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Figure 1: Structural co-hierarchical analysis of a set of velocipedes (bicycles, tricycles and four-cycles). The resulting co-hierarchy (center)
is illustrated by a single sample shape from the set, where each node represents a part assembly. Two of the nodes (highlighted in blue and
green) are expanded to show the insight gained by the analysis which relates parts with rather different geometries but similar functions.

Abstract

We introduce an unsupervised co-hierarchical analysis of a set of
shapes, aimed at discovering their hierarchical part structures and
revealing relations between geometrically dissimilar yet function-
ally equivalent shape parts across the set. The core problem is that
of representative co-selection. For each shape in the set, one repre-
sentative hierarchy (tree) is selected from among many possible in-
terpretations of the hierarchical structure of the shape. Collectively,
the selected tree representatives maximize the within-cluster struc-
tural similarity among them. We develop an iterative algorithm for
representative co-selection. At each step, a novel cluster-and-select
scheme is applied to a set of candidate trees for all the shapes. The
tree-to-tree distance for clustering caters to structural shape analysis
by focusing on spatial arrangement of shape parts, rather than their
geometric details. The final set of representative trees are unified
to form a structural co-hierarchy. We demonstrate co-hierarchical
analysis on families of man-made shapes exhibiting high degrees of
geometric and finer-scale structural variabilities.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
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1 Introduction

One of the most fundamental shape analysis problems is to infer the
part structure of a shape. Shape understanding, especially one at the

structural or functional level, goes beyond decomposition of a shape
into its constituent parts [Shamir 2008]. A higher-level organiza-
tion of the parts, in particular, a hierarchy, is often more structure-
revealing [Shapira et al. 2010; Wang et al. 2011; Jain et al. 2012].
The coarse-to-fine organization provided by a hierarchy expresses
the functional structure or semantics of a shape more informatively
than a mere enumeration of the shape’s parts, while placing less
emphasis on geometric details.

It is generally believed that human perception of shapes and struc-
tures is hierarchical [Palmer 1977; Hoffman and Richards 1984].
Moreover, a top-down part organization of an object tends to better
reflect its one or many functions [Carlson-Radvansky et al. 1999].
The expressive power of hierarchical models becomes more critical
when a related but diverse set of shapes is analyzed together. These
shapes loosely belong to the same family, implying a consistence
in the composition of their major functional components. However,
the shapes may exhibit a high degree of geometric variability as
well as variation in their finer-scale structures, e.g., consider sets
of chairs or velocipedes (Figure 1). A unified explanation of the
part structures within such a set is necessarily coarse-to-fine, which
again suggests that a hierarchical representation is vital.

In this paper, we study structural hierarchy extraction from 3D
shapes. We argue that shape understanding cannot be reliably ac-
quired from a single example. Our approach is based on the key
observation that objects designed to serve similar functions are of-
ten structurally similar; this assumption tends to hold at least at the
coarse scale and with respect to the major functional components of
the objects, although functionality often involves semantic aspects
that cannot be derived from the geometry alone. The structural se-
mantics of such a set of objects can be learned via a co-analysis of
the set which exploits the underlying structural similarity.

The analysis algorithm we develop performs unsupervised analysis
on a given set of shapes to learn the similarity as well as variability
among the part structures of the shapes in the set. The result is a new
structural representation, the structural co-hierarchy, which is a bi-
nary tree structure providing a unified representation of the learned
shape structures. In particular, it provides the correspondences be-
tween geometrically dissimilar yet functionally equivalent shape
parts across the set; see Figure 1. Structural co-hierarchies enable
applications such as hierarchical segmentation, attribute transfer,
and shape-aware editing [Wang et al. 2011], and any application of
co-analysis is also applicable to co-hierarchies.
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Figure 2: Major steps of co-hierarchical analysis. First, initial per-shape candidate trees are obtained by sampling. Then, iteratively, the
shapes are clustered based on distances between candidate trees, one representative tree per shape is selected, and new sets of candidate
trees are obtained by resampling. At the end, the final tree representatives are unified to form the structural co-hierarchy.

Representative co-selection. The main challenge in our analy-
sis is that there may be many possible interpretations of the hierar-
chical structure of any shape in the set. We realize that there is not
a unique structural hierarchy, a binary tree, that is the best represen-
tation. For example, it is not clear whether the seat of a chair must
be grouped with the back or the legs.

Co-analysis provides a means to resolve the ambiguity in choos-
ing an appropriate structural representation for each shape. In this
context, we define our criterion as selecting one representative tree
or hierarchy per shape to maximize the structural similarity among
the chosen trees. To account for structural variations, the criterion
should not be imposed on the whole set. This naturally leads to
a clustering problem and the goal is shifted to maximizing within-
cluster similarity with each cluster reflecting a mode of structural
variation in the set of shapes. However, our unique problem setting
makes the clustering problem unconventional:

• The entities to be clustered are not pre-determined and their
selection is part of the computational process.

• Classical clustering often maximizes between-cluster dissim-
ilarities. Co-analysis of a whole set on the other hand, is also
concerned with exposing similarities between clusters, at least
at the coarser levels of the hierarchies.

Hence, our core analysis involves a new problem on representative
co-selection with clustering analysis offering a means to solve it.

Algorithm overview. We solve the representative co-selection
problem by performing an iterative cluster-and-select optimization.
Starting with the input set of 3D shapes, we first obtain an initial set
of candidate structural trees per shape. Then iteratively,

1. The shapes are clustered, based on a structural tree-to-tree dis-
tance, to maximize within-cluster structural similarity.

2. One representative is selected per shape while accounting for
both within-cluster and between-cluster structural similarity.

3. New sets of candidate trees are resampled around the selected
tree representatives.

The final selected tree representatives are unified based on node-
to-node correspondence to form a compound tree structure, which
constitutes the structural co-hierarchy; see Figure 3. Figure 2 out-
lines the major steps of the algorithm.

Contributions. The main contributions of our work include:

• A structure-driven shape analysis enabling co-analysis of a
set of shapes exhibiting significant geometric dissimilarity.

• A hierarchical analysis which allows the co-analysis to deal
with structural variability in the set.

• A novel unsupervised cluster-and-select scheme which learns
both the structural similarity and variability in the set.

• A new representation, the structural co-hierarchy, which uni-
fies the learned shape structures.

By analyzing a set of shapes collectively, we gain knowledge about
the shapes that is not deductible by observing the individuals in
isolation. In this context, we believe that our works offers the first
co-analysis that results in a hierarchical structural representation of
a set of shapes. We show results from co-hierarchical analysis on
families of man-made shapes exhibiting high degrees of geometric
and finer-scale structural variability, and the structural understand-
ing that the analysis reveals.

2 Related work

Much work on shape segmentation has been devoted to extract-
ing the primitive parts of a shape based on low-level geometric
cues [Shamir 2008]. A higher-level question is how the parts relate
to each other. Attributed graph representations have been devel-
oped to encode pairwise part relations or contextual part descrip-
tions [Shapira et al. 2010; Mitra et al. 2010; Chaudhuri et al. 2011;
Fisher et al. 2011; Ovsjanikov et al. 2011]. However, representa-
tions focusing only on the low-level primitive parts and their rela-
tions are often too flat and sensitive to local geometry or structural
variations to reveal the true underlying structure of a shape.

High-level shape analysis. Despite the challenges that still exist
in fully solving low-level analysis tasks such as shape segmentation,
there have been recent works that focus on high-level shape analysis
by assuming that low-level segmentations are available [Martinet
2007; Mitra et al. 2010; Shapira et al. 2010; Xu et al. 2010; Chaud-

Figure 3: Illustration of a structural co-hierarchy (a) and one of
the selected per-shape candidate trees (b). The co-hierarchy unifies
three such trees by combining corresponding nodes from them.
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Figure 4: An illustration of the iterative cluster-and-select process. The input contains four shapes, each associated with a set of trees
(where circles, squares, diamonds, and triangles correspond to the four shapes). Euclidean distance roughly reflects tree-to-tree distance
(small distance = higher structural similarity). (a) An initial set of candidate trees, shown as the filled elements, is selected. Hollow elements
represent unsampled trees. (b) The shapes are clustered based on structural similarity among their associated candidate trees, resulting in
three clusters (three colors). (c) One representative tree (black border) is selected for each shape to maximize their mutual similarity. (d) New
candidates are sampled around the tree representatives. (e) New clusters (two in this iteration) are formed with the current set of candidates.
(f) Note how the representatives evolve to maximize the commonality among the trees. The process then iterates between (e) and (d).

huri et al. 2011; Fisher et al. 2011; Wang et al. 2011; Kalogerakis
et al. 2012; Kim et al. 2012; Xu et al. 2012; Zheng et al. 2013]
or by circumventing the segmentation problem [Ovsjanikov et al.
2011]. These developments are driven by a demand for higher-
level analysis tools and facilitated by the increasing availability
of large repositories of pre-segmented, even semantically tagged,
shapes, e.g., the Trimble 3D Warehouse, the segmentation bench-
mark [Chen et al. 2009], and the COSEG [Wang et al. 2012] dataset
for co-segmentation. Despite having individual tagged segmenta-
tions and common class labels, these shape repositories still lack an
organization of the shape parts into high-level structures.

Hierarchical analysis. Early work on cognition [Hoffman and
Richards 1984] stipulates that for the sake of object recognition,
the visual system decomposes a given shape into a hierarchy of
parts. Most works on hierarchical segmentation analyze individual
shapes based on geometric properties of shape parts such as shape
diameters [Shapira et al. 2010], convexity, compactness [Kraevoy
et al. 2007], or other measures for primitive fitting [Attene et al.
2006]; other methods rely on surface metrics to perform cluster-
ing [Katz and Tal 2003; Liu and Zhang 2007; de Goes et al. 2008].
There have been recent works that construct structural hierarchies,
primarily based on symmetry and connectivity information [Mar-
tinet 2007; Wang et al. 2011; Jain et al. 2012]. All of these works
analyze individual or pairs of shapes, with hard-coded rules or ob-
jectives to guide the analysis to suit the intended applications; there
is no utilization of knowledge latent in a larger shape set.

Co-analysis. Works on co-analysis extract necessary knowledge
present in a set of shapes to facilitate shape analysis. Golovinskiy
and Funkhouser [2009] obtain a consistent segmentation of a set
by aligning all the shapes and then clustering their primitives. Xu
et al. [2010] cluster a set of shapes based on a particular shape
style in order to synthesize new shapes via style transfer. Huang
et al. [2011] explore the knowledge latent in a set of shapes through
a joint segmentation approach. Sidi et al. [2011] co-analyze a set of
shapes by unsupervised clustering in a descriptor space and Wang
et al. [2012] extends the approach to the semi-supervised setting.
However, none of these methods compute a hierarchical structural
organization. In contrast, our work constructs a unified hierarchy
from a given set at the structural level. Also, the hierarchical rep-
resentation provides a richer characterization of the set of shape
structures beyond a coarse template or part-level correspondence.

Co-abstraction. Recently, Yumer and Kara [2012] introduce a
co-abstraction method, where the models in a set are abstracted as
much as possible while still preserving the unique geometric char-

acteristics that distinguish one model from another. A hierarchy of
abstractions is created for each model, and then the best hierarchical
level is chosen for each shape so that the abstraction goal is satis-
fied for the entire set. Our co-hierarchy extraction method shares
similarities with this approach, however, our hierarchies represent
structural information, and we do not simply choose the best hier-
archy that represents each shape, but rather go one step further by
building a co-hierarchy that represents all the shapes in the set.

Clustering and distance. Many algorithms have been developed
for cluster analysis [Everitt et al. 2011]. Note that we cluster hierar-
chical representations of shapes instead of hierarchically clustering
the shapes. In our analysis, we need to take into account the dif-
ferent levels of the trees during the clustering, though we do not
perform the clustering separately at each level of the trees. Instead,
we compare the hierarchies by means of a tree-to-tree distance. For
binary trees, which is the case of our hierarchies, polynomial met-
rics can be devised [Torsello et al. 2005]. Towards this end, we
develop a novel structure-driven tree-to-tree distance and a cluster-
ing algorithm to extract a unified structural hierarchy.

Multi-instance clustering. The clustering step in our cluster-
and-select is similar to multi-instance clustering (MIC). MIC finds
clusters of bags, each represented by multiple instances. The most
straightforward application setting is where a data entity can be
represented by multiple features or examples. Our clustering step
involves clustering shapes (the bags) according to their candidate
trees (the instances). Our clustering solution is inspired by the al-
gorithm of Zhang and Zhou [2009] in which the clustering is per-
formed according to a bag distance: commonly a Hausdorff-type
distance that involves measuring the distances between dynamically
chosen instances in the two bags. Instead of using a k-medoids clus-
tering, we rely on diffusion maps and hierarchical clustering in the
embedding space to obtain more stable results.

3 Overview

The input to our algorithm is a set M = {M1, . . . ,Mn} of meshes
representing n shapes belonging to the same family, i.e., they serve
similar functions and possess varying degrees of similarity in their
part structures. We focus on man-made shapes due to the rich struc-
tural variability commonly found in them. We assume that each
shape has been upright-oriented, with proper alignment, and parti-
tioned into a set of primitive parts (Section 5). Our co-hierarchical
analysis proceeds as shown in Figure 2.

Co-Hierarchical Analysis of Shape Structures        •        69:3
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Per-shape hierarchy. In our approach, a structural hierarchy h is
a binary tree representing a hierarchical decomposition of the con-
stituent parts of a shape. In particular, the root is the entire shape
and each node of h represents a subset of parts, as illustrated in Fig-
ure 3(b). In this paper, the term hierarchy is used interchangeably
with tree and always refers to a per-shape structural hierarchy. We
equate a node in a structural tree with the parts it represents.

Initial candidate tree generation. The initial set of candidate
trees for each shape is obtained by sampling from the population
of all possible structural trees for the shape. To reduce the sample
space, we identify groups of shape parts that share common sym-
metries. These symmetry groups, along with the remaining shape
parts, form atomic entities to be further grouped and they are leaves
of the trees. We obtain multiple hierarchies by farthest point sam-
pling on the space of top-down binary decompositions of the set of
atomic entities; see Section 5 for details.

Cluster-and-select. In each iteration, the shapes are clustered by
diffusion maps and an agglomerative hierarchical clustering in the
embedded space. The shape-to-shape distance employed is based
on the minimum tree-to-tree distance measured between candidates
which belong to the shapes. The tree-to-tree distance is defined hi-
erarchically and based on a structural node-to-node distance which
emphasizes more on spatial arrangement of shape parts than their
detailed geometry. Next, we select a representative tree per shape to
account for both within-cluster and between-cluster structural sim-
ilarity. Finally, we resample a subset of the candidate hierarchies
to create new trees that are more similar to the cluster representa-
tives. We then repeat the cluster-and-select process, and stop the
iterations when there are no significant changes to the clustering.

Figure 4 provides an important illustration of the iterative cluster-
and-select process. It shows each step, as well as how the sets of
candidate trees evolve to maximize within-cluster similarity.

Tree unification and co-hierarchy. The tree representatives se-
lected are unified to form the structural co-hierarchy. We obtain
a correspondence between the nodes of each selected tree and a
representative tree. Next, these correspondences are used to per-
form a union of the tree nodes and connectivity to define the co-
hierarchy, as shown in Figure 3. The co-hierarchy can be more
formally defined as follows. Let h1, . . . , hn be the trees selected
by the iterative cluster-and-select step, one per shape from M. The
corresponding structural co-hierarchy is generally a set of binary
tree structures, each unifying a subset of the hi’s.

Let H∗ be one of these trees corresponding to M ′ ⊂ M . Each
node ofH∗ represents a set of part assemblies taken from the hi’s.
These sets are defined inductively as follows. First, the root of H∗
contains all the shapes from M′ in their entirety. Now let n be a
node in H∗ whose associated set of part assemblies is A. Then n1

and n2 with associated sets of part assemblies A1 and A2, respec-
tively, are the child nodes of n in H∗ if all the members of A1 and
A2 are defined as follows. For any a ∈ A which is also a node in
the hierarchy hi, if a1 and a2 are the children of a in hi, then either
a1 ∈ A1 and a2 ∈ A2, or a1 ∈ A2 and a2 ∈ A1.

4 Node-to-node and tree-to-tree distance

The tree-to-tree distance measures the structural similarity between
two hierarchies. It plays an essential role in quantifying whether
two hierarchies reflect similar part structures in two shapes. Given
two hierarchies, both of which are binary trees, we define the tree-
to-tree distance recursively. The key component of the tree-to-tree
distance is a node-to-node distance which measures the similar-
ity between two binary decompositions of the part assemblies in-

Figure 5: Two cases for defining the tree-to-tree distance (1).

volved. Since the shapes that we analyze can have a high degree of
variation in the geometry and part composition at the finer scale, we
develop a distance measure that focuses more on the coarse struc-
ture of the shapes rather than on their geometric details.

Recursive tree-to-tree distance. Given two hierarchies hi and
hj , the tree-to-tree distance Dt is defined as

Dt(hi, hj) = min[Dn(Ni, Nj)+
ω(Dt(hi1, hj1) +Dt(hi2, hj2)),
D′n(Ni, Nj)+
ω(Dt(hi2, hj1) +Dt(hi1, hj2))],

(1)

where Ni and Nj are the roots of hi and hj , respectively, and Dn

or D′n is the node-to-node distance. As illustrated in Figure 5, hi1

and hi2 are the left and right subtrees of Ni, respectively; hj1 and
hj2 are defined similarly. In summary, we measure the similarity of
two nodes and then apply the distance recursively to their children.
We try the two possible assignments (left-to-left and right-to-right,
as well as left-to-right and right-to-left) of children and select the
one that gives the shortest distance, as shown in Figure 5. Thus, D′n
is the node distance for the switched case.

The weight ω ∈ (0, 1] is used to downplay the importance of the
nodes deeper in a hierarchy. Since we want to emphasize the high-
level structural similarity between hierarchies, while ignoring some
detailed geometrical and structural differences, we empirically use
ω = 0.8 throughout all experiments in this paper. In order for
our distance measure to behave as a metric, we normalize it by the
recursive sum of weights 1 + ω(2 + ω(. . .)), similarly to dividing
by the number of nodes as proposed in [Torsello et al. 2005].

Structural node-to-node distance. Let Ni and Nj be two nodes
(part assemblies) belonging to two candidate trees. Let the two chil-
dren of Ni be Ni1 and Ni2 and the two children of Nj be Nj1 and
Nj2. The node-to-node distance Dn(Ni, Nj) measures the simi-
larity between the binary decompositions implied by the two nodes
and their children. We define this distance as

Dn(Ni, Nj) = Db(Ni1, Nj1) +Db(Ni2, Nj2),
D′n(Ni, Nj) = Db(Ni1, Nj2) +Db(Ni2, Nj1),

(2)

where Db is the distance between the axis-aligned bounding boxes
of the part assemblies represented by the two children. In other
words, Db measures the “effort” needed to transform one bounding
box into the other. Thus, the node distance Dn is defined as the
effort needed to transform the binary decomposition of one node to
that of another node. If either Ni or Nj does not have children, we
define the node distance as |li−lj |, where li and lj are vectors con-
taining the lengths of the three dimensions of the bounding boxes
of Ni and Nj , respectively.

Bounding box distance. We define the bounding box distance
Db(B1, B2) between two axis-aligned boxes B1 and B2 as the
amount of scaling and translation needed to transform one box into
the other. Given two tetrahedra, we can define a unique affine
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Figure 6: The Hausdorff distance can be problematic when match-
ing two pairs of boxes, exemplified here for two stretched chairs.
Consider the binary decomposition of the blue chair in (a) and the
two decompositions of the red chair in (b) and (c). (d) The sum of
the Hausdorff distance (in green) is larger when matching the de-
compositions (a) and (b) that intuitively correspond to each other,
than when when matching the less meaningful (a) and (c) in (e).

transformation A between them, as long as their volume is non-
degenerate. Thus, we take the affine transformation between the
tetrahedra contained in each box and further decompose the trans-
formation into scaling (sx, sy, sz) and translation (tx, ty, tz) com-
ponents [Goldman 1992]. Rotation, shear or reflections are not
present since we are dealing with axis-aligned boxes. Finally, we
define Db = |tx| + |ty| + |tz| + |1 − sx| + |1 − sy| + |1 − sz|,
which captures any non-zero translation or any scaling deviating
from unity. Before this computation, we define the bounding boxes
of the children in relation to their parents, so that the coordinates of
the children are normalized to [0, 1] along each dimension.

It may seem inappropriate at first to incorporate scaling and the
amount of translation into a structural measure. However, scaling
is important in order to capture the structural notion that two parts
with similar function on two shapes should have relatively the same
size. This advantage is illustrated in Figure 6, where we show a
problematic example that occurs when the Hausdorff distance be-
tween two boxes, which does not incorporate scaling, is used in-
stead. Moreover, the sum of scaling and translation provides us
with a smooth measure, which is a better choice for the clustering
task. Finally, defining the boxes always in relation to their parent
nodes guarantees that the relative positioning of parts is taken into
consideration, which is more appropriate when dealing with shapes
of varied geometry where the structure is more important.

Although our node distance is based on the simple idea of com-
paring the configurations of axis-aligned boxes, the distance is able
to capture the general positioning of shape parts, which leads to
the successful extraction of co-hierarchies as shown in Section 8.
Nevertheless, as our work concentrates more on the co-hierarchical
analysis than on the definition of the tree distance, we believe that
more sophisticated definitions of the tree and node distances can
definitely lead to improvements in the analysis.

5 Candidate hierarchy generation

For each shape Mi ∈ M, we generate a set Hi of candidate hier-
archies. Hi is generated by sampling multiple partitions of a graph
that describes the relations between shape parts.

Preprocessing. We assume that the input shapes are already seg-
mented into primitives. Many models (e.g., those collected from
Trimble 3D Warehouse) are already composed of disconnected
components that we use as segments. For shapes represented by
a single connected mesh or a few large components with complex
shapes, we use the symmetry-enhanced mesh segmentation method
in [Wang et al. 2011] to further decompose the shapes into smaller
segments. Nevertheless, any state-of-the-art segmentation method
can be used to individually segment each input shape. Moreover, all
the shapes in the input set are aligned to a canonical frame. Specif-

ically, we obtain the upright orientation of the models, and then
align the two remaining axes with a standard registration method.

For each shape, we analyze the shape parts and create a part relation
graph similarly to [Wang et al. 2011], where each node represents
a part and each edge encodes either a symmetry or connectivity
relation between two nodes (obtained by measuring the proximity
between the parts, that is, two parts are connected if they are close-
by according to a threshold). The candidate hierarchies of the shape
are obtained by sampling binary decompositions of this graph.

Candidate sampling. In principle, any sampling method that
generates reasonable hierarchies of the shapes can be used for this
step. However, given the diversity of shapes in our sets, it is dif-
ficult to define a generic criterion to determine whether a sampled
hierarchy is reasonable or meaningful. Thus, we resort to a random
sampling approach. Our assumption is that even if unreasonable
samples are generated, we do not expect that they will find similar
counterparts in the sample sets of the other shapes. On the other
hand, there is a higher probability that the coherent hierarchies will
be clustered together due to their similarity.

In our approach, given an input graph, we sample different binary
decompositions in a top-down manner. This is accomplished in two
stages. In the first stage, we start with the full set of nodes and enu-
merate all the binary partitions of connected components. Since the
graphs are sparse and typically have less than 30 nodes, this step is
efficient in practice. Next, we select a subset (typically 20) of these
binary partitions according to farthest point sampling (FPS), to en-
sure that our sample set has good variability. The distances between
partitions are calculated with our structural node-to-node distance
(Section 4). We then apply the same sampling recursively on each
partition. In the second stage, we take all possible combinations
of these recursive partitions to build valid candidate trees, yielding
a large number of trees. We again apply FPS to select a subset of
trees with variations (also around 20 samples). The result is a set of
candidate hierarchies for each shape, where we are able to directly
control the size and variability of this set. An example of a set of
candidates trees is shown in Figure 7.

We also experimented with a bottom-up sampling process which
is more efficient. However, note that in a bottom-up process we
have less control over the variability of the partitions at the higher
levels of the hierarchy, which are the most important levels for our
analysis. Thus, a top-down scheme is more appropriate.

6 Representative co-selection

We perform the representative co-selection on the set of candidate
trees sampled from the input set of shapes, in order to construct
the co-hierarchy (Section 7). The tree-to-tree distance for the co-
selection, defined in Section 4, plays a critical role in our analysis.

6.1 Clustering of shapes

Given the multiple candidate trees for each shape, we cluster the
shapes into groups and select a single hierarchy for each shape (the
cluster-and-select). The clustering is achieved with a multi-instance
algorithm described in this section, while the hierarchy selection is
carried out with the algorithm described in Section 6.2. The goal
in multi-instance clustering is to find clusters of bags, where each
bag is represented by multiple instances [Zhang and Zhou 2009].
In our setting, the main analysis involves clustering shapes (bags)
according to their multiple hierarchies (instances).

The key to multi-instance clustering is to define a bag-to-bag dis-
tance based on the multiple instances associated to each bag. This is
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Figure 7: Input, segmentation, symmetry groups, and a few sam-
pled candidate hierarchies for an airplane model.

commonly achieved with a Hausdorff-type set distance. The most
common choice compares all the pairs of instances of two bags and
selects the minimum distance. Similarly, in our setting, we define
the distance between two shapes as

Dbag(Mi,Mj) = min
hi∈Hi,hj∈Hj

Dt(hi, hj), (3)

where Dt is the tree-to-tree distance defined in Section 4.

Next, we form a bag-to-bag distance matrix by computing the dis-
tance between all pairs of shapes. Then, any clustering algorithm
can be applied based on this matrix. The specific algorithm pro-
posed by Zhang and Zhou [2009] is a variant of the k-medoids algo-
rithm. In order to avoid the stochastic component of the k-medoids,
we opt instead for a solution leading to more stable results. We first
embed the shapes into a normalized space by computing the diffu-
sion map of the distance matrix [Nadler et al. 2005]. We set the dif-
fusion map parameter t = 5 and use 3 eigenvectors for the embed-
ding, since that approximates well the diffusion distance [Nadler
et al. 2005]. Next, we perform an agglomerative hierarchical clus-
tering in the embedded space [Everitt et al. 2011].

To determine the proper number of clusters, we compute groupings
with different numbers of clusters and use the change in the silhou-
ette index of the groupings to guide our choice, as commonly done
in cluster analysis [Everitt et al. 2011]. More specifically, if sil(k)
is the silhouette index of the grouping with k clusters, we choose
the grouping k where |sil(k)− sil(k − 1)| is maximized.

6.2 Tree selection

After the multi-instance clustering, the shapes are grouped so that
the similarity among their hierarchies is maximized. However,
since the hierarchies for two different clusters may also share some
similarity at the higher levels, we select a single tree per shape in
an attempt to maximize the similarity across clusters as well.

We first extract for each cluster Cc a representative tree mc with

mc = arg min
hi∈Cc

∑
hj∈Cc

Dt(hi, hj), (4)

where we consider all the hierarchies hi or hj in cluster Cc. This
can be seen as selecting the medoid of each cluster, although
note that differently from the original algorithm of Zhang and
Zhou [2009], a medoid here is a single instance and not a bag.

Next, for each shape, we select from its candidate set the tree that
is closer to the medoid of its cluster, again according to Dt. This
gives us a simple mechanism to select a single hierarchy per shape
where the similarity within the cluster is maximized. We denote the
set of hierarchies selected for cluster Cc as Hc. See Figure 4(e) for
an illustration of two such sets, each with a cardinality of two.

In order to also maximize the similarity across clusters, we perform
this selection in a constructive manner. We start by considering
the most central cluster C1, defined as the cluster whose medoid is
the most central to all the other medoids, similarly as in (4). We
call the medoid of this cluster the dominant medoid m+. Next, we
proceed to another cluster C2 and perform a new selection of one
hierarchy per shape so that the similarity to m+ is maximized. We
call the newly selected hierarchies H+. We compare H+ to H2 (the
selected trees that maximize the similarity to m2), and keep H+

as the selected hierarchies for this cluster if their cost is not much
higher than the cost of Hc, according to a threshold. Otherwise,
we keep Hc as the selected hierarchies. The cost of a selection is
defined as the within-distance of the hierarchies:

cost(H) =
∑
hi∈H

∑
hj∈H,hi 6=hj

Dt(hi, hj). (5)

Intuitively, we are keeping the new selection H+ that has a bet-
ter between-cluster similarity only if it does not violate the within-
cluster similarity. We apply the same procedure to all the remainder
clusters, which gives us the set of hierarchies h1, . . . , hn selected
for shapes M1, . . . ,Mn. The hierarchies maximize the similarity
within their clusters and also across the clusters when this does not
compromise the former.

6.3 Candidate resampling

Although the previous steps ensure a selection that maximizes the
similarity among the hierarchies, there is no guarantee that the ini-
tial hierarchies generated individually for each shape possess suf-
ficient similarity. Thus, in this step we resample candidate hierar-
chies so that they are more similar to the selected medoids. For
each shape, we sort all the candidate hierarchies according to their
distance to the medoid of the shape’s cluster. We eliminate the far-
thest hierarchies and replace them with resampled hierarchies. The
resampled hierarchies are constructed with a top-down procedure
similar to that described in Section 5. However, for each new sam-
ple, the binary decompositions are chosen so that the similarity of
the hierarchy to the medoid of each cluster is maximized. The sim-
ilarity is again measured with the node-to-node distance.

We perform the cluster-and-select followed by resampling (concep-
tually regarded as being part of the “select”) for a number of itera-
tions, and stop when there is no noticeable change in the clustering
of the shapes and the selected hierarchies.

7 Tree unification

The goal of tree unification is to take the set of representative trees
selected for each shape and build the co-hierarchy. To accomplish
this step, we compute a correspondence from each selected hierar-
chy hi to the dominant hierarchy m+. Next, the union of all the
nodes that are in correspondence defines a node in the co-hierarchy
H∗. The connectivity ofH∗ is also directly derived from the union
of the connectivity of all the trees hi.

To compute a correspondence between binary trees, we proceed
recursively, similarly as in our definition of the tree-to-tree distance
in Section 4. We match the two root nodes of the trees and then we
only need to decide which of the two children are assigned to each
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Figure 8: Consistent hierarchical segmentation results corresponding to structural co-hierarchies obtained for various sets.

other. This is done by finding the best assignment according to the
tree-to-tree distance Dt. Next, we apply the same correspondence
computation recursively on the matched children.

8 Results

We applied our co-hierarchical analysis to shapes belonging to
eight object categories: chairs (40), airplanes (20), candles (20),
lamps (20), velocipedes (20; including bicycles, tricycles, and four-
wheeled vehicles), automobiles (10), and goblets (10). The shapes
all come from the Trimble 3D Warehouse or Princeton Shape
Benchmark. The eight categories are quite diverse in terms of the
intended functionalities of objects. Except for the goblet set, which
is a set for sanity check, each set of shapes exhibits a high degree of
geometric variability and varying degrees of structural variability.

Co-hierarchical analysis. Figure 1 shows a co-hierarchy ob-
tained for the velocipede set in its tree form, where we observe our
algorithm’s ability to find a correspondence between geometrically
dissimilar yet functionally equivalent parts across the shape set. In
Figure 8, we show similar results for other object categories. Note
however that rather than showing the co-hierarchies as trees, which
consume much space, we show hierarchical segmentation results.

Consistent hierarchical segmentation of a set of shapes is an imme-
diate application of co-hierarchical analysis and helps to visualize
the results of the analysis in a more compact form. In the figures,
each row of a matrix of shapes shows one level of the co-hierarchy.
The segmentation is obtained by collecting all the nodes of the co-
hierarchy at the given level, and labeling with the same color all the
shape parts corresponding to the collected nodes and their children.
Thus, parts in correspondence across different shapes have the same
color. The coloring is kept consistent across levels so that the bi-
nary split of each node can be followed, i.e., the first two nodes of
the hierarchy are colored red and blue; the blue node is then split
into blue and green at the next level, and so on. The segmentations
for all the sets can be found in the supplementary material.

As shown in the figures, the structural similarities of the sets are
revealed by the higher-level nodes in the co-hierarchy, despite of
the significant structural variability, especially at the finer scales,

among the individual shapes. We observe that the most common
functional parts are represented by higher-level nodes, while less
common parts, at finer scales of the objects, are represented by
lower-level nodes. For example, the airplane wings and rudder are
common structures and appear at the first two levels, while the en-
gines are less common and appear at deeper levels. Similarly hap-
pens for velocipede wheels (common) and handlebars (less similar
across the shapes, appearing at deeper levels). Moreover, since we
emphasize more on spatial arrangement of the shape parts than their
individual geometry, our method is almost oblivious to anisotropic
part scaling, e.g., lamp shades and chair legs of different heights.

We observe from the results that our hierarchies are typically com-
posed of two or three levels at most, with up to seven binary splits,
although the shapes can be further decomposed. This is the case
since on one hand, symmetry groups are not broken by our tree
decompositions, implying shallow trees for most shapes. More
importantly, the algorithm finds representatives that are similar to
most of the other trees in a cluster. This similarity typically oc-
curs at the coarser levels of the trees, and therefore the constructed
co-hierarchies also reflect this level of similarity.

Figure 9 shows a result from co-analyzing a small chair set where
more levels in the co-hierarchy were obtained. In this case, we
allow symmetry groups to be broken and the chairs share the com-
mon, deeper hierarchical part structure. This small example demon-
strates our algorithm’s ability to perform fine-grained analysis as
long as the data supports the result.

Figure 8 also shows that failure cases are present: the last model in
the airplane, chair, candle, and lamp sets. These failure cases can
be attributed in part to inadequate sampling (chair and lamp) and in
part to our node-to-node distance (plane and candle) being imper-
fect in handling the many different functional structures that appear
in the sets. Designing a general structural distance is a difficult
problem, especially when the goal is to apply it to the understand-
ing of the functionality of highly diverse shape collections across
different categories. Moreover, the problem is intrinsically chal-
lenging as we perform such an analysis without any supervision.

Diverse sets. Although our tree distance is based on the sim-
ple concept of examining the configurations of bounding boxes, we
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Figure 9: Five-level hierarchical segmentations of a small set of
chair models, resulting from co-hierarchical analysis.

observe that the co-hierarchical analysis performs well on diverse
datasets. Figure 10 shows an example of the embedding and cluster-
ing obtained by our method on the highly varied set of velocipedes.
We observe that shapes that are structurally similar tend to become
part of the same cluster. Moreover, in the supplementary material,
we show that the cluster-and-select also has the potential of han-
dling mixed sets composed of more than one category of shapes
(e.g., chairs + lamps + airplanes + goblets), which is beyond the
capability of existing co-segmentation algorithms.

Iterative improvement. Now we look closely at each step of our
analysis algorithm and show that the structural similarity between
the chosen representatives improves via the iterative approach. Be-
fore that however, we first show that maximizing structural simi-
larity over the whole set (i.e., with only a single cluster) produces

Figure 10: Embedding and clustering of the velocipedes obtained
with the cluster-and-select scheme. Shapes that are structurally
similar tend to be in the same cluster.

undesirable results. This alternative objective can be stated as

min

n∑
i=1

n∑
j=1

|Hi|∑
k=1

|Hj |∑
l=1

xikxjlDt(hik, hjl), s. t.
|Hi|∑
k=1

xik = 1,∀i,

where xik indicates whether hierarchy k for shape i is selected.
The constraint to which the optimization is subject ensures that we
select a single hierarchy per shape, while the objective is to mini-
mize the pairwise tree-to-tree distances among selected trees. This
is a binary quadratic optimization program since for a selection we
require xik ∈ {0, 1}. To optimize this objective, we solve the con-
tinuous case and then discretize the solution.

In Figure 11, we plot the mutual similarity score obtained for dif-
ferent representative selection results. It is evident that the iterative
approach improves the score and having a single cluster is unde-
sirable when there is variability in the set. The mutual similarity
score is defined as the inverse of the sum of pairwise tree-to-tree
distances between all the selected trees.

Co-analysis vs. per-shape hierarchy. We also confirm the ad-
vantage of analyzing a set of shapes by comparing the hierarchies
selected by our co-analysis for a set of velocipedes to the hierar-
chies computed individually for each shape with the symmetry hi-
erarchy construction of Wang et al. [2011]. As shown in Figure 12,
there is clearly not much commonality among the individually-
generated trees. Thus, building a co-hierarchy from these trees
would result in a structure without meaningful correspondences
across shape parts, as opposed to our co-hierarchical analysis which
has been developed to address this task.

Statistics and timing. The number of parts per shape in our
dataset ranges from 3 (e.g., goblets) to 20 (e.g., velocipedes). We
always take 20 samples via FPS to form the initial set of candi-
dates per shape; note that there can be repetition in the samples if
the shapes have a simple structure, e.g., goblets. The iterative al-
gorithm typically terminates after 3 to 5 iterations. The most time
consuming part of the algorithm is the initial sampling. It can take
from a few minutes for sets with a few parts (e.g., lamps) to a cou-
ple of hours on sets with richer part composition (e.g., velocipedes).
The iterative representative co-selection takes on the order of min-
utes, since the main task involves the computation of all pairwise
tree-to-tree distances to perform the clustering. The resampling, al-
though also based on a top-down sampling, takes on the order of
minutes since only a single tree needs to be constructed per sample.

9 Conclusion, discussion, and future work

We present an algorithm for co-hierarchical analysis of a set of
shapes. The key contribution lies in combining a hierarchical shape
representation and co-analysis to counter the significant geomet-
ric and finer-level structural variability present in the set of shapes.
Hierarchical shape representations emphasize more on higher-level
structures than finer-scale geometric or structural details. By ex-
ploiting knowledge gained from a set, our algorithm offers an ef-
fective means to resolve the ambiguity in choosing the right struc-
tural representation for each shape. We have shown that it allows
to establish correspondences between geometrically dissimilar yet
functionally equivalent part assemblies across the set.

High-level vs. low-level analysis. Like many recent works, we
focus on the challenge of high-level shape analysis that is built on
top of shape segmentations computed by state-of-the-art methods.
While results from the latter are not yet perfect, works on low-
level shape segmentations, e.g., [Shamir 2008; Golovinskiy and
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Figure 11: Improvements on mutual structural similarity (vertical
axis), as well as consistency of the tree representatives (insets), over
iterative cluster-and-select. Each inset shows a subset of tree repre-
sentatives selected, but for compactness, only the second level of the
trees, in the form of a segmentation, is depicted. The first data point
corresponds to the result by maximization over the whole set, i.e.,
without cluster analysis. The second data point is after applying
the cluster-and-select, while the third data point is after resampling
and then the second iteration of cluster-and-select.

Funkhouser 2008; Kalogerakis et al. 2010; Huang et al. 2011],
have matured over the years. The two lines of research complement
each other. Instead of starting with fixed segmentations, we could
work directly on over-segmentations of the input shapes and jointly
optimize low-level shape segmentations and structural hierarchies.
The joint optimization amounts to a search for hierarchical decom-
positions into more primitive shape parts (the over-segmentation).
While the current algorithmic framework still remains intact, the
search complexity would increase dramatically.

Binary decomposition. Our work is limited to producing recur-
sive binary shape decompositions, which may be unnatural in some
cases. Expanding the search to multi-way decompositions also in-
creases the search complexity. By performing a co-analysis how-
ever, the restrictive nature of binary tree representations is com-
pensated by having consistency of the hierarchies across the set —
functionally meaningful part correspondence is maintained.

Ground truths for hierarchical analysis. We believe that hu-
man perception of hierarchical structural organizations is poten-
tially less agreeable than that of (flat) shape segmentations. For ex-
ample, there is probably little disagreement on how a human model
should be segmented into its parts, but people’s interpretations may
very well vary on how the parts should be organized into a tree, es-
pecially a binary tree. Hence care needs to be taken when collecting
ground truth data and executing a supervised approach; we leave
such investigations to future work. Our unsupervised co-analysis
does not claim to produce the best structural hierarchy when judged
subjectively. Instead, it returns one good structural interpretation,
while ensuring consistency across a set of shapes.

Tree sampling. The major performance bottleneck turns out to
be the sampling step. With significant diversity in the functional
properties of the different classes of shapes, it is difficult to find
a generic set of criteria for defining a “good” structural decompo-
sition. Balanced volume partitioning, compactness of the decom-
posed components, or objectives for graph cut optimization were
all tested but being purely geometric, none performed satisfactorily
over all object categories. We eventually resorted to FPS, which
was shown to be effective, but at the expense of having to consider
a very large sample space. Random sampling works since the set of
shapes are expected to share structural similarity, which is reflected

Figure 12: Comparing our co-hierarchical analysis (left) to the
symmetry hierarchy extraction of Wang et al. [2011] (right). The
results from the individual hierarchy construction are obviously in-
consistent across shapes in the set (small parts resulting from the
construction are highlighted to draw attention).

on the more meaningful hierarchies. Less meaningful hierarchies,
even if produced by FPS, are unlikely to be selected by the algo-
rithm either at the cluster-and-select or the resampling step.

Other limitations. There are a few other limitations to add to the
list discussed so far. While the algorithmic framework outlined in
our work is sufficiently general to work with different forms of per-
shape hierarchical trees, currently, our structural trees are sampled
only in terms of how the part assemblies are organized. To allow
both symmetry groupings and part assemblies to be sampled would
require an extended node-to-node distance. Our current node-to-
node distance is defined using axis-aligned bounding boxes, which
is somewhat restrictive. It is most appropriate for man-made shapes
without part articulation. Designing more general node-to-node
distances and criteria for tree sampling both point to functional
shape analysis. The general question is how to design functional de-
scriptors, rather than shape or geometry descriptors, which most ef-
fectively characterize the functionality of shape parts; this deserves
an independent investigation.

Future work. We plan to explore various ways to extend the cur-
rent optimization framework, including joint optimization of low-
level segmentations and structural co-hierarchies, as well as inter-
active solutions such as active learning [Wang et al. 2012]. Also,
we have only explored the use of basic cluster analysis tools. More
advanced options for clustering or determining the number of clus-
ters may yield improved results. Finally, we would like to estab-
lish a large dataset with hierarchically defined semantic labels. The
dataset will allow more comprehensive evaluation of hierarchical
shape analysis schemes and serve as training data for supervised
learning of hierarchical shape models.

We regard our work as only an initial step in the direction of hier-
archical structural analysis. The general goal is to provide a bridge
between low-level geometric details of a shape and a deeper un-
derstanding of the shape’s functionality and semantics. We believe
that research on shape analysis in computer graphics has much to
gain towards learning and utilizing hierarchical models. This would
parallel the recent renewed interests in hierarchical models in com-
puter vision [Sudderth et al. 2005; Wolf et al. 2006] and machine
learning research [Rose and Karnowski 2010].
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