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Abstract

We introduce a co-analysis technique designed for correspondence
inference within large shape collections. Such collections are natu-
rally rich in variation, adding ambiguity to the notoriously dif�cult
problem of correspondence computation. We leverage the robust-
ness of correspondences between similar shapes to address the dif�-
culties associated with this problem. In our approach, pairs of sim-
ilar shapes are extracted from the collection, analyzed and matched
in an ef�cient and reliable manner, culminating in the construction
of a network of correspondences that connects the entire collection.
The correspondence between any pair of shapes then amounts to a
simple propagation along the minimax path between the two shapes
in the network. At the heart of our approach is the introduction of a
robust, structure-oriented shape matching method. Leveraging the
idea of projective analysis, we partition 2D projections of a shape
to obtain a set of 1D ordered regions, which are both simple and
ef�cient to match. We lift the matched projections back to the 3D
domain to obtain a pairwise shape correspondence. The emphasis
given to structural compatibility is a central tool in estimating the
reliability and completeness of a computed correspondence, uncov-
ering any non-negligible semantic discrepancies that may exist be-
tween shapes. These detected differences are a deciding factor in
the establishment of a network aiming to capture local similarities.
We demonstrate that the combination of the presented observations
into a co-analysis method allows us to establish reliable correspon-
dences among shapes within large collections.

Keywords: Shape collections, similarity, correspondence, seg-
mentation transfer

Concepts:� Computing methodologies! Shape analysis;

1 Introduction

Establishing a correspondence between two shapes is a well-
researched and fundamental problem with many applications in var-
ious domains [van Kaick et al. 2011b]. Recently, special focus has
been given to the computation of correspondences among shapes
in a collection [Huang et al. 2012; Kim et al. 2013; Huang et al.
2014]. However, in the general case, computing a correspondence
is an ill-posed problem as there is no well-de�ned set of rules to
establish a mapping between two shapes. On the other hand, shape
correspondence is highly intertwined with the problem of estimat-
ing the similarity between two shapes. A correspondence between
two shapes is less ambiguous and inferred more easily when the
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Figure 1: A structure-oriented network of a collection of shapes.
By building a network of correspondences with an emphasis on
structural differences among the shapes, we derive a network of
clusters of shapes with near-equivalent structure, such that edges
capture a change of structure between two connected clusters. We
highlight a path traversed in the representation with red edges, and
display the corresponding sequence of shapes at the bottom. Struc-
tural changes between successive shapes along the path are marked
as green segments, and pertain either to the preceding or the fol-
lowing shape.

shapes are similar. Thus, our premise in this work is that the prob-
lem of computing correspondences in a collection can profoundly
gain from considering the similarity between the shapes.

A good similarity measure should generally correlate with human
perception and intuition. We observe that it is easy to identify when
two shapes are identical or closely similar, but it is unclear how to
account for large differences and effectively quantify them. Geo-
metric differences between shapes can vary in magnitude in a con-
tinuous manner, so it is dif�cult to determine exactly at what point
two shapes become dissimilar enough. In contrast, structural dif-
ferences are discrete and therefore more pronounced. As such, they
are more tangible and easier to identify, and even a small structural
difference can serve as an immediate cue indicating a large dissimi-
larity between two shapes. We follow these observations to mitigate
the problem of correspondence computation, in an effort to provide
more robust results.

In this paper, we present a structure-oriented co-analysis technique
that enables the creation of a network of correspondences within
a large shape collection. By aiming to establish correspondences
across an entire collection of shapes in a robust manner, we are
faced with the dif�culty of determining correspondences between
dissimilar shapes. To alleviate this task, instead of performing a full
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all-pairs analysis, we drastically narrow down the analysis space
and limit the correspondence estimation to similar pairs of shapes,
which is a more tractable problem. To obtain a full correspondence
estimation across the entire collection, we determine possible in-
ference routes by estimating shape similarity and correspondence
simultaneously. Correspondence inference then advances through
a front of similar shapes and incrementally spreads throughout the
collection. Assuming the collection is suf�ciently dense, local sim-
ilarity along the routes is expected to be high, thereby increasing
robustness by reducing the risk of an ambiguous and potentially
misleading correspondence.

The correspondences are established via a structure-oriented match-
ing method, designed to partition a source shape into regions with
similar structure, and match them to corresponding regions in a tar-
get shape, providing a part-based estimation of similarity between
entities. As we focus on uncovering similar shapes, our matching
does not provide a general solution that is meant for any possible
shape pairing. Instead, the process supports and prefers a partial
matching of high compatibility in favor of a potentially question-
able full matching. A structural difference is therefore an event
inherently recognized by the method, and is an immediate warning
sign for dissimilarity. Our key concept is thus to leverage these dif-
ferences to ensure a more reliable advancement in correspondence
inference, by adding a �ne-grained notion of structural similarity to
the connections of the network. An interesting by-product of this
approach is the partitioning of the collection into groups of shapes
with similar structure. The shape collection can hence be repre-
sented by a structural similarity graph, where a node represents
a group of shapes with similar structure and an edge represents a
change in structure (Figure 1).

A central contribution of our approach is its robust pairwise corre-
spondence computation. We bypass the dif�culty involved in es-
timating a correspondence between two shapes in the 3D domain
by solving a large set of simple 1D correspondence problems in-
stead. Inspired by the projective shape analysis method [Wang et al.
2013], we �rst obtain numerous projections of a shape in 2D. Each
projection then undergoes a partitioning which produces a 1D suc-
cession of micro-parts of the projection. The matching between two
projections is conducted in 1D, allowing for a coarse correspon-
dence to be inferred in 2D. The result is that each 2D projection
is implicitly partitioned into regions with similar structure, which
often re�ects on the actual 3D part partitioning of the shape. In this
manner, we are able to identify the structural differences between
shapes with greater ease, and simultaneously avoid the dif�culty in-
volved in a direct partitioning of a shape into parts. Moreover, the
matching process is robust in its tolerance of af�ne transformations
between matched parts. These projection-speci�c correspondences
are then aggregated and lifted back into 3D to obtain a sparse face-
level correspondence between the source and target shapes.

We demonstrate that, with this method, we are able to establish
correspondences among the shapes in large collections with high
diversity, and build a network of correspondence where informa-
tion can be reliably propagated. We present an analysis of networks
obtained from large collections of shapes, as well as different ap-
plications that bene�t from such a network, such as segmentation
transfer and shape retrieval.

2 Related Work

Shape similarity and correspondence, and the combination of the
two in a scheme that spreads linearly through a large collection of
shapes, are at the core of our method. In this section, we discuss
relevant work in these areas.

Shape correspondence. The problem of determining a corre-
spondence between two shapes can take on many forms. Different
applications call for different types of correspondence, as surveyed
by van Kaick et al. [2011b]. Here, we are interested in semantic
correspondence, where connections between regions with a simi-
lar purpose are sought. Several methods have focused on exactly
this problem. Among the recent efforts are consistent segmentation
methods aimed at establishing part-wise correspondence between
shapes across an entire collection. Supervised methods call for a
set of labeled examples to be given as input, which determine what
new examples can be segmented by geometric similarity [Kaloger-
akis et al. 2010; van Kaick et al. 2011a]. Semi-supervised meth-
ods use correspondence cues given by a user to infer a set-wide
consistent segmentation [Wang et al. 2012]. Unsupervised meth-
ods utilize different tools, such as diffusion maps [Sidi et al. 2011],
joint optimization [Huang et al. 2011], and subspace clustering [Hu
et al. 2012], to compensate for the lack of knowledge otherwise
supplied by labeled examples. The above methods either require a
large amount of labeled data, or are not scalable to very large shape
collections with variation in geometry and structure.

Laga et al. [2013] propose an unsupervised method to establish
a part-based correspondence between two shapes, where the cor-
respondence is determined with part-to-part distances containing
both geometric part similarities and the similarity of part context
within the shape. The focus given to the context of a part facilitates
matching parts from two shapes under differences in geometry and
structure. As such, it is essentially invariant to structural changes
that can be disregarded when dealing with a small set of shapes.
However, these differences are at times crucial to the correct infer-
ence of correspondences within a large collection. Recently, Al-
hashim et al. [2015] present an optimization scheme that searches
for a minimal energy deformation between two shapes, from which
a pairwise correspondence is inferred. This method emphasizes
structural preservation while allowing topological differences and
therefore performs well even under signi�cant topology-based de-
formations. However, it is designed primarily for pairs of shapes
rather than large collections, and relies on a high-quality per-shape
segmentation.

Most relevant in our context are approaches that infer point-to-point
correspondence maps among all the shapes in a set. Nguyen et
al. [2011], Huang et al. [2012] and Huang and Guibas [2013] re-
�ne maps between shapes by enforcing cycle-consistency among
multiple correspondences. The consistency is optimized with tech-
niques such as diffusion-and-sharpening on a set of base shapes,
and semide�nite programming. Kim et al. [2013] extract a part-
based correspondence for a set of shapes and use that to derive
point-to-point correspondences. The part-based correspondence
is obtained by �tting a set of box templates to a collection of
shapes, which possibly involves user input for template creation.
Finally, Huang et al. [2014] revisit cycle-consistency by optimizing
it through functional maps, which serve as an ef�cient correspon-
dence representation and allow to encode maps at multiple levels of
detail. We observe that these methods adapt to changes in the struc-
ture of shapes in the collection, e.g., by spanning the creation of
new templates [Kim et al. 2013], or with partial matching [Huang
et al. 2014], but do not aim at detecting structural changes. In con-
trast, our method recognizes structural changes and uses them to
build a network of reliable correspondences. The implicit group-
ing that is formed in the network captures informative �ne-grained
structural variations within a collection.

Shape similarity and comparison. Determining the extent of
similarity between two shapes is crucial in applications such as
shape retrieval and ordered exploration [Tangelder and Veltkamp
2008]. The notion of similarity is highly dependent on the con-



text or requirements of the application. Isometrically-related shapes
can be compared and matched via appropriate signatures, such as
the Heat Kernel Signature (HKS) [Ovsjanikov et al. 2010], GPS
embedding [Rustamov 2007], blended intrinsic maps [Kim et al.
2011], or bag-of-feature descriptors [Bronstein et al. 2011; Litman
et al. 2014]. Recently, Solomon et al. [2016] use a regularized
Gromov-Wasserstein mapping objective to extend traditional corre-
spondence methods to minimize long-range distance distortions, in
addition to the typical local considerations used by these methods.
Such an approach enables successful correspondence of a larger
variety of shapes, and naturally supports multi-modal correspon-
dences. As we will demonstrate, these methods are robust under
non-rigid transformations (e.g., humanoid poses), but are not suit-
able for comparison of man-made shapes with structural variations.

Comparison methods that are based on the Light Field Descrip-
tor [Chen et al. 2003] are suitable for rigid shapes with little to no
articulation, and have been shown to perform well under these con-
ditions [Su et al. 2015; Li et al. 2015]. Kleiman et al. [2015] suggest
a part-based shape comparison approach, which de�nes the dissim-
ilarity between shapes as the amount of effort it takes to transform
one shape into the other. This method is robust in its invariance to
shape articulation and is therefore suitable for both man-made as
well as natural shapes. However, as it relies on a suf�ciently good
estimation of 3D segmentation, it is not immediately scalable to
large shape collections.

Networks of similarities. Correctly determining the similarity
of data points in a high-dimensional space has been the focus on
much research in statistics and machine learning. A common idea
to address this problem is to compute local similarities between
points, which are then used to robustly estimate the similarities
of points that are far in the space, revealing the intrinsic mani-
fold on which the points reside. For example, isomaps derive the
similarity of points from their distance within a graph of nearest
neighbors [Tenenbaum et al. 2000], while diffusion maps perform
a spectral embedding that captures the commute distance between
points [Coifman and Lafon 2006]. We follow the same general prin-
ciple in our work, where we connect highly similar shapes to create
a network that spans the entire collection. However, in addition to
the network, each shape connection possesses correspondence in-
formation that maps the geometry of one shape to another.

3 Similarity-driven correspondence

Our aim is to establish correspondences within large-scale shape
collections, where shapes often exhibit considerable variations in
geometry and structure. In this context, it is impractical to em-
ploy an all-pairs correspondence computation approach. Thus, we
limit the computation of correspondences to similar shapes. This
approach is advantageous not only for its reduced complexity, but
also, and even more importantly, because of the increase in reliabil-
ity. A correspondence estimated between a pair of suf�ciently dis-
similar shapes is inherently subject to errors, but incorrect matches
are less likely to occur between two similar shapes. We therefore
develop a robust correspondence estimation method that is geared
toward similar shapes. With such a method in hand, we are able
to form a network of correspondences spanning the entire collec-
tion, and identify reliable correspondence inference routes support-
ing propagation of information between shapes.

To compute a reliable correspondence between two shapes, we opt
to emphasize structural differences as major cues for dissimilar-
ity, since these differences are often a primary obstacle in corre-
spondence estimation. This assumption requires a method to de-
tect structural differences between two shapes, possibly through a
structural decomposition. A common approach for obtaining such

Figure 2: Structural changes along a path of correspondences. The
shapes (top row) are projected from the back viewpoint into low-
resolution images, shown beneath. Each projection is �rst decom-
posed into regions that are then matched to the regions of the next
projection in the sequence. The matched regions are colored consis-
tently and illustrate a regional correspondence that is propagated
along a sequence of shapes. Note that while the matching is con-
ducted on 2D projections, the correspondence information resulting
from this process is aggregated and lifted back to the 3D domain,
where it is propagated from and to entities in the collection. We
show here a 2D illustration of a possible path of correspondence
propagation, highlighting two structural changes that are discov-
ered by the matching process (red arrows). The �rst event is caused
due to a change in the topology of the back of the chair, and the
second marks the addition of a bar connecting the two legs.

a decomposition is to perform a skeletonization of the geometry
of a shape. However, in the presence of complex geometry, the
accuracy, reliability and ef�ciency of such methods are low. We
introduce an alternative approach and reduce the problem to the 2D
domain by analyzing multiple projections of the shape.

Our 2D analysis is inspired by the work of Wang et al. [2013] on
projective shape analysis, but applies this paradigm to the problem
of shape partitioning and matching. We carefully partition each
projection of a shape according to shape structure, based on a set
of rules that consider various structural cues. This process parti-
tions the 2D projection into a 1D ordered set of regions, such that
the notoriously hard problem of graph matching [Kleiman et al.
2015] can be avoided. The simplicity of this approach also sup-
ports meaningful partial matching, which is crucial for the detection
of structural differences between two shapes. Figure 2 presents an
overview of our correspondence inference approach, depicting a se-
quence of matching steps uncovering important structural changes
between shapes along a possible correspondence propagation path.
We describe the matching approach in more detail in Section 4.

Prior to forming a similarity-based network of correspondences, we
compute a rough estimate of shape similarity with signatures de-
rived from HoG-based Light Field descriptors. Next, each shape is
paired with itsk most similar shapes according to these signatures,
and correspondence is established for each pair via our structure-
oriented matching. By choosing an appropriate value for the param-
eterk, we balance between computation cost and network quality.
A small value fork signi�es a reduced set of shape pairs undergo-
ing the matching process, at the cost of a simultaneous reduction in
the amount of potentially useful direct connections that the network
of correspondences relies on. Finally, we leverage similarity scores
computed throughout the matching process to identify quality pair-
wise correspondences that de�ne reliable connections within our
correspondence network. These connections can then be used to
compute a route of information propagation between shapes in the
collection, as described in Section 5.
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Figure 3: Region decomposition, where the depth projection (b)
of a vase (a) is analyzed to obtain the 2D decomposition into re-
gions shown in (d). An initial division into regions (c) is achieved
by merging together adjacent rows based on depth and structural
similarity, as well as shape convexity, estimated by the angles be-
tween consecutive triplets of sampled points (in pink and cyan in
(b)). These initial regions are further merged into more complex
regions via a relaxation of the merging conditions, to form the �-
nal decomposition (d), consisting of meaningful regions that can be
leveraged for shape matching.

4 Structure-oriented shape matching

Our input is a collectionS of pre-aligned shapes. We project each
input shapeSi 2 S from n viewpoints (4-6 in our experiments)
to obtain a set of depth projectionsPi = f pi

k gn
k =1 . We use the

z-buffer algorithm for this step, where each projection is an image
of sizeh � w, and pixel values are in the range[0; 1]. We denote
a pixel with value0 as an empty pixel, i.e., no portion of the shape
was projected onto it, and the value" > 0 is assigned to the pixels
that are closest to the shape, such that no pixels have a value in
(0; " ). Since the shapes are pre-aligned, we assume that projection
perspectives match across shapes, i.e.,pi

k for Si corresponds topj
k

for Sj . If the shapes are not aligned, we can pre-process the set to
align the shapes based on a matching of the projections.

Given two similar shapes, the input to the structure-oriented match-
ing step is a set of 2D projections for each shape. To compute
a correspondence between the shapes, we establish a correspon-
dence between each pair of their 2D projections by solving a 1D
matching problem. We �rst decompose each image into a sequence
of regions based on differences in shape structure and projection
depth, which possibly de�ne boundaries between semantic shape
parts (Section 4.1). Next, the decompositions from the two shapes
are matched with a dynamic programming algorithm, yielding a
correspondence between regions and an estimation of the similarity
between the two shape projections (Section 4.2). Finally, we ag-
gregate the information provided by each projected view by lifting
the matches from the 2D domain to obtain a 3D correspondence
(Section 4.3).

4.1 Region decomposition

The goal of the decomposition is to partition each projection into a
set of regions that consist of simple structures and form a 1D ver-
tical sequence. The advantage of using such a partitioning is two-
fold. First, region boundaries that follow the shape structure form a
structure-oriented decomposition, providing a strong indication of
the semantic partitioning of the shape. Second, a one-dimensional
decomposition greatly simpli�es the task of matching two projec-
tions, as the problem is reduced to matching two linear sequences.
Since we emphasize structural differences as an important indica-
tion of shape similarity, we require a meticulous analysis of the
shape structure re�ected by the projections.

In our work, each region of the 1D vertical sequence is potentially
composed of multiple segments laid out horizontally. Theregions

(a) (b) (c) (d)

(e)

(f)

Figure 4: A simple region decomposition example. A depth pro-
jection (a) is analyzed on a per-row basis (b), to form initial row
regions containing segments with boundaries determined by holes
or signi�cant depth changes, shown in (c). In (d), four primitive
regions are formed by merging adjacent regions from (c), following
rules designed to preserve inner region structure and depth. In (f),
we examine the cost of mergingR3 andR4 (shown close-up in (e)).
This union incurs penalties for joining separated segments (d1 and
d2) and segment discontinuation (d4), aside from the basic size and
depth dissimilarities (d3).

are created by concatenating together rows of pixels with similar
structure and depth, and each region is internally broken intoseg-
mentsbased on discontiguity in the form of holes (one or more
sequential empty pixels), or signi�cant depth changes; see Figure 3
for an illustration of the method.

Our decomposition is obtained in two steps. First, we create a set of
primitive regions that serve as good building blocks. Next, these re-
gions are merged into more complex ones, while preserving the re-
quired properties of the decomposition: maintaining a 1D sequence
of regions with consistent depth and structure. This two-step ap-
proach allows better control over the decomposition and the nature
of the obtained regions. It provides a balance between the structural
complexity within the regions and the overall complexity of the de-
composition, which is dif�cult to achieve with a greedy approach.

An alternative method to decompose a projection of a 3D shape is
based on the Hausdorff distance [Wang et al. 2013]. This method,
however, forms regions that do not necessarily capture shape struc-
ture, as it relies on the maximum distance between empty and non-
empty pixels, without accounting for contiguity or depth changes.
See Figure 8 for a visual comparison, and Section 7 for a quantita-
tive one.

Primitive regions. In the �rst step of the decomposition, a pro-
jectionpi

k is decomposed into regions by consistently merging ad-
jacent rows of the depth image. Each row is initialized as a re-



gion and is divided into a set of segments according to structural
changes within the row. Segment boundaries are induced by sig-
ni�cant change in depth (> 0:2 in our experiments) or by holes, as
depicted in Figure 4(a-c).

Next, neighboring regions are merged together on a pairwise ba-
sis to create larger regions if four conditions apply: (i) The regions
have the same number of segments; (ii) The segment columns over-
lap, indicating that the segments are contiguous; (iii) The two re-
gions are contained within the same weakly-convex part; and (iv)
The region segments have similar depth and size. Since merging
is performed on a pairwise basis, we can ef�ciently traverse the
rows of the image in their natural order, and introduce a boundary
between any two rows that do no comply with the conditions.

We note that conditions (i) and (ii) guarantee a one-to-one pairing
between the segments of two adjacent rows. Thus, to enforce condi-
tion (iv), we simply compare the lengths and depths of the matched
segments. Segment length is computed as the number of pixels
in the segment divided by projection width, and segment depth is
the median among the segment depth values. The dissimilarity be-
tween two segments is then de�ned as the maximum between length
and depth discrepancies, and the merge cost between two adjacent
rows is taken as the maximum between all segment dissimilarities.
Condition (iv) is satis�ed when this merge cost does not surpass a
threshold� Sim = 0 :12 (determined empirically).

Finally, condition (iii) is enforced in order to identify concavities
in the silhouette of the shape that do not manifest as changes in
structure or depth. Rather than performing an in-depth convexity
analysis of the shape, we ef�ciently identify part-aware cues for
our decomposition by computing a vertical division of the shape
into weakly convex parts. We sample points on the shape silhou-
ette from top to bottom on the left and right boundaries (see Fig-
ure 3(b)), and compute the angle that is formed by any consecutive
triplet. Aiming to disregard small concavities, we determine that
any angle that is smaller than165� is a suf�ciently concave angle,
and set a boundary between the image rows below and above it.

At the end of this process, we obtain a set of primitive regions com-
posed of segments that are approximately convex and with consis-
tent depth (see Figure 3(c) and Figure 4(d)). Next, we create more
complex regions by further merging adjacent regions through a re-
laxation of the merging conditions.

Final regions. In this step of the decomposition, we suspend the
�rst three merging conditions and greedily merge regions as long as
their similarity in terms of depth and structure is below a threshold
� Merge = 0 :12. However, merging structurally-different regions re-
quires special handling, since there is no longer a one-to-one match-
ing between the segments of the two regions. To this end, we merge
any two segments that are contiguous. This approach leads to the
merging of separated segments in a region, if there exists a segment
in the neighboring region that connects them. For example, in Fig-
ure 3(c), the separate segments of the fourth region from the bottom
are all contiguous with the single segment of the region below them.
Therefore, a merge between these two regions requires not only a
merge between segments across regions, but also between segments
within the same region, as illustrated in (d).

To maintain a certain level of structural coherence within the re-
gions, we extend our region merge cost beyond depth and segment
size, and incur a cost for any two separated segments that were
merged, as well as for any segment in one region that is not con-
tinued in the merged region. We de�ne the cost of joining two
separated segments as the maximum between the amount of empty
space between them, and their depth discrepancy. We note that at
this stage a region may be composed of multiple rows, and each seg-
ment may therefore be composed of several row segments of vary-

ing sizes. We de�ne the size of a segment to be the average width
of its row segments. Accordingly, the size of the empty space area
separating two segments is set as the maximum between the height
and the average width of the empty space.

We penalize a merge that does not follow shape structure according
to the severity of the structural violation, i.e., by attaching a larger
cost to a merge between two well-separated segments. This is made
possible by our two-step approach, where primitive regions with
similar structure are �rst formed, allowing an informed examination
of the extent of structural violations. In Figure 3(c), we note that a
merge between the third and fourth regions (from bottom) leads to
a minor structural violation, unlike a merge between the �fth and
sixth regions – a severe violation that is therefore avoided in (d).

To account for a segment in one region that is not continued in the
region it is merged to, we take its magnitude (the maximum be-
tween its height and average width) as the cost of its discontinuity,
once again emphasizing the importance of substantially sized seg-
ments. We de�ne the merge cost between two regionsR j andR j +1

as the maximum among all costs pertaining to their union.

In Figure 4(f), we detail the set of costs associated with the po-
tential merge of regionsR3 andR4 . The purple segment inR4 is
contiguous to both the orange and green segments inR3 , implying
that these three segments will become one inR3[ 4 . The joining of
the orange and green segments results in two penalties – their depth
discrepancy (d1) and the extent of separation between them (d2).
d3 is simply the cost of merging segments from two regions, andd4

penalizes for the discontinuation of the brown segment inR3 .

By greedily merging regions as long as the cost is below� Merge,
we obtain the �nal decomposition, where the regionsR i

k of pro-
jectionpi

k are ordered vertically, and each region contains a set of
segments that are ordered horizontally (see Figure 3(d)). We denote

the decomposition of projectionpi
k by R i

k = f Rm g
M i

k
m =1 (M i

k is the
number of regions inpi

k ), whereRm = f segl g
L m
l =1 (L m is the num-

ber of segments inRm ). Here, segl = [ hPCA; wPCA; axisPCA; dep].
That is, each segment is represented by its height, width and main
axis as given by a PCA analysis of its shape, as well as its median
depth. This representation will be utilized for matching in the next
section.

4.2 Region matching

Given the region decompositionsR i
k and R j

k for the projections
pi

k and pj
k , respectively, obtained from viewk of shapesSi and

Sj , we seek to �nd an optimal matching of the regions. We allow
the matching to be partial, preferring a region or segment to be left
unmatched rather than to force a bad match. This policy increases
our trust in the inferred matches and supports our goal of detecting
highly similar shapes. The matching is computed with a dynamic
programming scheme based on the cost of matching two regions.

Segment matching. Since the regions are composed of seg-
ments, a matching of two regions amounts to a matching be-
tween their constituent segments. We match segments in an order-
preserving manner, and allow the matching to be partial. Given
Rm 2 R i

k and Rn 2 R j
k , such thatRm = f segx gM

x =1 and
Rn = f segy gN

y =1 , the sets of segments are matched using a dy-
namic programming approach governed by the recursive equation:

M segs(si ; sj ; x; y ) =

8
><

>:

dNM(sj [y : end]); if x > jj si jj ;
dNM(si [x : end]); if y > jj sj jj ;
minf c1 ; c2 ; c3g; otherwise;

(1)



with c1 = dseg(si [x]; sj [y]) + M segs(si ; sj ; x + 1 ; y + 1) ;
c2 = dNM(si [x]) + M segs(si ; sj ; x + 1 ; y); and
c3 = dNM(sj [y]) + M segs(si ; sj ; x; y + 1) :

(2)

Throughout the matching process, we compare segx 2 Rn against
segy 2 Rm using the segment properties. More speci�cally, we
set the dissimilarity between the two segments, denoted bydseg,
as the maximum between the width, height, orientation and depth
differences of the segments. Similarly to the penalty given to dis-
continued segments during decomposition, a segment that is left
unmatched is penalized bydNM(seg) = max( hPCA; wPCA).

Region matching. Given the segment matching cost, we can now
de�ne the cost of matching two regions. We use this cost to obtain
a correspondence between two sets of regions. The 1D ordering of
the regions allows us to perform a simple in-order region matching,
much like the approach adopted for segment matching (Equation 1).

To support partial matching at the region level, we empirically de-
termine a threshold� Sp = 0 :3 to signify a subpar region pairing.
This threshold value is then used as the penalty given to unmatched
regions, to ensure preference of partiality over low compatibility.
Thus, we de�ne the region matching process as follows:

M regs(R
i
k ; R j

k ; x; y ) =

8
>>>><

>>>>:

� Sp � (jjR j
k jj � y + 1) ; if x > jjR i

k jj ;
� Sp � (jjR i

k jj � x + 1) ; if y > jjR j
k jj ;

minf c2 ; c3g;
if c > � Sp; x � jjR i

k jj ; y � jjR j
k jj ;

minf c1 ; c2 ; c3g; otherwise;
(3)

with c = M segs(R
i
k [x]; R j

k [y]; 1; 1);

c1 = c + M regs(R
i
k ; R j

k ; x + 1 ; y + 1) ;

c2 = � Sp + M regs(R
i
k ; R j

k ; x + 1 ; y); and

c3 = � Sp + M regs(R
i
k ; R j

k ; x; y + 1) :

(4)

Output. A completed matching process provides us with a set of
matched segmentsM ij = fhsegit ; segjt ; � t ig Tm

t =1 , where� t is the
matching score of the pair of matched segmentshsegit ; segjt i (see
Figure 5). In addition, as a result of our partial matching, we obtain

two sets of segmentsN i = f segi
t g

Tn i
t =1 andN j = f segj

t g
Tn j
t =1 , col-

lecting the segments from each projection that are left unmatched
(see Figure 5(m1), (m1') and (m2)). Each of these sets may be
empty following a two-sided or a one-sided full match. These un-
matched segment sets play a crucial role in the detection of struc-
tural differences between shapes, as will be described in the follow-
ing sections. To estimate and summarize the similarity between the
pair of projections of viewk, we de�ne the matching score of the
projections,� k

i;j , as the mean of all� t , and the overall no-match
scores,� k

i;j ; � k
j;i , as the ratio of unmatched area to the overall pro-

jection area ofpi
k andpj

k , respectively.

Note that our scheme differs from the one presented by Wang et
al. [2013] by a number of factors. Here, the regions are created with
the objective of preserving structure. Thus, the number of regions is
not predetermined, but is an outcome of the structure-preservation
objective. As such, our decomposition contains well-formed seg-
ments that can be compared based on their structural properties.
Additionally, we monitor and prevent any subpar region matches
that may jeopardize the reliability of the matching and subsequent
correspondence inference.

(a) (dec1) (m1) (dec2) (m2)

(b) (dec1') (m1') (dec2') (m2')

Figure 5: Region matching of shape projections. To obtain a cor-
respondence between shapes (a) and (b), we take their region de-
compositions for two projections ((dec1) + (dec1') and (dec2) +
(dec2')). We apply our matching process on the decompositions
and obtain the correspondences between (m1) and (m1'), and be-
tween (m2) and (m2'). Matched segments are colored consistently,
while unmatched segments are shown in black.

Please refer to our supplementary material for visual examples of
shape decomposition and matching.

4.3 View aggregation for 3D correspondence

In order to infer a correspondence betweenSi and Sj in the 3D
domain, we aggregate the matches obtained for each view. We
translate each pair of matched projections into a correspondence
between faces of the 3D model as follows.

A pair of matched projections contains a set of matched segments,
where each segment is essentially a collection of pixels within a
projection. Thus, we derive a pixel-level correspondence between
a pair of projections through their matched segments. For matching
segments, each non-empty pixel in one segment is matched to its
nearest non-empty pixel in the other, taking relative differences in
size into account. We construct a matrixA k of sizex i

k � x j
k , such

thatx i
k andx j

k are the total number of pixels inpi
k andpj

k , and set
A k (pxm ; pxn ) = 1 for any pair of matched pixels.

Next, let F i
k andF j

k be two matrices of sizef i � x i
k and f j �

x j
k respectively, such thatf i and f j are the number of faces in

shapesSi andSj . These matrices are formed during the projection
process and record the correspondence between shape faces and
projection pixels, such thatF i

k (fcm ; pxn ) = 1 when face fcm 2
Si is projected onto pixel pxn 2 pi

k , and is the closest one to the
projection plane out of the set of faces that are projected onto pxn .
Note that a certain pixel may be associated with multiple faces, all
of which share the closest distance to the plane.

We utilize the three matricesF i
k , F j

k andA k to obtain a correspon-
dence between the faces ofSi andSj for view k by a simple ma-

trix multiplication: Cij
k = F i

k A k F j
k

>
. The aggregated correspon-

dence from all projection views is then given by the summation:
Cij =

P n
k =1 Cij

k . Due to the many-to-many relation that exists be-
tween faces and pixels, the matrixCij is not simply a0=1 matrix,
but rather contains values indicating, for each pair of matched faces,
the number of times they were matched through a pair of pixels (in
matrix A k ). In Section 7 we utilize this information as con�dence
weights for segmentation transfer.



In addition to obtaining a 3D correspondence betweenSi andSj ,
we summarize the matching and no-match con�dences collected
from all views, as they provide a measure of similarity and reliabil-
ity of the inferred correspondence. We de�ne the matching score
betweenSi andSj , denoted by� i;j , as the mean of all� k

i;j , and
the no-match ratios, denoted by� i;j and� j;i , as the mean of all� k

i;j

and� k
j;i , respectively. In the following section, these measures will

play a central role in the creation of a network of correspondences
spanning the entire collection of shapes.

5 Correspondence inference within a large
collection

To establish correspondences among the shapes of a collection,
we identify pairs of similar shapes and establish correspondences
only between them. The correspondence between two dissimilar
shapes can then be derived from a chain of correspondences be-
tween shapes that were ruled as similar.

The �rst task in support of correspondence propagation within
a collection is thus to search for pairs of similar shapes. Our
structure-oriented matching approach, described in Section 3, helps
us to identify problematic shape pairings. By forbidding any sub-
par region matches, we detect correspondences that are prone to
ambiguity, which is re�ected in their matching scores. We are then
able to eliminate or ignore these questionable shape pairings when
constructing and using our network of correspondence. However,
despite the ef�ciency of our matching process, it is computation-
ally expensive to perform an analysis of this kind on all pairs of
shapes in collections of large magnitudes. Thus, we narrow down
our comparison space considerably prior to establishing any corre-
spondences within the collection.

We extract a set of candidate pairs of similar shapes ef�ciently with
the similarity computation introduced by Li et al. [2015]. This ap-
proach is based on the Light Field Descriptor [Chen et al. 2003] of a
shape. Two shapesSi andSj are projected fromk viewpoints, and
their dissimilarity is estimated asd(Si ; Sj ) = kHoG i � HoG j k,
whereHoG i andHoG j are the concatenation of the Histogram of
Gradient descriptors [Dalal and Triggs 2005] for allk viewpoints.
Let us denote byDn � n , the all-pairs distance matrix, such that
D (i; j ) = d(Si ; Sj ). From D , we select, for each shapeSi , its
K -nearest neighbors, denoted by KNNi .

We compute our structure-oriented correspondence betweenSi and
eachSj 2 KNN i , and obtain a tuplehfM ij ; � i;j ; � ij ; � ji i , con-
taining the matched segments, matching score of the shapes, and
no-match ratios for each shape in the pair. We create three ma-
trices to capture the similarity and structural compatibility within
the collection:D, Cd andCs . We setD(i; j ) = D(j; i ) = � i;j ,
Cd (i; j ) = � ij , Cd (j; i ) = � ji , andCs (i; j ) = Cs (j; i ) = � ij + � ji .
That is, D summarizes the pairwise distances between shapes,
andCd summarizes the directed incompatibility between a pair of
shapes, whileCs is its symmetric version where the sum of incom-
patibilities is taken. These matrices essentially de�ne a connectivity
graph with weighted edges spanning the entire collection, such that
only the edges de�ned byCd are directed.

To obtain a correspondence between an arbitrary pair of shapes
Si ; Sj , we search for a path of inference through third parties in the
graph and compute the correspondence matrixCij by multiplying
the correspondence matrices of shapes along the path. One possi-
bility to derive an inference path is to search for the minimum cost
path fromSi to Sj within the connectivity graph, for instance, by
considering the sum of weights given byD andCs . However, such
a path may still include edges with large weights, as only the sum of
weights is minimized. Thus, we favor a path for which the weight of

each edge along the path is minimal, contributing to its overall reli-
ability. A path with this property is known as aminimax path. In an
undirected graph, such as the one given byGs = D + Cs , the mini-
max path is the path fromSi to Sj in the minimum spanning tree of
Gs , denoted byT Gs . In the directed graph given byGd = D + Cd ,
this path can be found through a modi�cation of Dijkstra's short-
est path algorithm [Kaibel and Peinhardt 2006]. For general corre-
spondence inference between two shapes, there is no signi�cance
to direction, since correspondence is bidirectional. However, in the
following sections, we will evaluate the practical impact of edge
directionality in applications such as segmentation propagation.

6 Experiments and evaluation

In this section, we analyze the result of applying our method on
shape collections of varying sizes for the construction of correspon-
dence networks. In Section 7, we demonstrate how these networks
can be used in diverse applications, and perform additional evalua-
tion related to these applications.

Datasets. Recently, large collections of shapes have started to
form, following efforts to gather models from various available
sources and group them into semantic categories [Chang et al.
2015]. We evaluate our method on nine sets of shapes. Of these,
six are purely from the ShapeNet collection [Chang et al. 2015]
(tables (8,509), cars (7,497), planes (4,045), lamps (2,318), gui-
tars (797), faucets (744)), two are from the COSEG dataset [Wang
et al. 2012] (chairs (400) and vases (300)), and the �nal set contains
7,178 chairs (6,778 from ShapeNet and 400 from COSEG). The
sets obtained from ShapeNet are of considerable size and lack any
correspondence or segmentation ground-truth information, there-
fore, we perform a qualitative analysis on them in order to evaluate
the behavior of our method. Conversely, the COSEG sets are pro-
vided with ground-truth segmentations, allowing us to perform a
quantitative analysis for this application; see Section 7. Ideally, we
would also perform such an evaluation on the larger datasets that
are the focus of our work, e.g., by collecting ground-truth informa-
tion with crowdsourcing. However, we note that such ground-truth
information is not always reliable, especially given the ambiguity
in correspondence estimation and segmentation for general shapes.
Perhaps ground-truth information should also capture a notion of
shape similarity, where certain segmentations or correspondences
are only applicable within portions of the set that are unambigu-
ously related.

Correspondence network. To assess the quality of the networks
of correspondences created with our method, we �rst inspect a few
qualitative samples extracted from the networks. In Figure 6, we
show six subtrees extracted from the minimum-spanning treeT Gs

of entire datasets, where the trees are constructed as described in
Section 5. We select a few shapes from different regions of the net-
works and use them as root nodes. Then, we extract the subportions
of these trees spanning from the roots to a few levels in depth.

In these examples, we identify various manners in which the struc-
ture of the shapes is captured. When studying each individual tree,
we note how the complexity of shape structure gradually changes as
we traverse the edges away from the roots. For example, in (a), we
detect changes in back structure, containing a varying number of
bars, as well as changes in bars connecting the chair legs. Moving
toward the leaves, we can even locate a few chairs with handles.

Please refer to our supplementary material for a quantitative com-
parison on the BHCP benchmark [Kim et al. 2013] and further ex-
amples featuring correspondence subtrees.



(a) (b)

(c) (d)

(e) (f)

Figure 6: Selected subtrees sampled from our correspondence networks. Given a source shape (the root at the bottom of each tree), we show
shapes that can be reached by following a few neighbor connections in the network of correspondences.



Figure 7: Shape in�uence. We show examples of highly in�uential
shapes, in blue, vs. non-in�uential shapes, in red. An in�uential
shape is a shape with a wide propagation reach, signifying that it
can reliably transfer information to a large number of other shapes,
either directly or by transitivity.

Shape in�uence. The directionality given to the structural differ-
ences between two shapes by the matrixCd (Section 5) essentially
captures relative differences in structural complexity. For a pair of
shapesSi andSj , if Si contains all the regions ofSj , but the con-
verse is not necessarily true, thenSi is structurally more complex
(or structurally equivalent) toSj . If Si is still suf�ciently similar to
Sj , despite a higher complexity, we determine thatSi has positive
in�uence overSj , signifying its potential ability to reliably trans-
fer information toSj . In this context, in�uence is also a transitive
property. IfSi has in�uence overSj , andSj has in�uence overSk ,
then by transitivitySi has in�uence overSk , and information can
reliably propagate fromSi to Sk .

To determine the extent of in�uence, or propagation reach, ofSi ,
we perform an analysis using the data collected throughout the
matching process. Aside fromCd , recall the undirected graph
Gs = D + Cs and the MSTT Gs de�ned in Section 5. We de�ne
a directed graphGd initialized with edges given byCd and remove
any edgeei;j 2 Gd for which the weight one0

i;j 2 Gs surpasses a
threshold� Diff = 0 :15, and such thate0

i;j 62 TGs . The role ofGd

is to emphasize directional structural similarity through the weights
on its edges. But, by removing any edge that signi�es an unreliable
af�nity between two shapes, we maintain general similarity along
the paths ofGd . Keeping edges that are a part ofT Gs ensures full
directional reachability acrossGd .

We can now compute the minimax path fromSi to all other shapes
in the collection through a modi�cation of Dijkstra's shortest path
algorithm. By construction, a minimax path fromSi to Sj in Gd

achieves the minimal amount of structural additions, while sustain-
ing general similarity along the route. We locate all the shapes in
the collection for which the minimax distance fromSi is below a
threshold� Str = 0 :01, indicating structural complexity in favor of
Si , and mark them as the subset of shapes that are reachable from
Si . These are essentially the shapes over whichSi has potentially
positive in�uence, as they can be transitively reached with minimal
ambiguity-causing additions to structure. By sorting the shapes in
the collection according to the size of their set of reachable shapes,
we determine the relative extent of in�uence of each shape, accord-
ing to its position in the sorted list.

Figure 7 features a subset of the most in�uential shapes (taken from
the top 10% shapes with the largest propagation reach), and a sub-
set of the least in�uential shapes (in the bottom 10%). We observe
how the in�uential shapes cover a variety of “standard” structures,
although they are not necessarily trivial, implying that they in�u-
ence other shapes that are variations of these structures. The least

(a) (dec1) (m1) (Our dec1) (Our m1)

(b) (dec1') (m1') (Our dec1') (Our m1')

(dec2) (m2) (Our dec2) (Our m2)

(dec2') (m2') (Our dec2') (Our m2')

Figure 8: Comparison to Wang et al. We obtain two projections
from the same viewpoint for the chairs in (a) and (b). The projec-
tions are then decomposed by the method of Wang et al. to form
the decompositions (dec1) and (dec1'). The decompositions are
then matched to each other, as shown in (m1) and (m1') with corre-
sponding region colors. In contrast, our method creates the decom-
positions (Our dec1) and (Our dec1') and provides the matching
shown in (Our m1) and (Our m1'), which is more structure-oriented
and meaningful. Another comparison example is shown for (dec2).

in�uential shapes, however, have quite peculiar structures, which
also appear less frequently in these datasets.

Comparison to Wang et al. In Section 4.2, we discuss the con-
ceptual differences between our approach and that of Wang et
al. [2013]. A visual comparison is shown in Figure 8, obtained
by our own implementation of their method. In this example, two
chair models are decomposed into horizontal and vertical slabs, and
then matched. As instructed in their work, a target shape ((b) in the
�gure) is decomposed into twice the number of slabs than the de-
composition of the source ((a)) contains. We observe that, in com-
parison, our method yields decompositions that are more structure-
oriented and meaningful, with less fragmentation.

7 Applications

Our network of correspondences spanning a collection of shapes
can be leveraged for tasks that require reliable, similarity-driven
correspondence inference within the collection. We present here a
few example applications that bene�t from such a network. Please
refer to our supplementary material for more results.

Segmentation transfer. Large collections of shapes are likely
geometrically and topologically varied. Thus, consistently seg-
menting them is challenging, as learning a set of rules to capture
the properties of diverse shape parts is a complex problem. Manual



Figure 9: Segmentation propagation paths. Semantic segmen-
tations are consistently transferred through face-level correspon-
dences obtained by our matching process. Starting from a manual
segmentation given for the leftmost source shape in a sequence, we
propagate the segmentation along the path toward the rightmost
target shape. Parts colored in grey have no match to the preceding
shape and remain unlabeled.

segmentation is also impractical due to the signi�cant workload in-
volved. To alleviate this problem, we can make use of our network
of correspondences for segmentation transfer, effectively segment-
ing the shapes in a semi-supervised fashion.

We start with a small set of segmented shapes provided by users,
and use the network to transfer the segmentations throughout the
collection. Our networks deliver not only the basic correspondence
required for the transfer, but also propagation paths providing re-
duced ambiguity and increased reliability. Furthermore, our frame-
work can even be utilized to select the small set of shapes to be
segmented by users.

To select the set of shapes to be manually segmented, we stipulate
that the best candidates are shapes that are structurally-rich but still
similar to other shapes in the collection. A segmentation can then
be reliably transferred from more complex to simpler shapes. This
requirement is essentially captured by the property related to the ex-
tent of in�uence of a shape, computed in Section 6. Starting from
the reachable shapes de�ned for each shapeSi in the set, we greed-
ily select a set cover spanning the collection to serve as the set of

Variation Chairs (400) Vases (300)

K=50 99.17 89.25
Less seeds 99.09 89
K=25 98.74 89.64
K=ALL 99.22 86.52
Clusters 98.65 85.66
Random 95.88 84.79

Table 1: Segmentation accuracy. Shape area percentage that was
labeled correctly by our method under several variations as ex-
plained in Section 7.

Method Chairs (400) Vases (300)

Sidi 80.2 69.9
Kim-Auto 91.2 85.6
Kim-Man 96.9 81.2
FMap 98.1 94.3
SHED 78.8 78.5
PA-H 75.2 82.4
Ours 99.2 89.3

Table 2: Segmentation accuracy. Shape area percentage that was
labeled correctly by each method, as explained in Section 7.

Figure 10: Segmentation propagation from multiple sources.
Shape (a) contains parts that correspond to parts in both (b) and
(d). By combining the correspondence information given from these
two shapes, we obtain a complete and consistent labeling for (a),
shown in (c). In contrast, a single source propagation of segmen-
tation from either (b) or (d) yields an incomplete labeling for (a),
as shown in (e) and (f), respectively, resulting in unlabeled parts
colored in grey.

seed shapes from which to propagate manually-obtained segmenta-
tions. We can further narrow down the set of seeds by selecting the
top-k most in�uential shapes in the set cover if necessary.

Given consistent segmentations for the selected seed shapes, we
propagate the information through the network. For simplicity, we
greedily select, at each step, the pair of shapesSi andSj for which
Gs (i; j ) + Cd (i; j ) is minimal, such that the segmentation forSi

is known, and unknown forSj . A better approach, however, is to
allow propagation of information from multiple sources. In this
manner, we reduce the effect of error propagation, and increase the
amount of information �owing to a target, possibly covering corre-
spondence holes that may exist in individual connections between
a target and its potential sources. See Figure 10 for an example.

To transfer the segmentation from one shape to another, we take
an approach similar to the one proposed by Wang et al. [2013].
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Figure 11: Shape retrieval comparison. Top-5 retrievals given by
our method (CorrNet), compared to those given by the HoG de-
scriptor and the method of Su et al. [2015] (and Su* for chairs).
We note the emphasis on structural similarity of our method as op-
posed to geometric similarity emphasized by others.

Given a face-level segmentationl i for shapeSi , we can in-
fer a consistent segmentationl j for any shapeSj that corre-
sponds withSi . From the correspondence matrixCij (see Sec-
tion 4.3), we create a con�dence matrixA f j � n l , wheref j and
n l are the number of faces in shapeSj and the number of
labels in Si , respectively. For a face fcj

m 2 Sj , we set
our con�dence in its association with labell as: A (fcj

m ; l ) =P
fci

t 2 S i ; s:t: label( fci
t )= l Cij (fci

t ; fcj
m )=

P f i
t =1 Cij (fci

t ; fcj
m ), where

f i is the number of faces inSi . A full segmentation forSj is
then obtained through a graph-cut label optimization withA as the
data term, and face adjacency weighted by dihedral angles as the
smoothness term.

Figure 9 contains several examples for segmentation propagation.
Starting from a consistent face-level labeling provided manually for

Query Condition Top-5 retrievals
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Figure 12: Directional shape retrieval. Examples of retrieval re-
sults for conditional queries, specifying one of two directions: sim-
pler shapes / more complex shapes. The results are returned in the
order of their structural similarity to the query.

each source shape on the left, the labeling is propagated through
each shape in the path toward the target at the end.

As a quantitative analysis of the ef�cacy of our method, we com-
pute a set of seed shapes for the chair and vase sets of the COSEG
dataset, and propagate the consistent labeling provided with these
seed shapes to the entire dataset in the manner described above. The
seed selection process recommended 80 (out of 400) seeds for the
chair set and 108 (out of 300) seeds for the vase set. From these
we select the most in�uential shapes, and use them as seeds. We
compute segmentation accuracy as the percent of correctly labeled
surface area, according to the ground-truth.

Table 1 summarizes the accuracy obtained on a number of varia-
tions of our approach, designed to evaluate the contribution of our
correspondence and similarity estimation, its stability, and the in-
�uence of various steps and parameters. Our network of correspon-



dences is constructed for each variation based on the computed sim-
ilarities, facilitating the propagation of segmentation from the seeds
onwards. In our basic con�guration, we setK = 50 , and select the
top 15 most recommended seeds for chairs, and 10 for vases. Next,
we attempt a similar approach, but decrease the number of seeds to
10 and 7 respectively. In order to examine the in�uence ofK , we
then run the basic con�guration withK = 25 , and withK = ALL.
In the latter, we essentially ignore the distances given by HoG, and
compute a full all-pairs matching across the set. Furthermore, we
evaluate the ef�cacy of our seed selection process by running two
additional experiments. First, we perform spectral clustering on
the distance matrixGs (Section 5), and set the number of clusters
to be 15 (chairs) and 10 (vases). From each cluster we select the
center-most shape as a seed. Finally, as a baseline, we run our basic
con�guration 3 times with seeds selected at random, and record the
average accuracy among those runs.

These experiments highlight the bene�ts of our seed selection pro-
cess, and indicate that our method is stable to changes in parame-
ters. We note the difference in performance between the chair and
vase set, explained by the emphasis that is put on structure in our
approach. In the vase set, structural differences indeed exist, but ge-
ometric ones are more prominent. In contrast, in the chair family,
structure is highly varied and provides a strong cue for similarity
estimation.

Table 2 summarizes the performance of previous methods on these
co-segmentation tasks, as well as that of our basic con�guration.
We compare the co-segmentation method of Sidi et al. [2011]
(Sidi), the template-based method of Kim et al. [2013] with auto-
matic (Kim-Auto) and manual (Kim-Man) template initialization,
the functional maps-based method of Huang et al. [2014] (FMap),
the projective method of Wang et al. [2013] (PA-H), and the shape
edit distance of Kleiman et al. [2015] (SHED). The last two meth-
ods, like our method, provide a coupling between similarity and
correspondence. Since both methods perform a full matching be-
tween shapes, we could not leverage our notion of shape in�uence
for seed selection for propagation. Thus, we used the spectral clus-
tering approach described above. In both experiments we used the
distances computed by each respective method to select seeds and
determine the propagation routes, similarly to our own scheme.

We note that the method of Huang et al. [2014] (FMap) is more ad-
vantageous in its performance on the vase set and its unsupervised
nature. In comparison, our method performs slightly better on the
chair set and is semi-supervised due to its requirement of segmented
seed shapes. However, our method is more scalable to the ever-
growing repositories of 3D shapes, as it constructs a sparse network
of correspondences within a set spanning thousands of shapes in 1-
2 hours. The authors of Huang et al. [2014] state that computing
correspondences within a set of 8,401 shapes takes more than a day
on a powerful computer with their method.

For an additional comparison to an isometry-based correspondence
method [Solomon et al. 2016], please refer to our supplementary
material.

Shape retrieval. As shown by Li et al. [2015], the HoG-based
Light Field descriptor is a similarity estimator capable of supporting
high-performance retrieval tasks. Structural changes naturally in-
duce strong gradients, which are detected by this descriptor. How-
ever, this is only done implicitly, therefore the structure is often lost
within the global HoG descriptor. As such, it is a valuable tool to
locate similar general geometric shape and appearance to a given
query, but possibly overlooks important structural differences.

We leverage the structural similarity captured by our matching
method for the task of shape retrieval, with an emphasis on struc-
tural af�nity. To perform the retrieval, we order the nearest neigh-

bors of a query shape according to the matrixCs (Section 5). Fig-
ure 11 presents the top-5 retrievals obtained by our method for a
few selected queries performed on the test set of the SHREC 2016
dataset [Savva et al. 2016], compared to the shapes retrieved by
the HoG Light Field descriptor, as well as by the shape retrieval
method of Su et al. [2015], by taking the output of the penultimate
layer of the model as a comparable feature vector. This method
produces poor results since it is geared toward a different task - i.e.,
multi-class category-based shape retrieval, rather than �ne-grained
similar shape retrieval. We recognize the unfair disadvantage to the
detriment of this method. Thus, to obtain a fair comparison, model
instance indices instead of class indices are used as class label su-
pervision to �ne-tune the original network of Su et. al [2015]. This
is done with the SHREC 2016 chair training set, such that the fea-
ture vector serves for �ne-grained shape similarity estimation. Sim-
ilarly to HoG, we observe the tendency of this approach (denoted
as Su* in Figure 11) to focus on the overall geometric similarity
rather than local structural details, and attribute it to the aggregated
feature vector.

We note that the geometric similarity captured by our matching is a
coarse one, composed only of magnitude and depth discrepancies,
and is not nearly as �ne as the one captured by HoG. As portrayed
in the results, our method emphasizes structural rather than stylistic
similarities between the shapes. This suggests that combining our
approach with a descriptor that measures geometric similarity, such
as HoG, can potentially provide a stronger similarity estimation that
emphasizes both geometry and topology.

Directional shape retrieval. Another application of the relative
structural complexity captured by the matrixCd (Section 5), is con-
strained shape retrieval, where we seek to handle queries requesting
similar shapes that are either of a simpler or a more complex struc-
ture than the query. For a given query shapeSi , we collect two sets
of shapes from thei -th row and column inCd . The �rst set contains
any shapeSj for whichCd (j; i ) � � str (Si contains nearly all the re-
gions ofSj ) andCd (i; j ) � � str� (Sj does not contain all the regions
of Sj ), implying thatSj is of a simpler structure to that ofSi . The
second set is formed by reversing the roles, and is therefore popu-
lated by shapes that are of a more complex structure. Depending on
the type of query (requesting simpler or more complex shapes), we
take one of these two sets as the result and present them in order of
structural similarity to the query. See Figure 12 for some examples.

Structural collection representation. Exploration of shape col-
lections is an interesting problem in Computer Graphics, combining
shape similarity estimation with user interface considerations. In
this context, we are interested in the construction of a represenation
of a collection of shapes that will provide a summary of the avail-
able shapes from a structural viewpoint. We note that an important
by-product of our matching process, and the structural similarity
estimation, is a division of the collection into clusters of structural
equivalence. To obtain these clusters, we observe the graph given
by the matrixCs , and remove all the edges that surpass the strict
threshold0:1� � str , thereby eliminating connections that can poten-
tially contradict structural equivalence. Next, we compute the con-
nected components within the graph, yielding clusters of structural
af�nity. We form a new graph composed of the clusters as nodes,
and re-incorporate the removed edges as connectors between clus-
ters. Figure 1 features the minimum spanning tree computed on
this cluster graph (using only clusters of substantial size), capturing
the structural diversity within the collection and the gradual change
in structure given by traversing the paths of the tree. We focus on
an example path through a sequence of cluster representatives, and
highlight any structural event between successive representatives.



(a)

(b)

(c) (e) (g)

(d) (f) (h)

Figure 13: Limitations of our method. The sensitivity of our de-
composition approach to structural changes on the projections may
lead to an overly fragmented partitioning that is not meaningful
enough for matching, such as the decomposition of the bicycle in
(a), shown in (b). Additionally, 2D projections contain limited in-
formation pertaining to the volume of the shape extending in the
perpendicular direction to the projection plane. Thus, the two pro-
jections, taken from the back viewpoint, of chairs (c) and (d), shown
in (e) and (f), appear closely similar, leading to the matching shown
between (g) and (h), where the seat of (c) is matched to the connect-
ing bar of (d).

8 Conclusions, limitations and future work

We presented a method to construct a network of correspondences
spanning an entire collection of shapes. The method organizes
shapes in a graph encoding near-equivalent structure, where some
edges signify a change in topology or a signi�cant change of struc-
ture between two shapes. Our venture is guided by two meta ideas.
The �rst is the intimate reciprocal relation that exists between sim-
ilarity and correspondence, implying that a correspondence com-
puted between similar shapes is signi�cantly more reliable. Second,
similarity between shapes is generally harder to quantify than struc-
tural changes in corresponding shapes. Thus, our method follows
a robust pairwise matching process that estimates correspondence
and similarity simultaneously, determining the reliability of a con-
nection. Reliable connections can then be leveraged for information
propagation within the network.

The notorious dif�culty associated with the problem of pairwise
shape matching prompted an endeavour to break down the complex
3D problem into many simpler problems, followed by an aggre-
gation of the results. Aiming to emphasize and detect structural
differences between shapes as cues for dissimilarity, we rely on
these simpler correspondence problems to alleviate the complica-
tions involved in the analysis of structure in 3D. These differences,
or events, as illustrated in Figure 2, occur when the correspondence
is not a one-to-one correspondence. It is important to note that,
throughout the analysis process, none of the input shapes undergo
any form of explicit segmentation. Instead, the correspondences
are established between 2D regions, de�ned by a local optimization
designed to decompose a shape projection into regions with coher-
ent structure. This implicit part-based matching is less sensitive to
af�ne transformations between parts, and greatly contributes to the
robustness of connections in the network.

The projective nature of our correspondence estimation is also the
main limitation of our method, as it implies sensitivity to articu-
lations. Our method is therefore more suitable for unarticulated
shapes, such as man-made objects. Additionally, due to the empha-

sis put on structure in the context of a 2D projection, an intricate
shape (e.g. bicycle) may be over-partitioned thereby compromising
a meaningful matching (see Figure 13(a)-(b)). Furthermore, despite
leveraging depth information given by the projection, some infor-
mation is naturally lost in the reduction from 3D to 2D. As such, the
method is unaware of the extent of shape parts that run orthogonally
to the projection plane, potentially leading to an ambiguous corre-
spondence (see Figure 13(c)-(h)). In the future, we are interested in
exploring options to address this issue, e.g., by using layered depth
images.

Another limitation of our method is related to the conceptual na-
ture of information propagation, which inevitably, is typically ac-
companied by error propagation. However, the remedy to this is a
conservative correspondence and similarity measure. Our method,
like other co-analysis methods, assumes that the collection is dense
enough, and there are suf�cient commonalities among the shapes
in the collection. The nature of the propagation, unlike a global
co-analysis, allows us to build a connected network that contains
shapes of rich variability of geometry and structure. In the future,
we would like to make this network dynamic, allowing insertion
and removal of shapes, as well as leverage the network as a tool for
shape analysis and shape alteration through network traversals.

Finally, to address our set alignment assumption, we suggest a com-
bined scheme where an initial naive alignment sets the ground to an
iterative process where both correspondence and alignment are pro-
gressively improved based on the outcome of the previous iteration.

For a full implementation of our method please see our project page
under http://www.cs.tau.ac.il/� noa�sh/corrnet.
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