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Abstract

Decomposing a complex shape into geometrically simple primi-
tives is a fundamental problem in geometry processing. We are in-
terested in a shape decomposition problem where the simple primi-
tives sought are generalized cylinders, which are ubiquitous in both
organic forms and man-made artifacts. We introduce a quantitative
measure of cylindricity for a shape part and develop a cylindricity-
driven optimization algorithm, with a global objective function, for
generalized cylinder decomposition. As a measure of geometric
simplicity and following the minimum description length principle,
cylindricity is defined as the cost of representing a cylinder through
skeletal and cross-section profile curves. Our decomposition algo-
rithm progressively builds local to non-local cylinders, which form
over-complete covers of the input shape. The over-completeness
of the cylinder covers ensures a conservative buildup of the cylin-
drical parts, leaving the final decision on decomposition to global
optimization. We solve the global optimization by finding an exact
cover, which optimizes the global objective function. We demon-
strate results of our optimal decomposition algorithm on numerous
examples and compare with other alternatives.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations

Keywords: generalized cylinder, optimal shape decomposition

1 Introduction

Decomposing a complex shape into geometrically simple primi-
tives is one of the most fundamental problems in geometry process-
ing. The main considerations for what constitute a simple primitive
include compactness of representation, ease of manipulation, and
computational efficiency. Convexity, planarity, parameterizability,
and smoothness are some of the most well-known simplicity crite-
ria. The key challenge to shape decomposition is to improve the
trade-off between simplicity of the primitives and size of the de-
composition, with the ultimate goal being to obtain the smallest
number of sufficiently simple components.

In this paper, we are interested in a shape decomposition prob-
lem where the simple primitives sought are generalized cylinders
or GCs, for short. Cylindrical parts are ubiquitous in both organic
forms (e.g., the torsos and limbs of various creatures) and man-
made artifacts due to their versatile functionality and ease of manu-
facturing. Compared to other simplicity criteria such as convexity,
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Figure 1: Generalized cylinder decomposition obtained by our al-
gorithm (right) produces considerably fewer parts compared to ap-
proximate convex decomposition (middle).

generalized cylinder covers a much larger scope of shapes, leading
to decompositions with fewer parts and more compact shape ab-
stractions; see Figure 1. With their ease of control, arising from a
natural tie to curve skeletons, GCs are frequently adopted for shape
modeling [Zheng et al. 2011; Jacobson et al. 2014; Baerentzen et al.
2014] and interactive surface reconstruction [Li et al. 2010; Chen
et al. 2013; Yin et al. 2014].

Despite their ubiquity and importance in shape modeling, GCs
have not been well-studied in the context of shape decomposition.
We are not aware of any measure which quantifies the generality
of cylindrical primitives or any work which optimizes cylindrical
shape decomposition with a global objective. Typically, the ex-
traction of cylindrical parts from a given shape is a by-product of
skeletonization, e.g., [Au et al. 2008; Reniers et al. 2008], via prim-
itive fitting, e.g., [Raab et al. 2004; Mortara et al. 2004; Attene
et al. 2006], or based on locally-defined cut or clustering criteria,
e.g., [Tagliasacchi et al. 2009; Goyal et al. 2012].

We introduce a quantitative measure of cylindricity, for a shape part
and develop a cylindricity-driven optimization algorithm, with a
global objective function, for generalized cylinder decomposition.
The key premise behind our cylindricity definition is that cylindric-
ity is a measure of geometric simplicity. Following the minimum
description length (MDL) principle [Grunwald 2007], we equate
simplicity to low representation cost.

Specifically, we model a cylindrical shape part using its central axis,
i.e., a curve skeleton, and cross-sectional profile curves about the
skeleton. Cylindricity is defined by combining the costs of rep-
resenting the skeleton and the profiles via recursive geometric in-
terpolation, which progressively adds profile curves to refine the
interpolated surface so as to approximate the input shape to within
a prescribed tolerance. While a perfect cylinder has the minimum
representation cost since it has a straight skeleton and uniform pro-
files, more cross-sectional profiles are required for the interpolation
to well approximate a more general cylinder. In the latter case, the
simplicity of the cylinder goes down and its cylindricity increases.
Geometrically, the representation costs in the cylindricity definition
can be interpreted as measures of the straightness of the skeleton
and the variations among the profiles respectively.

Cylindricity plays a central role in our local-to-global decompo-
sition approach. Foremost, the global objective function follows
the MDL principle; it combines a cylindricity term for geometric
simplicity and a term for the size of the decomposition, reflecting
a trade-off. Cylindricity also controls the local-to-global analysis
which builds the GCs progressively. Specifically, given an input



shape, we first construct an over-complete set of local cylinders ac-
counting for all potential curve skeleton directions. The local cylin-
ders are then merged based on the cylindricity measure to produce
the set of candidate GCs in varying lengths. The candidate set forms
an over-complete cover of the input shape, where any exact sub-
cover is precisely a decomposition of the shape. We solve an Exact
Cover Problem (ECP) [Vazirani 2001] by efficiently enumerating
its solutions using Knuth’s Algorithm X [Knuth 2000]. Finally, we
pick the top ECP solution based on our objective function to obtain
an optimal decomposition.

Compared to classical approaches such as clustering and recursive
partitioning, the ECP solution represents a relatively unexplored al-
ternative to solve hard shape decomposition problems [Hu et al.
2014]. Maintaining an over-complete cover until the final global
optimization step avoids making potentially premature, local deci-
sions too early. Moreover, enumerating the ECP solutions allows a
larger set of decompositions to be explored, which can be beneficial
in a variety of global optimization settings.

We show results of our algorithm on numerous examples and com-
pare to those obtained by convex decomposition, primitive fitting,
profile clustering, and skeleton-driven segmentation, to demon-
strate the advantages of using the global cylindricity-driven search.
A first example is shown in Figure 1, where we compare our method
to approximate convex decomposition. Several applications which
benefit from our optimal decomposition, including curve skeleton
extraction, shape approximation and modeling, are also shown. In
particular, we highlight the versatility and representation capability
of the skeleton+profile shape approximation enabled by our decom-
position, compared to quadric mesh simplification and the recently
proposed sphere-mesh representations [Thiery et al. 2013].

2 Related work

Shape decomposition is a well-studied problem with extensive sur-
veys, e.g., [Chazelle 1987; Shamir 2008]. Many methods are de-
signed to compute meaningful segmentations based on shape se-
mantics, e.g., the minima rule [Hoffman and Richards 1984], en-
gineering constraints [Li et al. 2011], Reeb graphs [Biasotti et al.
2008], or those learned from training data [Kalogerakis et al.
2010]. Our work has a different focus: instead of taking a data- or
knowledge-driven approach, our goal is to decompose a shape into
geometrically simple primitives. In this section, we mainly cover
methods guided by purely geometric criteria.

Planarity [Cohen-Steiner et al. 2004], parameterizability [Sander
et al. 2003] and smoothness [Mangan and Whitaker 1999] are well-
known simplicity criteria for surface primitives. For solid primi-
tives, convexity [Lien and Amato 2004; Asafi et al. 2013] is most
often employed; other criteria include ellipticity [Simari and Singh
2005], volumetric thickness [Shapira et al. 2008], and pyramidal-
ity [Hu et al. 2014]. While GCs are solid primitives, our algorithm
operates over the surfaces of a 3D object.

Convex decomposition. Cognitive studies have revealed that
the human visual system tends to divide a 3D shape into parts
around concave regions [Hoffman and Richards 1984], implying
that the resulting parts are likely to be nearly convex. Many
methods have been developed for convex shape decompositions,
e.g., [Lien and Amato 2004; Ren et al. 2011; Asafi et al. 2013; van
Kaick et al. 2014]. However, one may question whether convexity
is too “low-level” as a simplicity criterion, which would result in
over-segmentation, as shown in Figure 1 the classical example of
the monkey tail. Our work offers GCs as an alternative. The result-
ing decomposition algorithm would not divide a bendy tail yet it is
still sensitive to constriction points, just as convexity would, due to

the consideration of smoothness of profile transitions in cylindric-
ity; see Figure 3 for an illustration.

Primitive fitting. There are decomposition methods which fit el-
liptical [Simari and Singh 2005], cylindrical (straight and bead-like
cylinders) [Raab et al. 2004], or other simple primitives [Attene
et al. 2006] to a given 3D shape. Common to most primitive fitting
methods is the simplicity of the parametric representations of the
primitives considered. GCs do not possess such simplicity due to
their generality. As such, the resulting decomposition criterion is
higher-level and typically results in fewer parts.

Skeleton-based segmentation. A connection between GCs and
curve skeletons clearly exists. For example, one can obtain a de-
composition as a by-product of curve skeleton extraction [Au et al.
2008; Reniers et al. 2008; Tagliasacchi et al. 2012]. Early work
by Li et al. [2001] carries out a planar cross-section sweep along
extracted curve skeletons to find locations, referred to as critical
points, where the geometry and/or topology of the cross-sectional
profiles changes dramatically. Reniers et al. [2008] develop a multi-
scale skeleton extraction method, which is based on a global im-
portance measure and can yield shape segmentations using the
skeleton-to-boundary mapping. Similarly, Au et al. [2008] and
Zheng et al. [2011] extract GCs by examining thicknesses about ex-
tracted curve skeletons and find cuts based on concavity and length
of cut boundaries. Other multi-scale skeleton extraction methods
include [Miklos et al. 2010] and [Jalba et al. 2015].

Cross-sectional shape profiles also play an important role in our
work. However, the key difference is that we obtain the final set of
GCs by solving a global optimization, rather than relying on local
cut criteria as in previous works. Moreover, with over-complete
GC covers, we consider multiple skeleton directions over any part
of the shape. Our cylindricity measure tolerates more general cross-
sectional profiles and leads to GCs with more diverse geometries.

Generalized cylinders. Some previous works had considered
GCs for shape decomposition and reconstruction. Mortara et
al. [2004] define a tubular region over a 3D shape as one which in-
tersects a suitable sized sphere in two closed curves. Their tube con-
struction is via a seeded region growing with heuristically set sphere
positions and radii. Several surface reconstruction schemes have
been developed to extract GCs from raw point clouds based on ap-
proximate rotational symmetry detection [Tagliasacchi et al. 2009],
deformable snakes [Li et al. 2010], or interactive sweeps [Chen
et al. 2013; Yin et al. 2014]. None of the works above account for
cylindricity of the cylindrical parts obtained, nor do they formulate
for or seek an optimal GC decomposition.

More relevant is the work of Goyal et al. [2012] for GC decompo-
sition, which performs an affinity propagation clustering of cross-
sectional slices. The key difference is that their clustering scheme is
based on a pairwise profile similarity, which serves as the only mea-
sure that reflects the goal of finding cylindrical parts. Such schemes
essentially group similar profiles based on a local criterion without
using a quality measure for the GCs obtained.

Since GCs are intrinsic symmetric shapes, our approach is also re-
lated to methods for decomposing shapes into segments with ap-
proximate intrinsic symmetries [Solomon et al. 2011]. Neverthe-
less, a general shape often has more than one intrinsic rotational
symmetry, which leads to multiple possible decompositions. Our
key novelty is to respect all possible local symmetries and select
the ones that may yield the best global decomposition through op-
timizing the cylindricity measure.

Optimizing decompositions. Among the large number of meth-
ods for shape decomposition, only a relatively few define explicit
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Figure 2: Illustration of the DP algorithm used to measure the straightness score Es in (2). The skeletal curve is iteratively approximated
using a polyline and Es measures how much the polyline differs from a straight line.

optimization objectives. Some provide a variational formulation,
e.g., [Cohen-Steiner et al. 2004], some minimize part count under a
tolerance, e.g., [Ren et al. 2011], while others seek a good trade-
off between part count and another application-dependent cost,
e.g., [Asafi et al. 2013; Hu et al. 2014].

Clustering seems to be the most popular optimization strategy.
Cohen-Steiner et al. [2004] solves their variational problem via k-
means clustering. Other examples include fuzzy clustering [Katz
and Tal 2003] and mean-shift [Shamir et al. 2006]. Most instances
of the optimal shape decomposition problems e.g., k-means, are
NP-hard. Hence, enumerative solutions such as branch-and-bound,
e.g., as in [Ren et al. 2011], and Algorithm X, e.g., as in [Hu et al.
2014], are sensible choices. Our ECP solution is inspired by a sim-
ilar solution pipeline in Hu et al. [2014], which seeks an optimal
approximate pyramidal decomposition. In their work, the cells and
blocks, which are counterparts to our local GCs, form partitions,
rather than over-complete covers, of the input shape.

Shape approximation. One of the main benefits of obtaining
an optimal decomposition for a 3D shape is the resulting compact
skeleton+profile shape representation. The representation not only
offers the ease for shape manipulation but also provides a means for
progressive shape approximation. From the perspective of shape
approximation, our work shares the same motivation as classical
mesh decimation, e.g., [Garland and Heckbert 1997], and the re-
cent sphere-mesh representation [Thiery et al. 2013]. While the
latter two approaches linearly interpolate over mesh vertices or
spheres for approximation, the skeleton+profile representation re-
lies on higher-order interpolations over profile curves to approx-
imate cylindrical shapes, where the profile curves themselves are
constructed via interpolation over point primitives.

3 Cylindricity measure

The cylindricity measure plays a central role in our method. Gen-
erally speaking, it measures the simplicity of a GC in MDL terms.
Our premise is that a right (perfect) cylinder is a low-entropy shape
due to its very compact description (a 2D profile curve plus height).
With a right cylinder serving as a role model, the cylindricity aims
to measure the amount of additional information needed to describe
a given shape. In this regard, the development of the cylindricity
measure is similar to that of circularity [Zunic et al. 2010] and con-
vexity [Zunic and Rosin 2004], as they aim to quantify how much
a closed curve departs from a circle or a convex figure.

In the following section, we develop a quantitative measure for how
much a given shape departs from a right cylinder. It measures the
simplicity of a GC by approximating its minimal descriptive cost.
The key idea is to model or describe the GC with a curve skeleton,
and a minimal set of cross-sectional profiles along its central axis.

Then, intuitively, the (MDL) cost entailed with such a description
of the shape is the cylindricity measure.

Our proposed cylindricity measure is conceptually simple, and con-
sists of only two terms, straightness and profile variation:

cylindricity = Es + ↵Ev. (1)

The straightness term Es measures how much the central axis of
the given shape differs from a straight line, and the profile variation
term Ev measures how much the profile of the given shape varies
along its axis. The weighting parameter ↵ is set to 1 by default.

The straightness term. As shown in Figure 2, given an axis
curve, the Douglas-Peucker algorithm [1973] is used to compute its
polyline approximation. We first approximate the axis curve with a
straight line that connects its start point ps and end point pe. The
point p1 along the curve that has the maximum distance to the line
pspe is then located. If this distance d1 is larger than a given thresh-
old ✏, p1 is inserted as a control point, breaking the original straight
line pspe into a polyline psp1pe; see Figure 3. The process is re-
peated until no point on the curve can be found with its distance to
the polyline larger than the (default) threshold ✏ = 0.005. Once the
process stops, the straightness is computed using:

Es(n) = C +

nX

i=1

di, (2)

where n is the number of control points inserted and C is a con-
stant parameter. Larger C encourages long polyline axis, whereas
smaller C encourages breaking the axis into multiple short ones.
For example, if a given axis has a straightness score of E, then af-
ter breaking it into two parts at its first control point location p1, the
total straightness score of these two parts is equal to E � d1 + C,
which may increase or decrease by adjusting C. We can regard C
as the description length needed for encoding the two endpoints,
and each distance di as the description length needed for adding
the corresponding control point.

Figure 4(a) plots how Es(n) varies as the number of control points
n increases. It shows that after the first few control points are in-
serted (n = 11 in this case), increasing n either directly or indi-
rectly through adjusting the threshold ✏ does not affect the value of
Es(n) much. Hence, we consider that the Es(n) measure is robust
against sampling rate requirement.

The profile variation term. This term measures how much the
profiles of the given shape varies along its axis. To compute the
measure, we generate a set of dense and uniformly spaced profile
curves; see the gray curves in Figure 3. This is done by sampling
the central axis of the shape using a set of dense points {si}, and
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Figure 4: Straightness (a) and profile variation (b) scores w.r.t. the
number of control points and control profiles, respectively.

computing a profile curve ci at each si by intersecting the shape
with a plane that is perpendicular to the central axis at si. Next, we
rectify the shape by transforming all the profile curves so that they
reside on parallel planes and their centroids rest on a straight line.
Equal number of 2D points {cki } are then used to uniformly sample
each profile curve ci on its plane.

With all the profiles being aligned and sampled with points, the
difference between any given two profiles ci and cj is calculated
using their Hausdorff distance as shown in the Figure 3 insets:

D(ci, cj) = max{max

k
(min

h
d(cki , c

h
j )), max

h
(min

k
d(chi , c

k
j ))}.

(3)

Furthermore, connecting the matching sample points on two end
profiles cs and ce provides a 3D approximated shape that linearly
interpolates the two profiles. Here, the optimal match is computed
under the ordering constraint, i.e., cks matches to ck+m

e for all point
k. The constant index offset m is computed by minimizing the
distortion between the profile cs to ce.

Once the approximated shape is computed, the profile on the orig-
inal shape that deviates from the approximated shape the most in
terms of the aforementioned profile distance measure (3) is then se-
lected; see Figure 3. Following the spirit of the Douglas-Peucker
algorithm, if the distance is larger than a given threshold ✏, a new
control profile f1 is selected at the location s1 and a new approxi-
mated shape is obtained by linearly interpolating cs with f1 and f1
with ce. The process repeats until the distances between all profiles
and their corresponding approximations are small enough, i.e., be-
low ✏. At this point, the profile variation term is computed using:

Ev(m) = D(cs, ce) +
mX

i=1

D(fi, f
0
i), (4)

where m is the number of control profiles and f 0
i (blue curve in

Figure 3) is the corresponding approximation curve for control pro-

file fi (red curve in Figure 3). Again, from an MDL point of view,
D(cs, ce) is the description length needed for encoding the profile
variation between the two end profiles. Each D(fi, f

0
i) is the de-

scription length needed for encoding each control profile fi.

Note that the same as the straightness Es(n), the profile variation
Ev(m) is independent of scale and performs robustly as the number
of control profiles m increases; see Figure 4(b). This makes our
cylindricity measure (1) sampling independent.

4 Decomposition algorithm

As shown in Figure 5, our shape decomposition algorithm contains
three major steps. Given a 3D shape S, we start with computing a
large set of local GCs. We then merge local GCs into non-local ones
that form an over-complete cover for S. At the last step, we solve
the exact cover problem (ECP) to explore various combinations of
non-local GCs and pick the globally optimal one as the decompo-
sition of S. Throughout the algorithm, the cylindricity measure
evaluates the qualities of both local and non-local GCs, as well as
the final shape decomposition.

Overlapping local GCs. To compute a set of local GCs for input
shape S, we uniformly sample the surface of S into a set of points
⌦ and construct one or more local GCs for each point sample. A
local GC is defined by an axis and a small set of profile curves
that are generated by intersecting S with the cross-section planes
orthogonal to the axis. To compute candidate local axes for p, we
use the ROSA technique [Tagliasacchi et al. 2009]. Starting with
a random initial cutting plane that passes p, a profile curve can be
calculated and an updated cutting plane can be obtained based on
the surface normals along that profile curve. The process continues
with the updated cutting plane, until it converges into a stable ROSA
plane. The normal direction of this plane is the local rotational
symmetry axis (ROSA), which is used as the axis of local GC. For
a circular cylinder, different initial cutting planes converge to the
same ROSA plane. However when S is a general shape, different
ROSA planes may be obtained [Tagliasacchi et al. 2009]. This non-
uniqueness introduces ambiguities in evaluating the cylindricity of
S in the vicinity of p, since different approaches can be used to
approximate S with GCs; see Figure 6.

Resolving ambiguities using only local information is likely to be
premature and harmful; see Figure 7. Hence, we define a multiplic-
ity of ROSA planes to generate a number of overlapping local GCs.
To do so, 24 initial cutting planes with a fair distribution over the
Gaussian sphere are used. The ROSA directions that these planes
converge to form a set of potential GCs at sample p. The quality
of each of these potential GCs is evaluated using the cylindricity
measure (1), and only the GCs with cylindricity values smaller than



(a) Input. (b) 196 local GCs. (c) 16 non-local GCs. (d) 116 candidate GCs for ECP. (e) Final decomposition.

Figure 5: Our decomposition algorithm overview: given a shape (a), we first compute its local GC set (b), and then merge the local GCs into
fewer overlapping non-local GCs (c) that form an over-complete cover for the shape (a). The final decomposition (e) is obtained by solving
the exact cover problem from various candidate GC combinations (d) of non-local GCs (b).

(a) Two ROSA directions. (b) GC-appro 1. (c) GC-appro 2.

Figure 6: Two approximations to a toothpick box model using GCs.

a threshold ⌧ (set to 0.15 by default) are kept. Hence, the local GCs
may not cover the input shape completely. As shown in Figure 7(a),
due to surface deformation at areas near joints (dark gray), the local
GCs found there often have high cylindricity values, resulting them
being pruned out.

Over-complete shape cover using non-local GCs. To create
the candidate GCs for the cover, we merge local GCs into non-local
ones, which form an over-complete cover of the input shape S. The
merging is driven by the cylindricity measure, where two GCs are
merged iff. the resulting GC has a lower cylindricity measure than
their sum. That is:

cylindricity(A�B) < cylindricity(A) + cylindricity(B),
(5)

where A and B can be either local GCs or non-local GCs obtained
from the previous merging operation, and A � B represents the
non-local GC obtained after merging A and B.

To calculate the cylindricity of A�B, we need to first determine its
axis curve. We use the axis end points in A and B as key points and
connect them using a piece-wise Hermite curve, whose tangential
directions at these key points are aligned with the corresponding
GC directions. As shown in Figure 8, when the orientations of both
A and B are lined up with the A�B, the Hermite curve can closely
approximate its curve skeleton. On the other hand, when the orien-
tations of the two are not compatible, the Hermite curve contains
sharp turns, e.g., in Figure 8 bottom row, the angular changes along
the curve greater than 90

0. Merging incompatible curves induces
a high cylindricity measure for A � B and resulting in the merge
being rejected. Figure 5(c) illustrates that after merging we can get
only a dozen non-local GCs.

The non-local GCs may overlap or intersect each other. However,
the decomposition target is to decompose parts that do not over-
lap. Thus, the non-local GCs are split into non-overlapping building

blocks, which cover the shape S. More precisely, for any two non-
local GCs A and B, we test if they overlap by computing A \ B.
When the area of A \ B is small enough, we simply retract both
A and B to avoid overlapping. Otherwise, we split A and B into
three portions: A�B, B �A and A \B. Two new GCs are con-
structed for A � B and B � A using the axis directions of A and
B, respectively. A third GC is constructed for A \ B if the axis of
A and B are the same at A \ B area. Otherwise, two overlapping
GCs are constructed for A \ B, using the axis directions of A and
B, respectively. Such intersection calculations allow regions with
ambiguous GC orientations being separated from the rest. For ex-
ample, the flat areas of the parking sign in Figure 5 has ambiguous
GC orientations, whereas the tubular areas are not. Intersection cal-
culation splits the two areas, which can hardly be achieved using
conventional shape decomposition methods.

As shown in Figures 7(a-b), when joints are not covered in local
GCs, they are still uncovered in the merged non-local GCs. To guar-
antee a full cover, we utilize the smoothness constraint and compute
the candidate axes through interpolate Hermite curves between the
axes of adjacent GCs. For example, at an X-shaped joint, there are
six different ways of connecting the adjacent GCs, for which we
generate six joint GCs as shown in Figure 7(c). These joint GCs
cover the same (dark gray) region with different central axes, hence
bridging among adjacent non-local GCs.

Candidate GCs for ECP. The non-local GCs obtained above,
now consisting of a sequence of building blocks, form a set of
candidates for the decomposition of S. Instead of directly solving
a global optimization problem for decomposition, which is likely
computationally complex and expensive, we reduce it into an Exact
Cover Problem (ECP). An exact cover can be extracted from the
over-complete cover C provided by the candidate GCs. Each ex-
act cover is a subcover of C which completely covers S. That is,
an exact cover is precisely a decomposition of S. In particular, we
look for the subcover Cs that minimizes the following objective:

Cs = argmin

Cs⇢C

X

g2Cs

cylindricity(g), s.t.
[

g2Cs

g = S. (6)

In theory, any random subset of the non-local GCs generated from
the aforementioned merging process can be a candidate GC. How-
ever, some of these subsets may contain disconnected GCs and
some others may contain adjacent but incompatible GCs. Consid-
ering these subsets when optimizing (6) will introduce redundant
calculations. Hence, here we only generate candidate GCs using
the following criteria: i) Each of the non-local GCs generated from
the aforementioned merging process is a candidate GC; ii) a group



(a) 143 local. (b) 7 non-local. (c) 6 joint GCs for each joint (d) Candidate GCs. (e) Our decomposi-
tion.

(f) Greedy search.

Figure 7: Merge 143 local GCs (a) of a Gecko model into 7 non-local GCs (b) using the criterion defined in (5). Note that the two X-
shaped joints (dark gray) are not covered in both (a) and (b). To cover them, we set up six different ways of connecting adjacent GCs
(c). A set of candidate GCs (d) are then computed using the 7 non-local GCs and 12 joint GCs to find the global optimal exact cover, i.e.,
our decomposition (e). In comparison, a greedy search would pick the first joint GC in (c) out of the 6 choices, resulting a suboptimal
decomposition (f).

Figure 8: Illustration of the local GC merging criteria for the shape
shown in Figure 5.

of adjacent non-local GCs and the joint GCs in between can form a
single candidate GC; iii) a joint GC cannot be a candidate by itself
since it needs to be attached to one or more adjacent non-local GCs.

With the candidate GC set generated, where each covers a portion
of the shape S, we employ Knuths Algorithm X [Knuth 2000] to ef-
ficiently enumerate all solutions to ECP, while sorting the solutions
according to their cylindricity values. Each solution corresponds to
a decomposition for S and the best one is picked based on the above

Figure 9: Increasing, |⌦|, the number of sample points on the input
shape, allows finer-scale cylindrical structures to be extracted by
the optimization algorithm. Left: |⌦| = 100; middle: |⌦| = 500;
right: |⌦| = 1, 500.

Figure 10: Impact of parameter ⌧ . Left: setting ⌧ = 0.12 leads
to 118 local GCs, which are merged into 10 non-local GCs. Right:
with ⌧ = 0.25, 196 local and 6 non-local GCs are formed. The
results under ⌧ = 0.15 are shown in Figure 7. Although having
different numbers of local GCs and non-local GCs, the final de-
compositions under all three ⌧ values are the same.

objective (6); see Figures 5(d-e) and Figures 7(d-e). In comparison,
the decomposition result shown in Figure 7(f) demonstrates that
when multiple overlapping GCs are covering the same region, se-
lecting the GC with lowest cylindricity value in a local and greedy
manner leads to a globally suboptimal decomposition.

5 Results

In this section, we show results of our decomposition algorithm,
present applications, and evaluate and compare our approach to
other alternatives. We mainly demonstrate advantages afforded by
the global solutions we obtain, as well as robustness and utility of-
fered by the cylindricity measure and the resulting decomposition.

5.1 Decomposition results and applications

Parameters. Our decomposition algorithm has four tunable pa-
rameters: the description length C, weight ↵ between the two terms



Figure 13: A gallery of decomposition results obtained by our decomposition algorithm, all with the same parameter setting.

(a) C = 0.1; 8 parts. (b) C = 0.4; 7 parts. (c) C = 0.6; 6 parts.

Figure 11: Influence of the description length parameter C on de-
composition, in particular, part counts, where ↵ is fixed at 1. Note
that with C = 1, we obtain three parts as shown in Figure 5(e).

(a) ↵ = 1. (b) ↵ = 6. (c) ↵ = 20. (d) ACD.

Figure 12: Influence of the weight ↵ in cylindricity measure on
decomposition results, while holding description length C = 0.1.
Part counts for decomposition (a-c) are 5 , 8, and 12, respectively.
As expected, approximate convex decomposition (ACD) produces
substantially more parts (d).

in the cylindricity measure, the size of the sample point set ⌦ on
the input shape for initial local cylinder construction, and finally
the cylindricity threshold ⌧ for filtering out bad local cylinders. To
remove the impact of object size on parameter selection, here all
input shapes are normalized through uniform scaling, such that the
longest diagonals of their bounding boxes equal to one. Altering
the first two parameters can lead to different decomposition results,
since they influence the cylindricity measure, which in turn, influ-
ence the objective function. By default, we set C = 0.1 and ↵ = 1.
The next two parameters, |⌦| and ⌧ , were chosen empirically and
are fixed throughout our experiments at |⌦| = 500 and ⌧ = 0.15,
with only one exception discussed in Figure 9. This camel exam-
ple demonstrates how the sample size |⌦| influences the scales of
the extracted cylinders in the final decomposition: more samples
typically lead to the identification of finer-scale structures.

Model #lc #nc #cc #G Time
Chair (left) 220 31 151 12 9m
Chair (middle) 123 20 61 12 6m
Chair (right) 214 16 50 9 8m
Table 255 18 75 17 10m
Plant 133 15 43 5 6m
Lamp 172 24 175 11 8m
Raptor 193 30 120 16 8m
Gorilla 121 9 19 7 5m
Camel grid 49 8 10 7 4m
Sea monster 76 25 32 22 5m
Dancer 166 14 94 10 6m
Candlestick 214 18 175 14 8m
Hand 172 22 134 7 7m
Armadillo 134 27 99 10 6m
Seal 158 5 8 4 7m
Wolf 149 11 24 10 6m
Elephant 156 17 49 11 7m

Table 1: Timing and other statistics for our algorithm, measured
on the models shown in Figure 13. Number of local GCs, non-local
GCs, candidate GCs, and GC part count for the optimal decompo-
sition are denoted by #lc, #nc, #cc, and #G, respectively. Execute
times, in minutes and measured on an Intel(R) Core(TM) i7-4790
3.6GHz with 16 GB RAM, account for all operations.

Figure 10 shows the impact of parameter ⌧ on the construction of
local GCs. Generally speaking, a lower ⌧ value leads to fewer but
more reliable local GCs than a higher ⌧ value. Since these local
GCs may not fully cover the shape, they may yield more non-local
GCs after the merge process. Regardless of how many local and
non-local GCs were found, the final optimal decompositions ob-
tained with different ⌧ values are nearly identical, which suggests
our approach is robust with respect to the value of this parameter.

Figure 11 shows different decomposition results by changing the
description length parameter C. As can be observed, larger C val-
ues encourage the formation of long cylinders and this is reflected
in the final decomposition results. Experimentally, decomposition
results are relatively less sensitive to choices of the ↵ parameter,
as shown in Figure 12, where we also contrast with approximate
convex decomposition [van Kaick et al. 2014].

Decomposition results. Figure 13 shows a gallery of decompo-
sition results on a mixture of organic and man-made objects, all
obtained using the default parameter setting. Table 1 provides tim-
ing and other statistics for our decomposition algorithm on these
models. Computationally, the most expensive step is local GC con-



Figure 14: A stress test: the 3D monkey model from the teaser was
bent and stretched in a variety of ways to test the robustness of our
cylindricity measure and decomposition algorithm.

Figure 15: Our decomposition returns both inner (right) and outer
(left) GC surfaces for container-like objects with inner concavity.

struction, though it is highly parallelizable.

Note the flat parts obtained on the chair, table, and plant models, as
well as other parts, e.g, the skirt of the dancer, that are cylindrical
only in a rather general sense. These parts and the corresponding
skeletons are unlikely to emerge when running conventional skele-
tonization algorithms (as one may observe from Figure 17). On the
other hand, it is evident that our decomposition is not designed to
fully reflect shape semantics. For example, one finger of the di-
nosaur model is merged with the arm; this is not meaningful but
nevertheless expected in the context of cylindrical decomposition.
As well, our algorithm does not perform any boundary optimiza-
tion, hence some part boundaries are unnatural or non-smooth.

In Figure 14, we show decomposition results through a “stress” (or
“stretch”) test, where the 3D monkey model from Figure 1 was
bent and stretched in a variety of ways. The results, obtained us-
ing the same default set of parameters, show that our cylindricity
measure and cylindricity-driven decomposition scheme do exhibit
robustness against bending and stretching of shape parts.

Inner+outer cylinders. As the shape processing in our decom-
position is performed over the surface of the input model, not any
enclosed volume, we do not require the volume enclosed by a sur-
face region to belong to the interior. In fact, our algorithm does not
even require the input shape to be watertight. This offers a rather
unique feature to our decomposition: it would return both outer and
inner GCs for container-like objects with an inner concavity; see
results shown in Figure 15. Performing either surface or solid con-
vex decompositions amid such concavities is expected to yield a
large number of parts. As well, the sphere-mesh representation is
not suited to handle such thin shell shapes; they represent what the
authors [Thiery et al. 2013] referred to as a “worst-case” scenario.

Overlapping cover. While shape decomposition is the focus of
this work, our algorithm can be easily altered to produce an over-
lapping cover where the obtained shape parts are allowed to over-
lap. Such results may be desirable if the cylindrical parts are tran-
sient in nature, meaning that it is more meaningful to allow them to
cross each other rather than breaking them apart at the junctions. To

(a) Part count reduced from 4 to 3.

(b) Part count reduced from 6 (left) to 4 (right).

Figure 16: Overlapping covers lead to reduction in part counts.

obtain overlapping covers, only the last step needs a change from
solving an ECP to solving an overlapping cover problem. Since
the latter encompasses the former, from the same set of candidate
GCs, the best overlapping cover according to our objective function
is always at least as good as the best decomposition. We adopt the
greedy algorithm [Chvatal 1979] to compute overlapping covers.
Figure 16 shows that this effectively reduces part counts.

Curve skeleton extraction. While being a side product of com-
puting the cylindricity measure for shape decomposition, the skele-
ton+profile representations obtained by our algorithm enable sev-
eral applications. One of them is curve skeleton extraction. We can
convert the axes of the set of cylinders obtained in the final decom-
position into a curve skeleton representation of the input 3D shape.
Specifically, we connect end points of the axes to the nearest points
on the axes of adjacent GCs, and perform post-smoothing of the
final set of skeletal curves. Figure 17(a) shows several results.

3D shape modeling. Curve skeletons are natural editing handles;
and the skeleton+profile representations obtained also simplify the
finding of shape correspondence. In the accompanying video, we
show examples of shape modeling by manipulating the individual
GCs through only curve controllers. This allows both deformation
of the skeletal axes and editing of the profile curves. Another mod-
eling paradigm, morphing, is also supported. The ability to obtain
GCs with significant variability may allow dramatic morphing re-
sults such as the one shown in Figure 18. Correspondences be-
tween the GCs are obtained via graph matching with dissimilarity
between GCs computed by a sum of distances between their cylin-
dricity measures, axis lengths, and average profile radii.

Progressive shape approximation. The skeleton+profile repre-
sentation, which is built via recursive geometric interpolation, nat-
urally provides a progressive approximation of the input 3D shape.
The first example is shown in Figure 22. Similar in spirit to sphere-
meshes [Thiery et al. 2013], the kind of approximations obtained
are based on interpolating simple primitives; in our case, profile
curves are used for cylinder construction and control points are used
for profile curve construction. With the MDL principle followed in
our approach, our GC-based progressive approximation is expected
to be efficient; we compare to sphere-meshes in Section 5.2.

5.2 Comparisons

Local merging vs. global decomposition. We conduct an ex-
periment to compare purely local GC growing with global decom-



(a) Curve skeletons derived from our decomposition (GCs are in different
colors).

(b) Curve skeletons extracted by ROSA [Tagliasacchi et al. 2009].

(c) Mean curvature skeletons [Tagliasacchi et al. 2012].

(d) Curve skeletons and segmentations obtained by [Au et al. 2008].

(e) Curve skeletons and segmentations obtained by Reniers et al. [2008].

Figure 17: Comparing curve skeletonization and segmentation
with several state-of-the-art methods.

position. Exactly the same set of local GCs were used to initialize
decomposition and a greedy merging scheme. For the latter, we
iteratively and greedily select local GCs with minimal cylindricity
values and merge them under the same criterion (5) as in our de-
composition approach. Figure 19 (see also Figure 7) compares re-
sults obtained by the two approaches, which demonstrate the benefit
of using a global optimization step that solves an ECP.

Comparison on skeleton extraction. Figure 17 compares curve
skeletons obtained from our decomposition results to several of
the state-of-the-art methods, including [Tagliasacchi et al. 2009],
[Tagliasacchi et al. 2012], [Au et al. 2008], and [Reniers et al.
2008]. As we can see, all methods perform comparably over close-

Figure 18: Two dramatic morphing sequences that warp an Al-
addin lamp to a genie then to a flamingo. After obtaining the de-
compositions for the source and target shapes, a cylindricity-based
straightforward graph matching results in both part and skeleton
correspondence, enabling morphing between corresponding profile
curves.

Figure 19: Global decomposition vs. greedy local GC merging.
Note that there are three different local GC merging directions re-
spectively at the back-fin and the tail-fin of the shark. Making de-
cisions in a local and greedy manner produces undesirable results:
the body of shark is split into two parts, with each encompassing
a fin (b). Our decomposition algorithm searches for the optimal
solution for ECP, resulting in a more natural decomposition (a).

to-perfect cylindrical regions. On flat parts, most methods, with
the exception of mean curvature skeleton and ours, tend to produce
noisier set of skeletons. Both [Au et al. 2008] and [Reniers et al.
2008] also provide means for skeleton-driven shape segmentation.
Their results can be compared to ours in Figure 17. Note that none
of the three methods attempt to model shape semantics; they are
all purely geometry-driven. In general, [Au et al. 2008] tends to
over-segment due to its reliance on local cut criteria. [Reniers et al.
2008] is multi-scale but controlling the scales is non-trivial; see re-
sults for the vase and dinosaur. With a global optimization, our
solution appears to offer an attractive option.

Comparison to profile clustering. We compare our cover-based
decomposition to a well-known clustering-based approach, namely,
affinity propagation clustering, which was adopted by Goyal et
al. [2012] in their GC analysis algorithm. Recall that affinity prop-
agation clustering provides iterative refinement through local mes-
sage passing. We report comparison results on models we created
to closely resemble the models tested in their paper, since we were
not able to obtain either their models or their implementations. The
comparison shows that the global solution we obtain generally in-
duces fewer parts and reflects better the structures of the shapes.



Figure 22: Progressive shape approximation using generalized cylinders from our decomposition algorithm. The pegaso model from [Thiery
et al. 2013] is decomposed (leftmost) into 11 parts. A set shape approximations are generated (from left to right) through progressively
increasing the number of profile curves and control points (#P, #C) from (25, 100), (50, 300), (75, 600), to (100, 1000). The approximation
errors (H, M12, M21), as defined in Table 2, decreases from (6.188, 0.813, 0.683), (2.139, 0.311, 0.32), (1.456, 0.192, 0.198), to (1.456,
0.151, 0.156).

(a) Sphere-mesh approximation results as reported in [Thiery et al. 2013].

(b) Skeleton+profile approximations obtained from optimal decomposition on the same models.

Figure 23: Comparison between shape approximations obtained by sphere-meshes (a) and our decomposition (b), where a comparable
number of interpolated primitives are used. That is, based on the number of spheres used in sphere-meshes (neptune: 60; centaur: 50; sea
horse: 200; vase: 120), we either set the same number of profile curves to be the same (neptune 60, centaur 50) or set the number of control
points to be twice of the amount (sea horse 400, vase 240). Approximation errors for all models under both settings are reported in Table 2.

(a) Results reported in [Goyal et al. 2012].

(b) Our decompositions on very similar models that we replicated.

Figure 20: Comparison to profile clustering [Goyal et al. 2012].
On four models used in [Goyal et al. 2012], our decomposition
produces 3, 5, 3, and 5 parts, respectively, whereas they obtained
4, 7, 5, and 14 parts, respectively.

Figure 21: Cylinder extraction by Plumber [Mortara et al. 2004]
is able to extract close-to-perfect tubular parts (shown in transpar-
ent blue with embedded skeletons) but does not return a complete
decomposition into generalized cylinders. Compare these results to
ours shown in Figures 7(e), 11, and 17(a).



INPUT SPHERE-MESH OUR APPROXIMATION I OUR APPROXIMATION II
MODEL (#S / #E / #T) H M12 M21 (#G / #P / #C) H M12 M21 (#G / #P / #C) H M12 M21

Camel 50 / 19 / 34 7.201 0.465 0.384 7 / 50 / 500 3.453 0.17 0.326 7 / 25 / 100 3.675 0.426 0.571
Neptune 60 / 15 / 72 2.65 0.384 0.388 14 / 60 / 600 1.259 0.186 0.193 14 / 30 / 120 2.625 0.319 0.372

Centaur 50 / 17 / 42 3.557 0.373 0.401 10 / 50 / 500 1.234 0.172 0.173 10 / 25 /100 2.779 0.466 0.448
Chair 35 / 16 / 22 1.517 0.313 0.345 12 / 35 / 350 1.358 0.156 0.157 12 / 17 / 70 2.102 0.382 0.369
Dancer 54 / 11 / 67 1.352 0.166 0.182 10 / 54 / 540 0.939 0.096 0.096 10 / 27 / 108 1.615 0.294 0.274
Gorilla 36 / 5 / 37 6.109 0.53 0.446 7 / 36 / 360 2.251 0.285 0.387 7 / 18 / 72 3.618 0.595 0.699
Flamingo 40 / 12 / 32 2.837 0.417 0.479 4 / 40 / 400 2.454 0.112 0.126 4 / 20 / 80 2.455 0.299 0.354

Sea monster 150 / 60 / 161 6.081 0.367 0.364 22 / 150 / 1500 6.053 0.103 0.11 22 / 75 / 300 5.642 0.307 0.315

Elephant 45 / 6 / 68 3.357 0.564 0.62 11 / 45 / 450 1.722 0.262 0.303 11 / 22 / 90 3.521 0.52 0.522

Wolf 55 / 12 / 75 3.618 0.38 0.405 10 / 55 / 550 1.469 0.148 0.15 10 / 27 / 110 2.799 0.383 0.365

Fish 12 / 3 / 6 4.272 0.762 0.735 3 / 12 / 120 2.555 0.288 0.332 3 / 6 / 24 9.057 0.739 0.624

Sea horse 200 / 18 / 344 1.324 0.257 0.271 20 / 200 /2000 2.212 0.102 0.104 20 / 50 / 400 2.031 0.184 0.181

Raptor 45 / 23 / 30 4.31 0.428 0.425 17 / 45 / 450 2.682 0.179 0.185 17 / 22 / 90 2.657 0.364 0.396

Vase 120 / 8 / 197 2.093 0.321 0.395 9 / 120 / 1200 2.871 0.288 0.279 9 / 40 / 240 1.487 0.222 0.217

Camel grid 50 / 5 / 72 4.199 0.9 0.629 7 / 50 / 500 2.216 0.292 0.294 7 / 25 / 100 4.522 0.563 0.494

Half bear 60 / 5 / 66 14.784 0.4 2.559 7 / 60 / 600 1.297 0.147 0.31 7 / 30 / 120 2.285 0.321 0.49

Pegaso 100 / 11 / 170 2.554 0.381 0.393 11 / 100 / 1000 1.456 0.151 0.156 10 / 50 / 200 2.542 0.374 0.362

Table 2: Quantitative comparison between sphere-meshes and skeleton+profile approximations resulting from our decompositions. We report
the number of spheres (#S), edges (#E), and triangles (#T ) for sphere-meshes, and the number of GCs (#G), profile curves (#P ), and
total number of control points (#C) for our approximation. For both methods, we report three approximation errors, as in [Thiery et al.
2013]: Hausdorff distance (H), mean distance from original model to approximation (M12), and mean distance from approximation to
original (M21). All distances are expressed in percentages of the length of the input model’s bounding box diagonal. Our approximation
II uses only an half number of profile curves and one fifth number of control points of that our approximation I uses. We mark the smaller
errors in bold when comparing sphere-meshes to our approximation II, with the same representation costs in their primitives (#S vs. #C). We
consider that a 3D sphere (four scalars to represent) is equivalent to that of two control points (four scalars for 2D profile curves).

(a) Skeleton+profile approximations obtained from our decompositions.

(b) Skeleton+profile approximations obtained from [Au et al. 2008].

Figure 24: Shape approximations obtained by decompositions (a)
and another skeleton+profile representation derived from [Au et al.
2008], where exact same numbers of profile curves (lady: 50; table:
40) and control points (lady: 500; table: 400) are used. The shape
approximation errors (H, M12, M21) of our results are (1.241,
0.165, 0.167) for the lady model and (0.884, 0.073, 0.109) for the
table model, compared with (1.98, 0.329, 0.337) and (6.823, 0.14,
0.165), respectively, obtained from [Au et al. 2008].

Comparison to primitive fitting. Figure 21 shows results from
Plumber [Mortara et al. 2004], a primitive fitting technique aimed at
recovering tubular parts from a 3D shape. Comparing these results
to ours, it is evident that Plumber was not designed to process as
general cylindrical shapes as those handled by our method.

Comparison to sphere-meshes. Finally, we make comparisons
to sphere-meshes [Thiery et al. 2013] on shape approximation.
Without access to their implementation, here we only tested our
decomposition algorithm on models featured in their work, which
were provided by the authors. We compare visually in Figure 23
and quantitatively in Table 2 between approximations using spheres
as primitives (all numbers and figures copied from [Thiery et al.

2013]) and approximations provided by the skeleton+profile repre-
sentations from our decomposition.

To evaluate the two methods in comparable settings, for each input
shape, we compare approximations based on comparable number
of interpolated primitives, which are spheres for sphere-meshes and
profile curves or control points in our approach. Spheres and pro-
file curves play similar roles as they are interpolated to obtain the
final approximations directly. On the other hand, they are not as
comparable in terms of representation costs. Considering the repre-
sentation cost of a 3D sphere (four scalars to represent) is equivalent
to that of two control points (four scalars for 2D profile curves), we
further compare the two approximation approaches under compa-
rable representation costs; see Figure 23 and Table 2. The results
suggest that our approximations are generally superior to sphere-
meshes in terms of approximation error and visual quality.

Aside from approximation quality, we believe that the utilization
of skeletal and profile curves, along with the non-linear interpo-
lations over these curves, offer a more versatile and more flexible
shape modeling and manipulation paradigm compared to linear in-
terpolations over spheres. For example, sphere-mesh representa-
tions are not particularly apt at modeling thin-shell like shapes or
twisty shapes with sharp features.

Comparison on skeleton+profile approximation. In addition
to comparing our skeleton+profile approximations with sphere-
meshes, we also compare them to approximation results generated
using an alternative skeletonization method [Au et al. 2008]; see
Figure 24. Here, we apply the same profile curve selection approach
used in our algorithm, but based on the skeletons extracted by Au
et al. [2008]. The comparison suggests that, since our decompo-
sition outputs fewer parts and more coherent skeletons, we obtain
better approximations of the shape, under the same number of pro-
file curves and control points, than the ones using skeletons and the
skeleton-driven segmentation from [Au et al. 2008].



(a) Human segmentation vs. our result.

(b) Consistency error. (c) Hamming distance.

(d) Cut discrepancy. (e) Rand index.

Figure 25: Comparison with human segmentation on Princeton
Segmentation Benchmark [Chen et al. 2009].

Comparison to human segmentation. The goal of our gener-
alized cylinder decomposition is to maximize geometric simplic-
ity. As a result, the decomposed parts may not agree with seman-
tic segments labeled by humans. As shown in Figures 25(a) and
(c), our decompositions generally contain fewer parts, as it often
merges different segments along the same skeleton, such as fore-
arm and hand, into one GC. Since these semantic segments labeled
by humans are generally convex, the approximate convex decom-
position [van Kaick et al. 2014] is more suitable for decomposing
shapes semantically.

Nevertheless, we here quantitatively evaluate our approach based
on human segmentation for the well-known Princeton Segmenta-
tion Benchmark. Figures 25(b-d) show the plots of four evalu-
ation metrics on the benchmark, which reveal the corresponding
properties of our method in different aspects, including good seg-
ment consistency (b), fewer decomposition parts (c), and similar
(yet not very close) cut boundaries (d) to human segmentation. In
Figure 25(e), the Rand index provides an overall likelihood assess-
ment on state-of-the-art methods comparing to human segmenta-
tion. Clearly, the Rand index of our method is quite low and only
outperformed by approximate convex decomposition (WCSeg) and
Rand Cuts [Golovinskiy and Funkhouser 2008].

6 Discussion, limitation, and future work

We have presented a method for decomposing a 3D shape into a
small number of generalized cylinders (GCs), making the first at-

(a) (b)

(c) (d)

Figure 26: For the Bust model in (a), our method (right) outputs
a single GC, whereas humans may choose to separate semantically
meaningful areas, such as nose or hair, as individual parts. For the
Fandisk model, (b), (c), and (d) show the three solutions with the
lowest costs in the final ECP, none of which are meaningful from
the engineering perspective.

Figure 27: Four failure cases on models from [Thiery et al. 2013].
Top: no local GCs are found for the close-to-perfect spherical parts
in these two models. Bottom: the complex and delicate structures
lead to too many GCs, making the final ECP unresolvable.

tempt to compute a globally optimal solution. Furthermore, the ob-
jective function for the optimization is defined by a precise measure
of cylindricity, the first of its kind. Our global approach is based on
the simple observation that every non-overlapping decomposition
or segmentation problem is an Exact Cover Problem (ECP). Thus,
we reduce the decomposition task to an ECP and employ Knuth’s
Algorithm X to efficiently enumerate many exact covers. To allevi-
ate the high cost of a large enumeration, we generate only a modest
number of non-local cylinders as candidates for the optimal cover.

We have developed the cylindricity measure to estimate the geo-
metric simplicity of a given GC in MDL terms. We have shown
that the measure is robust, independent of the sampling rate, and
scale-invariant. The cylindricity measure plays a double role in our
work: first, it encourages the growth of local GCs into longer ones;
second, it is central to our global objective function.

Limitations. Our current algorithm has several technical limi-
tations. First, the construction of a local GC is not sampling-
independent, as we apply plane detection by ROSA only at a finite
number of sample points. Our current implementation uses a uni-
form sampling, not adaptive to features, hence it may cause some
local GC orientations or small features to be missed when sampling



(a) (b) (c)

Figure 28: The profile curve of a GC does not need to be convex
and hence the decomposition does not split the shape in (a) into two
convex cylinders. However, when the shape contains parts that has
ambiguous GC orientations (b), splitting is performed to separate
the parts with ambiguity from the ones without (c).

rate is not sufficiently high; the latter situation is shown in Figure 9.
In these cases, the small protrusions may be merged into local GCs;
see, for example, the fingers of the armadillo model merged with its
arm in our gallery Figure 13.

Figure 26 shows two non-cylindrical shapes, for which our method
fails to generate meaningful decompositions from the semantic or
engineering perspectives. Nevertheless, the skeletons found by our
approach can be still useful for other applications.

Figure 27 shows four models from the sphere-mesh work [Thiery
et al. 2013] which our decomposition failed to process properly.
For models containing close-to-perfect spherical parts (top of Fig-
ure 27), any axis passing the sphere centers could be a rotational
symmetry axis, hence no consistent local axis could be formed for
a local GC. In our implementation, these spherical structures are
segmented and treated as parts in the final decomposition. Also, if
the models contain highly complex and delicate structures (bottom
of Figure 27), our current scheme may have trouble merging a large
set of small yet non-coherent local cylinders. As a result, the final
exact cover problem may become intractable.

Aiming at decomposing shapes into generalized (rather than circu-
lar) cylinders, our approach does not require the profile curve of a
GC to be circular or even convex. For example, the shape shown in
Figure 28(a) is considered as a perfect GC and our approach does
not attempt to split it into two convex parts. However, splitting will
occur when the input shape contains parts that has ambiguous GC
orientations; see Figures 28(b) and (c).

Future work. Conceptually, our decomposition approach does
not directly consider any shape semantics or perform any boundary
optimization (see results in Figure 13 for examples). Our problem
belongs to the type of decompositions which seek geometrically
simple parts, such as convex [Lien and Amato 2004], monotone,
or pyramidal [Hu et al. 2014] decompositions. Semantic segmen-
tation, in general, follows different criteria. Nevertheless, one can
consider modifying the cylindricity measure to discourage grow-
ing GCs over local minima, following the spirit of the minima
rule [Hoffman and Richards 1984]. We leave this for future work.

We would also like to look into consistent segmentation through
the generalized cylinder decomposition. The key question is what
other weak knowledge, beyond fixing a part count over the input
set of shapes, can be beneficial. Last but not the least, we believe
that the power of the ECP needs to be explored for other decom-
position or segmentation problems, whose solutions are typically
built only on local measures without adhering to any global objec-
tive function. ECP solves a global problem and leads to globally
optimal solutions. This, however, requires developing quantitative

measures for the parts or segments involved in the partition, which
is often ill-posed. In the future, we would explore this avenue fur-
ther for various decomposition and primitive fitting problems.
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