj(xi) then form a histogram over
horizontal line orientations, as in the example in Fig. 4b
with two detected horizontal line orientations.

Now we wish to assign an orientation label li 2 {1,2,
. . . ,m} to each column xi, where m is the number of detected
horizontal line orientations (e.g., m = 2 in Fig. 4). We aug-
ment this label space with a 0-label to indicate parts of the
image that correspond to no facade (e.g., regions beyond
the edge of building), and set C0(xi) to 0. The labeling
L ¼ ðl1; l2; . . . ; lnÞ (given a rectified image with n columns)
is found by minimizing the following MRF energy function:

EðLÞ ¼
Xn

i¼1

DiðliÞ þ
Xn�1

i¼1

Vi;iþ1ðli; liþ1Þ ð1Þ
Fig. 4. Facade segmentation. (a) Rectified image with two groups of horizontal
horizontal line segments projected onto the x-axis of the image. (c) Segmentatio
Segmented facades of the original image with top and bottom borders shown.
where Di(li) is a data term defined as:

DiðliÞ ¼
½TðxiÞ > b� � ð1� bÞ if li ¼ 0
1� Cli ðxiÞ otherwise

(
ð2Þ

where b is a threshold used to identify no-facade regions
(empirically set to 0.05). Vi,j(li, lj) is a smoothness term de-
fined as

Vi;jðli; ljÞ ¼ ½li–lj� � lðCli ðxiÞ þ Clj ðxjÞÞ: ð3Þ

Intuitively, the data term Di(li) prefers the VP with the most
support among the line segments that intersect that col-
umn, or a 0 label if a small number of line segments are
present. The smoothness term Vi,j(li, lj) assigns a cost to
neighbors (xi, xj) if their labels are different, according to
a Potts model [31]. The weight l (empirically set to 0.1)
balances these terms. Fig. 4c shows a rectified image seg-
mented into four facades using this algorithm.

To complete the segmentation, we find a top and bot-
tom boundary of each segmented facade, again using the
detected line segments as cues. We first divide the verti-
cally-rectified image into several facade images, performing
a horizontal rectification on each to yield a set of fronto-
parallel images, as shown in Fig. 4d. Then we search for
long line segments associated with the VP to demarcate
the top and bottom of the facade, resulting in a rectangular
region of the rectified facade image. Note that we assume
that at least part of each boundary (top, bottom, left, right)
of the facade is visible in the image, although the entire
boundary need not be visible. Partial facades are detected
as outliers in the next section (see Fig. 5).

4.3 Camera parameters and local facade model

Given the analysis above, we extract several geometric
parameters for the camera and the segmented facades.
For each camera we estimate focal length, position, and
orientation (we assume the principal point is the image
center). Given at least two orthogonal VPs, we compute
the camera’s focal length (possible as long as both VPs
are not at infinity) [32], as well as the rotation matrix R
[33]. We choose the left-most segmented facade to define
line segments according to two VP directions. (b) Histograms of the two
n along x-axis. (d) ‘‘Unwrapped’’ rectified image of segmented facades. (e)
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a local 3D coordinate system as shown in Fig. 6. We then
estimate the camera position using correspondences be-
tween the corners of facades and their detected corners
in the images.

Given the segmented facades and estimated interior an-
gles between adjacent facades (Fig. 6), we build, for each
image, an approximate, piecewise planar facade model, as
shown in Fig. 5. These partial models are in different local
coordinate systems, with different positions, orientations,
and scales, as we do not yet know how these single-view
models fit together.

5. Facade sorting

Given the per-photo detected facades and local geome-
tries in the previous step, we apply a global analysis to find
corresponding facades across images, piece the local mod-
els into a single, consistent model, and determine absolute
camera parameters for each image. To do so, we first create
super-facades through an initial over-clustering, then find
the structure of the building using the appearance of the
super-facades, ordering relations between them, and geo-
metric constraints.

5.1. Facade graph construction

Facade clustering. We first cluster the N detected, seg-
mented facades across all images by appearance to estab-
lish a rough initial correspondence between facades in
different images. We represent each detected facade with
a GIST descriptor [11] which is often used to match images
of similar scenes. Each rectified facade image from Section
4 is first resized to a 128 � 128-pixel image. These images
may be clipped by the image boundary (see Fig. 7); we fill
these holes via image completion, borrowing information
from other parts of the image [34]. We then extract a GIST
descriptor with 960 dimensions from each facade image,
and define the distance between two facade images as
the L2-distance between GIST descriptors. Note that two fa-
cade images representing the same facades in different
photos may not be identical; for instance, protruding ele-
ments such as balconies will be ‘‘flattened’’ differently in
each viewpoint. If the viewpoint is similar, the descriptors
distance is usually small; we account for any large differ-
ences in later stages of the algorithm.

Next, the N GIST descriptors are clustered using hierar-
chical k-means [35] into at most k clusters. We use
k = min(60,N/10), as we prefer clusters of size P10. Be-
cause the GIST distance is reliable only if the distance is
Fig. 5. Several single-view facade reconstructions. The first row shows a set of i
from each image. Red arrows represent the estimated position and orientation o
small, we produce an over-clustering into clean clusters
with few outliers, however, a single facade might be split
between multiple clusters; related clusters will be merged
in the next stage. Given this initial clustering, we represent
each cluster with its median GIST descriptor. We filter out-
liers whose distance to the median is larger than e, empir-
ically set to 0.8 in each cluster. In the next step, we merge
these filtered clusters by utilizing their observed ordering
and their appearance in the images as a set of constraints.
5.2. The facade graph

Given the facade clusters, we construct a facade graph
G = (V,E), as an abstracted description of the scene geome-
try. Each node vi represents a cluster, and each (directed)
edge ei represents the ordering between facades as ob-
served in the photos. In particular, two nodes vi and vj

are linked by an edge if any facade in cluster j appears
immediately after any facade in cluster i in at least one in-
put photo (i.e., a facade in j is immediately to the right of a
facade in i in some photos). Each ordering edge has three
properties: weight, angle, and width ratio. The weight
W(i, j) is the number of times a pair of facades in clusters
i and j are observed as neighbors across all photos, and
the interior angle h(i, j) and width ratio are represented
by the median value of the observed set of corresponding
values between two such adjacent facades.
5.3. Facade graph analysis

The facade graph initially has significant noise. Many
redundant nodes (multiple clusters corresponding to the
same facade) exist due to the conservative clustering. It
may contain outlier facade clusters, due to partial facades
visible in an image and other buildings unrelated to the
target structure. Outlier facades will exist in some clusters
due to self-similarity (a cluster corresponding to different
facades). Finally, there may be spurious edges between
two facade clusters that appear adjacent in certain images,
but are not adjacent in object space due to occlusion (see
Fig. 8a). Our aim is to process the facade graph so as to
merge redundant nodes, discard outliers, remove spurious
edges and finally extract a single path of nodes consistent
with the structure of the building, i.e., where nodes are in
one-to-one correspondence with physical facades, and cor-
rectly ordered. This final path through the facade graph
represents a literal arrangement of facades, and allow us
to extract the building structure.
nput images, and the second row shows a partial facade model computed
f the camera.



Fig. 6. Local coordinate defined by the left facade. The vector Xi corresponds to the horizontal VP for each facade, and Z corresponds to the direction of the
vertical VP. The vector ni represents the surface normal of facade i. h1 and h2 represent the interior angles between each pair of consecutive facades.

Fig. 7. (left) A segmented facade highlighted in red; (middle) the rectified facade image; (right) the completed image.
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Our algorithm iteratively detects spurious edges due to
occlusion, merges similar nodes, and extracts candidate
paths in the graph corresponding to likely building struc-
ture. After merging as many nodes as possible, we choose
the most likely facade path among these candidates, then
merge any remaining nodes into this path. As described be-
low, while devising a termination criterion for node merg-
ing is difficult, extracting a path most consistent with the
building structure is surprisingly robust, hence we keep
candidate paths around after each merging step and
choose the best at the end. The algorithm is briefly de-
scribed below.
1
 While there are two nodes can be merged do

2
 Remove spurious edges of facade graph;

3
 Choose two nodes vi and vj to be merged;

4
 Extract a path with highest score and add to

candidate paths;

5
 end

6
 Choose the optimal path from the candidate paths;
5.4. Removing spurious edges

Spurious graph edges due to occlusion of facades act as
outliers, so it is important to detect and remove them; we
do so using an angle inconsistency test. If facade i and facade
j are adjacent in image space but n facades between them
in object space are occluded (as can occur in concave build-
ings), a spurious edge with angle h(i,j)is introduced in the
graph. Fig. 8a shows such a spurious edge: facades B and
D are adjacent in certain photos because facade C is oc-
cluded. In general, by considering the interior and exterior
angles of the corresponding polygon, the sum of all interior
angles between the two mis-connected facades is equal to
h(i,j) + 180n. In Fig. 8a, n = 1, so the facade angles should
satisfy \BD + 180 = \BC + \CD; this suggests that edge BD
is spurious. In many cases, only a single facade is occluded,
so we consider all triangles on graph nodes, and remove all
edges that satisfy this condition (within a threshold of 5�
for at least one triangle); handling more than one occluded
facade would be a simple extension. Later, when we have
determined an optimal path through the graph, edges



(a) (b)
Fig. 8. Graph analysis. (a) Graph with an incorrect edge (in red) due to facade occlusion. Each edge is annotated with an angle between two facades, and the
incorrect edge can be removed using angle constraints. (b) Each edge is labeled with the interior angle and weight. Left: Two nodes A and E are selected to
be merged; Middle: A path (cyan edges) is extracted from the merged graph; Right: Non-path node D is merged into a path node B. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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between non-adjacent nodes in the path are also removed
as outliers.

5.5. Merging nodes

Next, our algorithm proceeds to pick a pair of redundant
nodes (vi,vj) and merge them. Two nodes (vi,vj) are likely to
represent the same facade if (i) the two nodes have similar
appearance, measured by the GIST L2-distance (GIST simi-
larity) and (ii) the two nodes are often preceded or fol-
lowed by the same node in the facade ordering (ordering
similarity).

The ordering similarity is computed from the weights of
ordering edges that either point from the same source or
point to the same target. We combine GIST similarity and
ordering similarity together, and define the merge score as:

Sði; jÞ ¼
NiNj

NiþNj
if Ni P m; Nj P m; dði; jÞ < e

0 otherwise

(
ð4Þ

where d(i, j) is the GIST distance, and Ni and Nj represent
the sum of the corresponding number of edges with the
same source or target node (ordering similarity). If d(i, j)
is less than a threshold e, and Ni and Nj are large, then this
pair of nodes is good candidate for merging. m and e are set
empirically to 2 and 0.8, respectively. The left side of
Fig. 8b shows two step of node merging, where two pairs
of nodes (AE and BD) are chosen to be merged.

5.6. Extracting a path

After each iteration of merging, we extract a path which
is maximally consistent with the current facade graph and
the structure of the building. This path should form either
(a) a cycle, if views were captured from 360� around a
building, or (b) a line, if some parts of the building were
not captured. A node may represent multiple separate fa-
cades due to self-similarity; however, by using additional
geometric constraints we can often break these ambigui-
ties. In particular, if the graph contains one or more cycles,
we want to find a (not necessarily simple) cycle that repre-
sents a geometrically possible configuration of facades. If
the graph has no cycle, or no cycle is geometrically consis-
tent, then we assume that not all sides of the building were
captured, and instead look for a path with strong edges
that passes through a large number of nodes.

We extract all paths whose length is less than a given
maximum length from the updated graph through brute-
force search. This parameter should be larger than the
number of facades in the building. In general, the number
of such paths is exponential in the maximum length. Nev-
ertheless, as our graph is small, the number of such paths is
usually less than 10,000, a small enough number to
exhaustively check.

For a given path P with jVPj nodes and length m, we can
compute the corresponding 2D footprint given the angle
and relative length information of edges in the path. The
footprint should be without self-intersection; moreover,
if the footprint is a cycle, then the footprint should form
a 2D polygon with m sides. Hence, the sum of interior an-
gles Sa should be approximately 180(m � 2); we denote the
discrepancy as dangle = Sa � 180(m � 2). Moreover, the
Euclidean distance between the starting point and ending
point dloop should be small. Note that these constraints
are similar in spirit to those of Zach et al. [19], but for
building geometry rather than camera networks. We de-
fine a cost function over paths that these geometric con-
straints with consistency with the facade graph:

CðPÞ ¼
j0 þ C0ðPÞ if p0 – pm

j1dangle þ j2dloop þ C0ðPÞ otherwise

�
C0ðPÞ ¼ j3ð1�wiÞ þ j4ðjV j � jVP jÞ

ð5Þ

where p0 and pm are the starting and ending nodes, respec-
tively. C0(P) measures consistency with the facade graph;
wi is the normalized average weight of the path. We prefer
the number of nodes in the path, as well as the average
weight of edges in the path, to be large. The scalar weights
j determine the relative importance of the four terms. In
our implementation, we use weights j0 = 100, j1 = 10,
j2 = 100, j3 = 1, j4 = 5, but we found that the best path is
not overly sensitive to these values.

After selecting the optimal path, we run the merging
algorithm once more (with looser parameter settings
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m = 0, e = 1.2), in order to merge remaining nodes into the
path (we disallow path nodes to be merged).

Finally, nodes which are still not part of the path are
discarded as outliers. The middle graph in Fig. 8b shows
the best path extracted from the merged graph, while the
rightmost graph shows the remaining nodes merged into
this path. Facades filtered earlier as outliers in each cluster
are added back to the corresponding merged nodes (iden-
tifying outliers by inconsistent orderings) (see Fig. 9).

Our algorithm can also work on photo sets containing
more than one building. However, we require the user to
input the expected number of buildings b. Our algorithm
proceeds as normal, except that at each round of merging,
we extract b paths (instead of one). Upon termination, we
choose the b paths with the lowest score among all itera-
tions. We constrain each of these top b paths to be disjoint
(although a user might relax this in case the buildings are
similar to each other). Fig. 10 shows an example dataset
with two nearby buildings. Two cycles are found in the
merged graph (left), and the final paths are shown on the
right. The corresponding reconstructed facade models are
shown in Fig. 11g.

Because our algorithm works on extracted facades, and
not thousands of local features, it is extremely efficient in
practice. For the hierarchical k-means clustering, the run-
ning time depends on the number of iterations of k-means,
but this step runs very quickly (less than 3 s in all experi-
ments). The cost of building the facade graph is linear in
the number of images, and, as the facade graph has at most
60 nodes, the graph analysis is fast in practice.
6. Facade model and camera poses

Once we have ordered the facades into a path or cycle,
we merge the partial models extracted in the single-view
phase to form a 3D facade model and estimate a global
set of camera poses. We also construct a photo graph that
represents connectivity between nearby photos. Fig. 2
illustrates the piecewise planar facade model we derive
in this stage, as well as the camera poses. These results
can then be input into a final bundle adjustment and
MVS phase.
Fig. 9. From simplified facade graph to geometrically consistent path. Left: the si
the estimated interior angle. Middle: a geometrically consistent path through this
6.1. Facade model

We represent each facade as a flat rectangle and com-
pute a facade model given the ordering detected above;
the parameters of this facade model are the interior angles
between adjacent facades and the width and height of each
facade. We initialize each parameter with its median ob-
served value. If the facades form a cycle (as in Fig. 9), we
refine the parameters so as to close the model, while keep-
ing them close to their initial values.

6.2. Camera parameters

Next, we use the recovered facade model to estimate
global camera poses. Recall that each 3D facade corre-
sponds to a set of segmented facade images, and each
photo is therefore identified with a set of reconstructed fa-
cades. For each photo, we identify the dominant facade by
area, then transform the camera pose relative to this facade
to a global pose. This assumes that the segmented facade
captures at least part of every boundary of the dominant
facade, which may not always be true; however, we find
that this step still gives reasonable camera positions for a
final bundle adjustment stage. In some cases, the camera
pose is not unique, as a facade may appear more than once
in the facade ordering (as in Fig. 9) due to near-identical fa-
cades. In such cases we simply replicate the photo.

6.3. SfM and MVS

The initial camera poses from the previous step can
then be fed into bundle adjustment; we use Bundler, an
open-source SfM tool [2]. Bundler requires feature
matches, which we derive by first building an image graph
from the facade ordering, then finding SIFT matches be-
tween neighboring images in the graph. In particular, for
each image we select k neighboring images as candidates
for image matching, considering scene content and paral-
lax. We first check if a potential neighbor observes a com-
mon facade, then remove neighbors whose viewing angles
to the given view are less than 10� or larger than 50�.
Rather than detecting features in the original images, we
perform matching on corresponding rectified facade
mplified facade graph, with eight nodes, and (ordering) edges labeled with
graph (where the yellow node B is visited twice). Right: the facade model.



Fig. 10. Left: the merged facade graph for a set of images of two buildings, at the point where two optimal paths are found. Each edge is labeled with its
angle and weight, and each node is colored with its eventual simplified graph cluster. Outlier nodes are colored in yellow. The two optimal paths are colored
in red and green respectively. Right: the final simplified facade graph, after merging remaining nodes into the path and removing outliers. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Facade model results for our seven real-world datasets. Each dataset shows selected input images, initial cameras, and the output facade model.
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images; this empirically improves the quality and quantity
of matches significantly. We then do a bundle adjustment
starting from the initial camera poses. Unlike incremental
SfM [10,13], we only require a single bundle adjustment
round. After refining camera poses, we compute a dense
point cloud using the PMVS and CMVS software of Furuk-
awa et al. [4].
7. Results and discussion

We have evaluated our approach on several datasets.
These include a number of datasets captured in several
runs around urban buildings, as well as two synthetic
scenes rendered from a number of views to allow for
ground truth comparison and robustness analysis. While



24 G. Wan et al. / Graphical Models 74 (2012) 14–28
the real datasets have some partial ordering information
(i.e., each separate run around the building may constitute
a sequence of sorts), we do not make use of any ordering
information; the idea is that many people can capture a
building or set of buildings as a team (in addition to lever-
aging Internet photos), and the system can work out the
ordering later. Our datasets are summarized in Fig. 11
(roughly ordered by complexity), showing selected input
photos, initial estimated cameras and the computed facade
model for each set. A further example of a complex syn-
thetic scene with three buildings and self-occlusion can
be found in the supplementary material, along with addi-
tional views of our reconstructions. For comparison, we ap-
plied our implementation of a recent SfM technique to
each dataset [10]. We use the same parameters for all
datasets.

The first set, Four-sided (Fig. 11a), consists of a simple
building with four planar facades, two with very similar
appearance. While our technique correctly reconstructs
the building, the baseline Bundler result incorrectly regis-
ters some images due to the facade similarity, resulting
in erroneous camera positions and facades (see Fig. 12).
This issue is avoided in our case through use of geometric
constraints; we note that other recent work would also
likely solve this problem [19]. The second and third sets,
Kindergarten and Hotel (Fig. 11b and c), both deviate sig-
nificantly from true planarity, with protruding elements
such as balconies and half cylinders. Hence, the GIST fea-
tures for facades captured from different views exhibit var-
iation. Nonetheless, our method takes into account
ordering constraints in addition to appearance, and still
yields good approximate reconstructions .

For the fourth set, Dorm (Fig. 11d), we compute the
footprint correctly even though the appearance of two
sides are nearly identical (see Fig. 9). However, due to ex-
tremely wide baselines between some views, our tech-
nique could not find sufficient SIFT matches (even
between rectified facades) to yield a connected SfM model;
the baseline SfM approach also produced a disconnected
Fig. 12. Comparison of registration results. Left: points and camera parameters c
our pipeline. Note the spurious facade in the baseline approach, due to self-sim
model. The fifth dataset, Twelve-sided (Fig. 11e), is a sym-
metric building that was also problematic for traditional
SfM methods (see Fig. 14c). Due to our geometric con-
straints (i.e., the building must be closed), we were able
to reconstruct all 12 sides.

The sixth dataset, Medical school (Fig. 11f), is a large,
complex building with self-similar facades, and non-uni-
formly distributed views. The baseline SfM approach was
not able to reconstruct this building in one piece (see
Fig. 14d). Our use of rectified facades for matching was able
to yield a single model, however. Our piecewise-planar fa-
cade model does flatten some smaller protruding facades
onto dominant walls (i.e., the model is over-simplified),
yet otherwise the footprint is qualitatively correct.

The final real-world dataset, TwoBuildings (Fig. 11g)
consists of two four-sided buildings. Many of the input
images contain clutter (e.g., trees) and multiple buildings.
However, we correctly find the two footprints, and com-
pute a facade model and cameras poses for each footprint.
The cameras that capture facades from both buildings are
used to register the facade models together.

We report performance on each dataset in Table 1, com-
pared to the baseline approach [10]. The single-view and
facade graph algorithms were implemented in Windows
and run on a 2.80 GHz Intel Core i7 CPU machine with
4GB RAM; the SfM algorithms were run on a Linux cluster
with 2.40 GHz Intel Xeon processors. In the single-view
phase, computing vanishing points takes about three sec-
onds per image (on half-resolution images), while facade
segmentation takes about four seconds. Computing GIST
descriptors for segmented facades takes less than one sec-
ond per image. The global analysis stage takes less than 11
minutes in all experiments. Our complete pipeline, includ-
ing SfM, runs between 3.5 and 7 times faster than the base-
line approach for each dataset [10], and can compute the
initial facade model more than an order of magnitude fas-
ter (columns s.view + f.graph of Table 1). The times in Table
1 are total CPU times; in practice, several stages of both our
pipeline and the baseline approach can be parallelized
omputed by baseline SfM approach. Right: reconstructed computed using
ilarity in the building; our approach avoids this problem.



Fig. 13. Synthetic experiment: (a) Synthetic model used to generate the input photos. (b) Recovered facade-model. (c) SfM points and cameras from ground
truth (blue), initial recovered positions (cyan) and refined positions (red). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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across a cluster (we used a cluster of 10 nodes for our
experiments). Running times can also be improved via
GPU implementations [13].

We also tested our method on smaller numbers of
images of three photo collections: Four-sided (446 images
and 808 segmented facades), 12-sided (594 image and
1415 facades), and hotel (348 images and 599 facades).
For each dataset, we generated smaller and smaller subsets
of random photos, and applied our algorithm to the subsets
until the algorithm failed. We found that in each case our
sorting method failed when there were an average of 5
photos per facade, as the clustering was too noisy at that
point. However, as capturing photos is quite cheap, we be-
lieve this will not seriously limit our application.
Fig. 14. Comparison of sparse SfM reconstruction results of baseline SfM
To test the accuracy of our method, we generated a
synthetic Y-Shaped model with height equal to 20 units.
We captured 312 virtual images around the model and re-
corded the camera poses (ground truth). Then, we ran the
pipeline on these synthetic photos, and aligned corre-
sponding camera positions using RANSAC to register the
recovered model to ground truth. The facade model
(Fig. 13b) and reconstructed points (Fig. 16e) well-repre-
sent the Y-shape of the model. We sampled 3d points
from synthetic model, and then computed the distance
between each point from reconstructed points (MVS)
and its closest point from sampled points. The median
absolute distance is 0.12 units, and maximum distance
is 0.93 units. Furthermore, the median absolute distance
method (Rome in a Day, top row) and our approach (bottom row).



Table 1
Running times for each dataset, showing number of input images (#img),
time for single-view analysis (s.view), time for the facade analysis stage
(f.graph), time for the final SfM polishing (including SIFT extraction,
matching, and a final bundle adjustment), and total time including all
stages. We compare our approach to our implementation of the ‘‘Rome in a
Day’’ (RIAD) reconstruction pipeline. The resolution of all input images is
3200 � 2000; for the SfM stages, the images are downsampled to 2400
pixels on the long side. The times given are total CPU times; in practice,
several of the stages, including the single-view analysis, as well as the SIFT
extraction and matching stages of SfM and RIAD can be easily parallelized
across any number of machines, resulting in approximately linear speedup
in those stages. For 2-buildings, we only ran the analysis stages of our
algorithm.

Dataset #img s.view
(m)

f.graph
(s)

SfM
(m)

Total
(m)

RIAD

(m)
4-Sided (a) 446 52 400 119 178 673
Hotel (b) 235 27 254 81 113 751
Kinder. (c) 275 32 268 89 126 713
Dorm (d) 645 75 645 125 209 1282
12-Sided (e) 594 69 545 158 236 1476
MedSchool (f) 448 52 294 138 195 1359
2-Buildings (g) 494 58 633
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between corresponding cameras is 1.96 units (initial fa-
cade model) and 1.74 units (after bundle adjustment),
with a maximum error of 4.4 units.

Finally, in order to test the robustness of the method to
occlusions and multiple buildings, we generated a scene
Fig. 15. Robustness to occlusions and multiple buildings. (a) A synthetic scene
contain occlusion and self-occlusions. (c) Recovered cameras. (d) Three piecewi
with three buildings Three-Buildings. With lots of occlu-
sions of the captured images, our method can still recover
the structures of these three buildings (see Fig. 15).
7.1. Limitations

While we demonstrate our approach on a number of
real-world buildings, it has a number of limitations. First,
it assumes that a building is approximated by a set of ver-
tical planar facades (though it can handle some significant
deviations from planarity). Our approach uses detected
lines in images to guide facade segmentation, so the build-
ing must contain salient lines. Our technique also assumes
that nearly-whole facades are visible in each image, and
would likely fail if the image set contained a large number
of zoomed-in views or cropped facades. However, we can
likely detect when this is the case, and future work is to de-
vise a technique that is robust to these problems .
7.2. Conclusions and future work

We have presented an efficient method to sort unorga-
nized photo sets of urban buildings and compute approxi-
mate initial 3D models. By first analyzing local geometry,
then integrating these local models into a globally consis-
tent structure, we can compute approximate piecewise pla-
nar models and estimate a camera poses, while avoiding
consisting of three buildings. (b) A sample of the simulated photos that
se-planar models that are reconstructed by our algorithm.



Fig. 16. CMVS 3D point clouds for (a) Four-sided. (b) Medical School. (c) Hotel. (d) Twelve-sided. (e) Y-Shaped datasets.
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ambiguities that can cause catastrophic failures. This ap-
proach very quickly results in a model that is itself useful
when simplified geometry is required, but also represents
a good initialization for further reconstruction methods,
including bundle adjustment and MVS. We introduce a
new facade graph analysis which integrates multiple types
of information, including appearance, ordering, and geo-
metric constraints.

In the future, we plan to extend our algorithm to be
more robust to partially-observed facades, and to handle
more general classes of buildings, based on a generalized
facade graph analysis. While our approach assumes that
the facade graph can be simplified to one or more paths
or cycles (i.e., we handle cyclic arrangements of vertical
facades), we believe the facade graph is a useful abstract
scene representation that can be extended to more general
graph topologies resulting from more complex arrange-
ments of facades, as well as roofs and other non-vertical
surfaces, and that exploring the use of graphs to model
scene constraints is a promising direction. We also plan
to integrate other forms of imagery, such as oblique and
nadir aerial photos, into our pipeline, in order to create
truly complete building models. Such imagery is tradition-
ally very difficult to integrate with ground-level views, as
the baselines are extremely wide. However, our facade
matching approach may help alleviate such issues. We also
plan to augment our datasets with diverse Internet photos,
and with urban LIDAR data.
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