
Eurographics Workshop on Visual Computing for Biology and Medicine (2014)
I. Viola, K. Bühler, and T. Ropinski (Editors)

Inlier Detection in Thermal Sensitive Images

E. Zadicario1,2, N. Carmi2, T. Ju3 and D. Cohen-Or1

1Tel Aviv University, Israel
2InSightec Ltd, Israel

3 Washington University in St. Louis, USA

Abstract
Image guidance of medical procedures may use thermal images to monitor a treatment. Analysis of the thermal
images by the physician may be time consuming and confusing because the thermal image includes multiple out-
liers. We present a novel inlier detection method for thermal images that results in reliable thermal information to
support medical decision making. Outliers in thermal images are particularly challenging to detect using conven-
tional methods, because they are significantly more abundant than inliers and, like inliers, they may be temporally
consistent. Our inlier detection method is physically-based: it is motivated by the fact that heat propagation in soft
tissues can be modeled using the bio-heat equation. Pixels are classified as inliers only if the temperature pattern
in a spatial and temporal neighborhood strongly correlates with the physical model. For improved robustness, the
correlation process includes a 2D filter in the spatial domain and a 3D filter in both spatial and temporal domains.
Experiments with real data have shown that our method produces results that agree with annotations provided by
human experts even in outlier-laden images. Our results show inliers can be detected leaving true heat pixels for
the physician to observe, while not overloading him with the need to analyze outliers. The technique has been
integrated in a true clinical environment and is being used to aid physicians in analysis of thermal images

Categories and Subject Descriptors (according to ACM CCS): I.4 IMAGE PROCESSING AND COMPUTER VI-
SION [Computer Graphics]: Image processing software—

1. Introduction

Digital imaging has grown to be an integrated tool in mod-
ern medicine. It enabled the development of Image Guided
Therapy, a field that advanced medicine and significantly im-
proved healthcare. An emerging method of therapy is by ap-
plying heat to a target tissue using High-Intensity Focused
Ultrasound (HIFU). Above a threshold temperature a dis-
eased tissue can be destroyed. The procedure is guided by
Magnetic Resonance Imaging (MRI), which allows visual-
ization of the tissue in a non-invasive manner and can also
detect changes of temperature of the tissue. This combina-
tion of anatomical and thermal visualization provides a pow-
erful monitor for surgeons to identify and treat tissue with
real time feedback.

Unfortunately, due to limitations of MRI imaging, such
as sensitivity to tissue movements (e.g., flow in vascular
structures) and insensitivity to particular tissue types (e.g.,
bones), MRI thermal images are often abundant in regions
where the measurement do not reflect a true temperature

rise. If undetected, these outliers could significantly degrade
treatment outcome.

Removing outliers in MRI thermal images presents
unique challenges. First, the amount of outlier pixels in the
image usually significantly outweighs the inliers, which are
pixels of focal point of energy and occupy a rather tiny frac-
tion of the image data (less than 1%). Figure 1 shows an ex-
ample of a target tissue in the brain. The temperature ranges
from 37◦C (normal body temperature) to 45◦C and is col-
ored in Figure 1 (b) from blue to red. Note that there are
significant portions of the image away from the focal point
of energy (green cross in Figure 1 (a)) that exhibit a high
temperature. This is further illustrated in Figure 1 (c) where
the masked pixels have a temperature above 41◦C. Since
common statistical methods for outlier removal are effective
when the ratio of inliers over outliers is significant, these
methods cannot be applied to thermal images.

Additional challenges arise from the fact that true heat-
ing may occur anywhere in the image and is not limited to
the planned target point. The outliers in thermal images, like
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inliers, are temporally consistent. These properties make it
difficult, if not impossible, to robustly detect outliers with-
out any knowledge of the temperature behavior of inliers.

In this paper, we present a novel algorithm for inlier de-
tection in thermal images that is based on modeling the tem-
perature behavior of inliers. To the best of our knowledge,
this is one of the first inlier detection methods that is based
on a physical model. The premise of our approach is the fact
that the spatial and temporal pattern of a heat source in a
tissue is known and can be modeled.

The approach enables to automatically remove imaging
artifacts and present to the physician the true heated areas.
At the planned treatment point, the true dimensions of the
heated area are shown. The approach will not ignore true
heat even if it is away from the target, which has a lot of
safety implications in a clinical situation.

Pixels in the thermal images are determined as inliers if
the temperature behavior in a spatial and temporal neighbor-
hood correlates well with the model. Inliers may be detected
even if they are isolated and occupy an extremely small re-
gion (e.g., Figure 1 (d)). Our key technical contributions in-
clude the construction of two correlation filters based on the
spatial and temporal model of heat distribution, and an in-
lier mask that combines the filters with spatial clustering.
Our method has been integrated in a clinical system and we
demonstrate its effectiveness on several real-world data.

a) Brain anatomy b) Thermal image

c) Thermal threshold mask d) Physical model mask

Figure 1: An example of thermal ablation of the brain shows
the anatomy and its surroundings (a) next to the thermal im-
age where each pixel is colored by the measured temper-
ature value (b). A simple denoising mask detects pixels in
which the temperature crosses 41◦C degrees (c) whereas the
model-based detection mask (d) clearly shows areas where
true heat has been measured while ignoring outliers.

2. Related Work

Inlier and outlier detection techniques have been studied in
the community of statistics and data mining for decades
[Gru69]. The motivation is to detect anomalies in the data
[EAP∗02, CBK09] and to remove misleading samples from
the data for further analysis [LSJ04]. In measurement of
physical systems, excluding outliers is commonly applied
to enhance further analysis. Subjective exercise has shown
that excluding the distorted samples retrieves a more reliable
modeling of the data [HA04].

Statistical methods assume normal or other predetermined
distribution of the data points [Ros03] to identify outliers.
RANSAC is a most common technique that uses statistical
methods for the detection of outliers [FB81]. By iterative
random selection of subset of data points it retrieves those
that best fit a parametric model and excludes the outliers.
It is most effective when the portion of inliers is significant
and it provides a tradeoff between the number of iterations
and an acceptable solution. To accelerate the performance,
locally optimized versions have been suggested [CMK03].
Increasing the number of inliers near the suggested optimum
speeds up the RANSAC procedure by allowing its earlier
termination and leads to results of higher quality. The use of
statistical methods has the advantage of being unsupervised,
detecting outliers without prior knowledge of a predefined
model. However, it is inefficient if the portion of inliers is
low.

Model-based outlier detection has been suggested in sit-
uations where the nature of the measured data is known.
These are supervised methods, where prior knowledge of the
context of the data can help in outlier detection. For exam-
ple, when sampling velocity and trajectories, outliers can be
detected based on the context of the sampled data [YPSC10].
Such models screen outliers based on statistics and context
aware analysis. A context aware physical model leads to de-
tection methods that are robust even in situations where the
ratio of inliers is low.

Medical image is used to visualize a measurement of tis-
sue property or physical phenomena (e.g. CT, MRI, US,
X-Ray) [Doi05] which may include outliers. Segmentation
and automatic detection of abnormalities, such as brain tu-
mor delineation, require robust estimation and outlier detec-
tion mechanisms [FVPT12]. A parabolic model has been
used to detect outliers when tracking moving surface of
the open brain in surgical procedures [RV13]. Segmenta-
tion of arteries in ultrasound images has also been im-
proved by using a combined approach of edge detection
technique and RANSAC outlier detection to yield a robust
semi-automatic segmentation [RCS∗11]. Detection of out-
liers is used to improve segmentation of tissue structures
[LMY07, HM09], to support a robust sampling of tissue
properties [MTGM∗08] and to aid in diagnosis of clinical
anomalies [PBHG04,VLMV∗01]. The use of a known phys-
ical model can significantly enhance outliers detection.
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We are interested in medical treatments that apply heat to
destroy tissue using ultrasound, while measuring the tem-
perature using MRI [CSH∗92, JM14, HVC∗97]. The ther-
mal imaging is used to monitor the heating of the tis-
sue, to overcome tissue variability and to insure target-
ing alignment [VSJ∗00]. The effects of heat on living tis-
sue and its distribution profiles have been mapped and val-
idated with the solving of the bio-heat transfer equation
[HCH01, CP02, Nyb88, SYLK07]. These models have been
tested and validated in the living tissue [CP02]. The avail-
ability of a known physical model of the bio-heat transfer
can be applied to enhance the confidence in thermal images
by ruling out misleading information which does not reflect
true thermal measurement.

3. Background

During HIFU treatment, ultrasound energy is applied to heat
tissue in the brain through an intact skull. The ultrasound en-
ergy traverses through the scalp, the skull and healthy brain
tissue to focus the heat at the desired target location. Figure 2
depicts a diagram of the ultrasonic rays traversing through
the tissue to the target and a typical thermal image. When
the energy is being delivered, there is a need to monitor the
thermal rise of the intended target tissue. Equally important
is to observe that there is no unintended heating anywhere
else in the brain which may occur due to local tissue charac-
teristics (e.g., calcifications).

a) Ultrasonic rays b) Thermal image

Figure 2: Non-invasive ultrasound system for brain treat-
ment. (a) The ultrasonic rays traversing through the tissue
to the intended target and (b) a typical thermal image.

Thermal sensitive imaging allows real time feedback to
control medical procedures of tissue ablation. MRI scans the
target and its surrounding area to generate thermal images.
Current MRI technology is limited in temporal resolution
when acquiring 3D volumes. To overcome this we use two
dimensional scans that are taken at a temporal resolution that
can span from one to five seconds. The thermal data set for
each energy deposition cycle includes a planar image, going
through the intended focal plane, and mapping its surround-
ings at predetermined time points. The images are stacked
together over the time domain to create a three dimensional
data set.

Figure 3: A three dimensional template to estimate the spa-
tial and temporal heat distribution model.

The physical measurement is very sensitive and may be
imperfect due to tissue movement, noise and erroneous mea-
surement. As a result the set of thermal measurements often
includes some misleading outliers. It is essential to detect
the outliers in the thermal measurement to report the true
thermal effect and support reliable clinical decision making.

While the focal area of heating can be easily noticed in
thermal images, it is challenging to determine the actual ther-
mal rise in other areas of the brain and the scalp. The diffi-
culty comes from several aspects. The first is that unintended
heat may occur anywhere, thus the entire image needs to be
analyzed for heating. In addition, the actual heated region
may be tiny, so its impact on any statistical analysis (e.g.,
median) is negligible and spatial filtering may overlook true
heating.

4. Method

4.1. Overview

Our approach utilizes the fact that physical phenomena of
heat, its absorption in the tissue, and the dissipation of heat
in surrounding tissue is well modeled by the bio-heat trans-
fer equation. The model describes the spatial distribution of
temperature in the tissue and its temporal behavior over time.
When we apply this criteria to outlier detection we can de-
tect outliers that do not correspond to a physically feasible
temperature pattern.

Using the heat transfer properties of the tissue, we first
build a temperature curve that describes the temperature dis-
tributed in the volume as a function of its distance from the
heat source. Based on the known temperature curves we con-
struct a 3D template that estimates the temperature in a 2D
temperature spatial distribution and along the time domain
(see Figure 3). The template is calculated with respect to the
specific heat pattern that is applied (see Section 4.2).

Given the bio-heat template and the sampled thermal im-
ages over time, we can quantify the correlation between the
sampled data and the model. This is performed by com-
bining two correlation scores. First, we know that for ev-
ery pixel that reflects significant heat the neighboring pixels
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Figure 4: A 2D correlation template used as the spatial filter.

must have similar thermal rise since heat naturally dissipates
to its surroundings. We use the bio-heat transfer model to
create a 2D spatial filter that scores each pixel against the ex-
pected heat dissipation across the tissue (Section 4.3). Sec-
ond, to obtain additional confidence we use the 3D bio-heat
temporal model and calculate a 3D correlation score at each
pixel using its 3D neighborhood in the time dependent stack
of thermal images (Section 4.4). Inliers are then detected as
clusters of pixels with high correlation scores (Section 4.5).

4.2. Bio-Heat Model Preprocessing

The distribution model of the heat in the tissue has two com-
ponents. The first is a simulation of the focused acoustic ul-
trasound field and how its pressure field translates to heat.
The second is the bio-heat equation. It is used to describe
the dissipation of heat in the tissue and its propagation over
time. The general bio-heat equation is give by:

ρtct
∂T
∂t

+WbCb(T −Ta) = k
∂

2T
∂x2 +Q (1)

where ρt is the density, ct is the specific heat capacity of the
tissue, T is the tissue temperature, t is the time, Wb is the
perfusion rate, Cb is the specific heat capacity of blood, Ta
is the supplying arterial blood temperature, k is the thermal
conductivity of tissue, Q is the heat deposition source term
due to the acoustic field, and x is the distance from the heat
source. Solving this equation for the specific tissue profile
gives us the spatial distribution model in the tissue.

4.3. Spatial Correlation Filter

With a model of the temperature distribution around a heat
source we can detect which areas in the thermal image cor-
respond to the expected behavior. Figure 4 shows a typical
temperature distribution around the focal point.

We use the two dimensional cross correlation function to

Figure 5: Temperature profile over time for pixels around
the heat focal point.

compare each section in the sampled image. For each pixel
we get a correlation score that is defined by the following
mean square error function:

r2D =
∑

i∈M
∑

j∈N
(Di j −Ti j)2

∑
i∈M

∑
j∈N

(max(T )−Ti j)2 (2)

Here the value r2D is the correlation error, T is our template
model patch of size M×N, and D is a corresponding patch of
the same size from the thermal image. The correlation score
is 1− r2D. Examining the result, areas with high correlation
(low mean squared error values) point to the areas matching
the spatial heating behavior.

4.4. Temporal Correlation Filter

The physical model we are using describes spatial as well as
temporal heat distribution of heat in the tissue. The sampled
thermal images are also taken at different time points along
the heating process. The correlation between the model and
the sampled data in the time domain adds robustness to the
outlier detection method.

Using the bio-heat model we estimate heat profile over
time for the focal heated point and for its surroundings de-
pending on the distance from the focal heat. Figure 5 shows
an example of the temperature evolution when the energy is
applied for 20 seconds. The temperature rises through the
first 20 seconds and then the tissue cools down when the en-
ergy deposition is stopped. The peak temperature is at the
focal point of the heat and is shown in the hottest profile.
The other profiles reflect the temperature history for neigh-
boring pixels around the focal point. It can be seen that the
heat profile over time depends on the distance of the pixel
from the focal point.

With this spatial and temporal information we construct
a three dimensional template modeling the heat dissipation
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over time. Figure 3 shows an example of such a template.
Similarly, we have thermal images that are taken at multiple
discrete time points along the heating cycle, typically 6-10
images over 20-30 seconds.

The template is used to detect the potential candidate in-
lier pixels by scoring the correlation with the model in the
time domain. For this correlation scoring we use a three di-
mensional correlation error given by:

r3D =
1

MN ∑
i∈M

∑
j∈N

∑
t
[(Di jt −D)− (Ti jt −T )]2

∑
t∈T

(Ti jt −T )2 (3)

where T is a 3D template, and D is a sub-volume from the
sampled data set. Both have the size of M ×N in the 2D
spatial domain and t samples in the third time domain. T and
D are the mean values of the 3D template and sampled data
set, respectively. The temporal correlation score is (1−r3D).

4.5. Inlier Detection Mask

The final step takes the 2D spatial correlation analysis and
the 3D spatial-temporal correlation scores to generate a
physical inlier mask. We combine the scores from both parts
to obtain the most robust results. In creating the mask we
want to emphasize again the fact that a valid heat measure-
ment tends to have a specific spatial distribution. In partic-
ular, we expect that all pixels in a valid heated region will
have some correlation with the heat model and some pixel in
the region must have a high correlation value.

As a first step we combine the 2D and 3D correlation
scores for each pixel into a unified correlation map. We de-
fine a combined correlation score by multiplying the two
correlation values,

CorrMapValue(i, j) = r2D(i, j)× r3D(i, j) (4)

The score is further normalized by the maximal value in the
current image stack. Thus, we get the Normalize Correlation
Map by

NormCorrMap(i, j) =
CorrMapValue(i, j)
max(CorrMapValue)

(5)

To identify the inliers using the Normalize Correlation
Map, we apply physical concepts that are valid for our
model. First we filter out all pixels whose values of Normal-
ized Correlation Map are below a predefined Low Correla-
tion Threshold. The remaining pixels are potentially valid
inliers.

Next, we know from our model that valid inliers cannot
be isolated pixels. We therefore apply a clustering algorithm
within the potentially valid pixels to generate inlier clusters.
The brute force clustering applies high threshold to the ther-
mal map. Arround each pixel we create a mask based on
dilation technique until a low threshold value is reached. We
keep only clusters that contain some pixel with significantly

high correlation, that is, its Normalized Correlation Map
value is higher than some user-given Cluster High Thresh-
old. This final step marks the pixels that are considered as
inliers and make up the Inlier Detection Mask.

The threshold values were established by a clinical expert
using 50 training data sets. The expert was asked to mark the
valid heated area on the thermal image. An Inlier Detection
Mask was calculated for each data set. The Low Correlation
Threshold and the Cluster High Threshold were then mod-
ified until they provide maximal detection of outliers while
minimizing the cases where valid heat is classified as an out-
lier (i.e., a false positive). This is motivated by the fact that,
due to safety implications associated with missed heating,
we cannot allow cases of false positive but may tolerate some
true negative.

Figure 6 shows an example of how various thresholds im-
pact the inlier mask. It can be seen how lower thresholds
include inliers which were rejected by the clinical expert.
The final thresholds were set to 0.3 and 0.6 for the Low
correlation Threshold and Cluster High Threshold, respec-
tively. These values were kept consistent throughout the test-
ing of the data sets.The rationale for setting these thresholds
is based on the need to minimize the false positive. In such
a case true heat will be masked from the physician and may
lead to improper clinical decision.

a) Thermal Image b) Inlier Mask 0.4 0.1

c) Inlier Mask 0.5 0.2 d) Inlier Mask 0.6 0.3

Figure 6: Inlier Detection Masks with various thresholds.

5. Results

The outlier detection method, based on a physical model,
has been integrated in a clinical system that is being used
for thermal ablation using focused ultrasound. We collected
50 data sets of thermal scans taken during a thermal abla-
tion process of the brain. These data sets were different from
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a) Thermal Image c) 2D Correlation Map e) 2D Correlation histogram

b) Inlier Detection Map d) 3D Correlation Map f) 3D Correlation Histogram

Figure 7: An example of inlier detection results. The original thermal image (a) next to the Inlier Detection Mask (b) where
inlier pixels are marked in red. The 2D Correlation Map (c), the 3D Correlation Map (d), and the respective histograms for the
scores (e) and (f).

the ones used for the training set from which our threshold
values were determined (see above).

In all the cases that we are studying, the area of the true
heat occupies a tiny portion of the thermal image. Figure 7
shows an example case which is typical of the tested cases.
Figures 7 (a) and (b) show the original thermal image and
the Inlier Detection Mask, respectively. In this case only a
negligible portion of less than 1% of all pixels are inliers.
This is the main reason why a physical model is essential
to support a robust outlier detection method. Any statistical
method would be very limited in picking up such a small
subset of inliers.

This example demonstrates the importance of the two cor-
relation maps. The combination of spatial 2D correlation and
3D temporal correlation is critical to have a robust algorithm
to confirm that inlier pixels comply with both temporal and
spatial behavior of the physical model. Figures 7 (c) and (d)
show the 2D correlation and the 3D correlation maps, re-
spectively. Figures 7 (e) and (f) show histograms of the 2D
correlation and 3D correlation, respectively. In each bin we
present the number of pixels with the corresponding correla-
tion value. It can be seen that the maps are very different and
that only the combination reflects a robust view of the inliers

in the thermal image. The combination of the two filters is
the outcome mask shown in Inlier Detection Map (b).

The example in Figure 8 shows an additional benefit of
using a physical based algorithm. Although we know where
to expect the focal heating to be, one cannot exclude situa-
tions in which there is valid heat away from the target area.
This is due to the nature of the tissue and the way the ul-
trasound is applied. It is therefore important to validate that
such distant heating is detected by the algorithm. Such event
is rather rare, so there was no true case of unplanned heat-

a) Thermal Image b) Inlier Mask

Figure 8: An example of detection of distant inlier.
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a) Thermal Image b) Threshold Mask c) Inlier Detection Mask

Figure 9: An example of inlier detection results. The original thermal image (a) next to the threshold mask (b) and the Inlier
Detection mask (c) which shows a score of 0.95.

ing in our collection of clinical data sets. To test this we had
to use a simulated data that mimics this situation. To simu-
late distant heating we used a small patch of a true heating,
scaled it down and superimposed it in a distant location from
the target. Without being aware of the simulated data set, it
was analyzed by a clinical expert who marked this to be valid
heating. It can be seen in Figure 8 (b) that the distant area is
also marked as an inlier.

In addition to the expert validation, we compared our
physically based Inlier Detection Mask to a naive Threshold
Detection Mask, which is set to be 41◦C degrees. The com-
parison is done in two steps. First, we compare the number
of suggested inliers in each mask. The number of inliers in
the Inlier Detection Mask is noted by NInlier, while the num-
ber of inliers in the Threshold Detection Mask is noted by
NT hreshold . We expect NInlier to be significantly different and
smaller than NT hreshold . Thus we define the Inlier Detection
Score as the (relative) difference in the two numbers,

InlierDetectionScore =
|NT hreshold −NInlier|

NT hreshold
(6)

A score close to one implies a large difference in the in-
lier numbers. Next, we asked the clinical expert to review
whether there are any true inliers that were masked out in
the Inlier Detection Mask. These cases were considered as
failure, and we set the Inlier Detection Score of these im-
ages to zero.

Figure 9 shows an example of one of the data sets – the
original thermal image (a), the Threshold Detection Mask
(b) and the Inlier Detection Mask (c). In this case the Inlier
Detection Score is 0.95. The average score in our 50 data
sets was 0.81 with the best score being 0.97 and the lowest
0.42. There were no cases that failed due to unmasked pixels
which were classified by the clinical expert as inliers.

The run-time performance of the algorithm depends pri-
marily on the actual data set. For example, the longer the

heating process, the more thermal data there is to analyze.
The wider the field of view of interest, the larger the area that
needs to be analyzed. In general we used this approach for
analyzing heating process of 20-30 seconds and field of view
of 256×256 pixels in each frame. Under these settings the
run-time to obtain the Inlier Detection Mask ranged from
200 msec to 1100 msec on a single core PC running Win-
dows XP.

6. Conclusions

Image guided medical procedures demand reliable visual-
ization to support clinical decision making. Thermal images
are used to monitor surgeries performed with MRI-guided
focused ultrasound. The nature of the imaging technology
results in outliers that could significantly impact decision
making. Outliers in these images are particularly challenging
to detect using existing methods due to their sheer quantity
and temporal consistency. To this end, we present a novel,
physically based outlier detection method. We overcome the
challenge using a known physical model of heat propaga-
tion. Pixels are classified as inliers if the measurement in a
spatial and temporal neighborhood correlates with the phys-
ical model. Experiments with real world data show that our
method is capable of identifying small, isolated hot spots
that agree with expert markings in real-world, outlier-laden
images. While the current work focuses on thermal images
of the brain, the method can be applied to various other tis-
sues and organs by using appropriate parameters for the heat
model. In the future, we would like to explore means that
can further accelerate the computation, such as using hierar-
chical filters or parallelizing the correlation using graphics
hardware.
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