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Abstract—We present a structure-aware technique to consolidate noisy data, which we use as a pre-process for standard clustering and
dimensionality reduction. Our technique is related to mean shift, but instead of seeking density modes, it reveals and consolidates
continuous high density structures such as curves and surface sheets in the underlying data while ignoring noise and outliers. We provide
a theoretical analysis under a Gaussian noise model, and show that our approach significantly improves the performance of many
non-linear dimensionality reduction and clustering algorithms in challenging scenarios.
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1 INTRODUCTION

W E present a structure-aware filtering (SAF) method
that consolidates noisy data by projecting it onto

underlying, lower dimensional structures. To reveal struc-
tures in noisy inputs, SAF concentrates sample points
toward latent and lower dimensional data manifolds, while
maintaining an even distribution of samples across these
manifolds. We achieve this by adding a regularization to
the weighted data averaging in conventional mean shift [1].
A theoretical analysis under a Gaussian noise model is
provided, which reveals the parameter settings needed to
balance between data concentration on the manifolds and
even distribution across them. Empirical experiments show
that SAF can significantly boost the performance of state-of-
the-art clustering and dimensionality reduction approaches.

In clustering applications, data may form arbitrary, lower
dimensional structures embedded in a feature space. A
general strategy to address this problem is to project the
data into lower dimensional subspaces where the clusters are
more apparent. Often numerous subspaces are required, for
example if each cluster manifests itself in a different subspace.
The problem is more challenging, however, when the clusters
form non-linear structures as demonstrated in Figure 1. Here
each cluster has a curvy non-convex structure and the two
clusters are intertwined such that they are not separated
in any linear subspace. It becomes even more difficult in
the presence of irrelevant features or data measurement
uncertainties, which appear as noise. As shown in Figure 1,
standard techniques such as spectral clustering or DBSCAN
may fail to cluster such data.

Our structure-aware filtering technique (SAF) excels
when the data forms low-dimensional structures that are
contaminated by higher-dimensional noise. It is most ef-
fective when the low-dimensional manifolds are highly
non-linear, like the curvy clusters in Figure 1, which SAF
recovers succinctly (red points). After processing the data
with SAF, standard clustering techniques are successful as
demonstrated in Figure 1. A key advantage is that SAF
does not require any local parametric representations of the
underlying manifolds. Testing and evaluating our method on
various benchmarks shows that SAF improves performance
of many standard clustering techniques.

Clustering is also related to (nonlinear) dimensionality

Fig. 1. A challenging example with two intertwined clusters, corrupted with
noise. After projecting the input data (left) onto the underlying structure
using our structure-aware filtering (SAF) approach (red points in the
middle), spectral clustering or DBSCAN (right) detect the proper clusters.

reduction, as many clustering techniques strive to construct
a lower dimensional embedding of the data before clustering.
In comparison, our approach does not project the data to
lower dimensional spaces directly. Instead, it projects noisy
data onto lower dimensional manifolds, but each data point
still maintains its high dimensional features. It can therefore
be viewed as a “dimension consolidation” technique. We
demonstrate that our strategy can be used as a pre-process
to standard dimensionality reduction, and our consolidation
indeed leads to more robust results of a number of standard
clustering approaches as well.

In summary, the main contribution of this paper is to
demonstrate how to boost the performance of common
clustering and dimensionality reduction techniques by apply-
ing a novel structure-aware data consolidation approach as
a pre-process. Our theoretical analysis proofs that, under
simplifying assumptions (isotropic Gaussian noise with
known variance, planar manifolds in arbitrary dimensions),
the proposed structure-aware filtering converges to the
underlying data manifolds. Empirical evidence shows that
our analysis provides valid guidance to the selection of
algorithmic parameters in practical applications.

2 RELATED WORK

For an overview of research on clustering we refer the
reader to recent surveys [2], [3] and discuss only selected
works here. Many clustering techniques are derived from
k-means clustering, including for example k-medians [4] and
many others. Gaussian mixture models (GMMs) [5] and the
expectation-maximization (EM) algorithm are also closely
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related to k-means clustering. One of the main limitations
of most k-means related algorithms is their assumption that
clusters exhibit simple shapes, such as isotropic (k-means
clustering) or ellipsoid (GMMs) distributions. In contrast,
hierarchical clustering does not require the user to specify
the number of clusters and can naturally produce arbitrary
cluster shapes. We refer readers to standard textbooks for
an overview [6]. These techniques either proceed top-down
(divisive) or bottom-up (agglomerative). DBSCAN [7] is one
of the most popular agglomerative algorithms. It greedily
aggregates points in high density neighborhoods to clusters,
which may form arbitrary shapes.

Clustering by seeking modes of an underlying density
distribution is another popular approach. The best known
example is the mean shift algorithm [1] and its variations.
These techniques do not require the specification of the
number of clusters and can also find clusters with arbitrary
shapes. The underlying kernel density estimation, however,
also suffers from the curse of dimensionality, which restricts
them to lower dimensions.

Subspace clustering is a general strategy to work around
the curse of dimensionality, and we refer the reader to Kriegel
et al.’s recent survey of these techniques [2]. Dimensionality
reduction maps the data to a lower dimensional space, often
using non-linear techniques [8], before further processing
such as visualization or clustering. Spectral clustering [9]
relies on an embedding given by the spectral analysis
of the similarity matrix of the data. It is highly related
to dimensionality reduction techniques using Laplacian
eigenmaps [10] and diffusion maps [11]. Typically, spectral
clustering techniques produce their final output by applying
k-means clustering after dimensionality reduction. Kannan
et al. [12] provide a thorough analysis of spectral clustering
using a novel quality criterion. Dhillon et al. [13] made
an interesting connection between kernel k-means [14] and
multiclass spectral clustering [15].

The method proposed in this paper is not a clustering or
dimensionality reduction technique on its own, but it can
significantly improve the performance of many approaches
mentioned above by consolidating the data before clustering
or embedding. Technically, our consolidation algorithm falls
into the locally optimal projection (LOP) framework [16], [17],
[18] in its discretized form. Huang et al. further introduce
a L1-medial skeleton [19] as a curve skeleton representation
for 3D point clouds using such locally optimal contraction.
Wu et al. augment each surface point to a deep point [20] by
associating it with an inner point that resides on a structural
mixture of skeletal curves and sheets. The common objective
of these works is to seek a proper interpretation of the
noisy input using a data fitting term complemented with a
repulsion term. In a similar spirit, we consider a large sample
scenario and have made the first attempt on analyzing
continuous densities, resulting in a convergence proof for
a special case, and a structure-aware data consolidation
method that greatly assists many data mining applications.

Our technique also shares similarities with manifold
denoising algorithms [21], [22], [23], [24], [25], [26]. Manifold
blurring mean shift [22] restricts mean shift directions to
be parallel to manifold normals estimated using local PCA.
Sparse subspace denoising [25] builds on sparse subspace
clustering and includes a subspace reconstruction error by

estimating locally linear subspaces using PCA to achieve
denoising. Robust PCA [27] suppresses outliers by decom-
posing a highly corrupted measurement matrix into a low-
rank and a sparse matrix. Hein and Maier [21] propose
Manifold Denoising (MD) using a neighborhood graph
Laplacian of the data. Laplacian smoothing, however, shrinks
the manifold and ultimately collapses it to a single point.
Hence, manual tuning of the desired amount of smoothing
is in general required. Most recently, Deutsch et al. [26]
propose a Manifold Frequency Denoising (MFD) algorithm
by removing the high frequency bands in the spectral graph
wavelet domain. It is a global method and can produce clean
output when there exists only one underlying manifold.
However, when the noise is severe and the underlying
manifolds are nearby, the results of MFD degenerate.

3 METHOD

Our goal is to improve existing clustering and dimensionality
reduction algorithms by developing a data consolidation
technique as a pre-process, which we call structure-aware
filtering (SAF). Here we first introduce the SAF approach
(Section 3.1) by starting with an intuitive continuous formula-
tion, where input and output data are modeled as continuous
density functions. This facilitates a theoretical analysis that
allows us to explicitly derive the behavior of SAF (Section 3.2).
Finally, we discuss a discrete implementation (Section 3.3).

3.1 Structure-aware Filtering
SAF consolidates noisy data densities by contracting them
locally to remove noise and reveal high density structures.
We first formulate SAF by modeling the noisy input data
densities as continuous functions, and expressing SAF as a
continuous flow given by a time dependent velocity field
v(z, t) : (Rn, R) → Rn. Denoting the input data density
fp(z), we initialize a time-dependent output density fx(z, t)
as fx(z, 0) = fp(z). Then, the goal of the SAF flow is to
advect fx(z, t) to gradually remove noise while revealing
the underlying structures in the input density fp(z).

We model the noisy input data density fp(z) by adding
noise to an underlying m-dimensional data manifold M .
Let us assume the data is mapped to Rn via an embedding
i : M → Rn, and we have a probability density pM on
M . Then we express the data-generating process in Rn as
X = i(θ) + ε, where θ ∼ pM and we assume isotropic
Gaussian noise ε ∼ N(0, σ). Hence, the noisy input density
is represented as

fp(z) = (2πσ2)−
n
2

∫
M
e−
||z−i(θ)||2

2σ2 pM (θ)dθ. (1)

While noise distributions other than Gaussian could be used,
we will focus on Gaussian noise in our theoretical analysis.
Note that Equation (1) can be considered a generalization
of the Gaussian latent variable model used in Probabilistic
PCA [28], where θ is Gaussian and i(·) is linear.

The SAF velocity field consists of two components: the
first one “pulls” along the gradients of the noisy input data
density. This term tries to accumulate output density in
local extrema of the noisy input density, and we call it
the data term. The second term “pushes” output density
along its negative gradients, hence we call it a repulsion
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term. This term makes sure that the output density does not
“clump” around weak density extrema in the noisy input
data density. The repulsion term allows us to consolidate and
enhance latent continuous structures in the input data, such
as one-dimensional (curve) or higher-dimensional (surface)
manifolds. More precisely, we define the SAF flow with the
velocity field v(z, t) as

v(z, t) = ∇(fp ∗K)(z)− λ(z, t)∇(fx ∗ L)(z, t).

Here the smoothing kernel K serves to remove noise from
the input density, and L smooths the output density itself
with a balancing weight function λ(z, t). The output density
fx(z, t) is time dependent, and related to the velocity field
via the continuity equation

∂fx(z, t)

∂t
= −∇ · (fx(z, t)v(z, t)) .

Let us assume the smoothing kernelsK and L are radially
symmetric, so we can write them as K(ξ) = k( 1

2‖ξ‖
2) and

L(ξ) = l( 1
2‖ξ‖

2), ξ ∈ Rn. Further assuming k and l are
differentiable, we have

∇K(ξ) = ξk′(
1

2
‖ξ‖2), and ∇L(ξ) = ξl′(

1

2
‖ξ‖2),

where k′ and l′ are derivatives with respect to the argument
1
2‖ξ‖

2. In addition, we define the weighting as

λx(z, t) = µ

(
fp(ξ) ∗ k′( 1

2‖ξ‖
2)
)

(z)(
fx(ξ) ∗ l′( 1

2‖ξ‖2)
)

(z, t)
,

with a global user parameter µ > 0. Here ξ is the integration
variable in the convolution, which we may omit in the
following for clarity. After rearranging and scaling the
velocity field we obtain the final SAF formulation

v(z, t) =
fp ∗

(
ξk′( 1

2‖ξ‖
2)
)

fp ∗ k′( 1
2‖ξ‖2)

(z)− µ
fx ∗

(
ξl′( 1

2‖ξ‖
2)
)

fx ∗ l′( 1
2‖ξ‖2)

(z, t).

(2)

3.2 Theoretical Analysis

Given a noisy input density representing an underlying
manifold, the data term of SAF attracts output density
towards local maxima of the noisy input density, while the
repulsion tries to maintain a smooth output density that
is evenly distributed over the underlying manifold. These
two terms need to be properly balanced: if the data term
is too strong, data may be concentrated at isolated density
modes; if the repulsion force is too strong, data may diffuse
away. Here we provide a theoretical analysis of this process
to understand under which circumstances SAF manages to
attract density to the underlying manifold.

To make analysis tractable, we consider the special case
where the smoothing kernels k and l are Gaussian, and the
underlying data manifold is a hyperplane in Rn, i.e., the
noisy input data density fp and the initial output density are
degenerate Gaussians. We first analyze the one-dimensional
case, and then generalize to arbitrary dimensions.

3.2.1 One-dimensional Case
Let G0,σ2(ξ) denote a zero-mean, univariate Gaussian
distribution with variance σ2. We introduce the notation
g0,σ2( 1

2‖ξ‖
2) = G0,σ2(ξ), and note that g′0,σ2 = −g0,σ2 . In

the 1D case, the data manifold is represented by a Dirac
impulse, the noisy input density is given by the 1D Gaussian
fp = G0,σ2 , and the smoothing kernels are k = l = g0,h2 .
The following theorem describes how SAF converges to the
noise free input (the Dirac impulse) in this scenario.

Theorem 1. Let fp(z) = fx(z, 0) = G0,σ2(z), then for any
t ≥ 0 the output density is a Gaussian with some standard
deviation ω(t), i.e., fx(z, t) = G0,ω(t)(z). In addition, if

σ2 <
1− µ
µ

h2, (3)

then ω(t) → 0 as t → ∞. In other words, the output density
converges to a Dirac impulse, i.e., the true 1D data manifold.

Proof. The initialization fp(z) = fx(z, 0) = G0,σ2(z) ensures
that the first part of the theorem holds at t = 0. Assuming it
is also true at time t > 0, we note that

fp ∗ (ξ · k′)
fp ∗ k′

(z) =
G0,σ2 ∗ (ξ · g′0,h2)

G0,σ2 ∗ g′0,h2

(z)

= − h2

σ2 + h2
z,

fx ∗ (ξ · l′)
fx ∗ l′

(z, t) =
G0,ω(t)2 ∗ (ξ · g′0,h2)

G0,ω(t)2 ∗ g′0,h2

(z, t)

= − h2

ω(t)2 + h2
z,

and hence the velocity from Equation (2) becomes

v(z, t) =

(
− h2

σ2 + h2
+ µ

h2

ω(t)2 + h2

)
z. (4)

This suggests that v(z, t) corresponds to a uniform scaling of
space, which means that the output density stays Gaussian
at a time > t and proofs the first part of the theorem
by induction. To show the second part, let us denote the
instantaneous scaling factor at time t as

τ(t) = 1− h2

σ2 + h2
+ µ

h2

ω(t)2 + h2
. (5)

Space is monotonically contracted (scaled down) if 0 ≤
τ(t) < 1 for all t, which is guaranteed by Equation 3.

As a key result, the theorem above provides a simple
equation that characterizes the user parameters µ (repulsion
strength) and h2 (size of smoothing kernel) that lead to
guaranteed convergence.

3.2.2 Hyperplanes in Arbitrary Dimensions
We generalize this analysis to the n-dimensional case by
considering axis-aligned hyperplanes with uniform density
pM ≡ 1 as the data manifolds1. Let us define an axis
aligned hyperplane by the set H of coordinate axes that
lie in the hyperplane. That is, H is a subset of the indices
{1, . . . , n}, and its cardinality |H| = m corresponds to the

1. pM cannot be considered a proper probability density in this case,
but this is not an issue for our analysis.
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Fig. 2. Consolidation process using anisotropic SAF.

dimensionality of the hyperplane. Using Equation (1), this
leads to noisy input densities represented by degenerate, axis
aligned multivariate Gaussians with zero-means, which are
equivalent to products of 1D Gaussians,

fp(z) =
∏
i∈H̄

G0,σ2(zi),

where H̄ = {{1, . . . , n} \ H}, z denotes an n-dimensional
vector, and zi is the i-th element in the vector.

Similar as in 1D, we assume the intermediate distribution
is initialized as fx(z, 0) = fp(z), and the smoothing kernels
are k = l = g0,h2 . In this special setting, the n-dimensional
case directly reduces to the 1D case as all involved functions
are separable into products of 1D functions, which means
that also the convolutions are separable. As a consequence,
the velocity vi(z, t) in each dimension i ∈ H̄ is analogous to
the 1D case in Equation (4),

vi(z, t) =

(
− h2

σ2 + h2
+ µ

h2

ω(t)2 + h2

)
zi, for i ∈ H̄, (6)

and Theorem 1 applies to each dimension i ∈ H̄ separately.
On the other hand, the velocities parallel to the hyperplane
are zero, vi(z, t) = 0 for i ∈ H . Note that our analysis in-
cludes arbitrarily oriented hyperplanes, since we can simply
rotate the coordinate system to align with the hyperplane,
and then define the hyperplane as above.

3.2.3 Curved Manifolds
We can rewrite Equation (2) as

v(z, t) = (1− µ)(i(θmin)− z)︸ ︷︷ ︸
(I)

−
(
i(θmin)−

fp(ξ)ξ ∗ k′( 1
2‖ξ‖

2)

fp(ξ) ∗ k′( 1
2‖ξ‖2)

(z)

)
︸ ︷︷ ︸

(II)

+ µ

(
i(θmin)−

fx(ξ)ξ ∗ l′( 1
2‖ξ‖

2)

fx(ξ) ∗ l′( 1
2‖ξ‖2)

(z, t)

)
︸ ︷︷ ︸

(III)

. (7)

where i(θmin) = arg mini(θ) ||z − i(θ)|| denotes the closest
point to z on the data manifold M . The first term (I)
represents motion towards the manifold M , as desired. Hein
et al. [21] show that the second term (II) approximates
−mH − 2

pM
〈∇pM ,∇i〉, where H is the mean curvature

normal of M . The mean curvature term here smooths and
shrinks the manifold, and the gradient of the data density
∇pM leads to “clumping”. Both these undesirable effects can
be observed in practice.

In contrast, the repulsion in SAF is represented by a third,
similar term (III), but with opposite sign compared to (II),

Fig. 3. Clustering without (SAF) and with anisotropic repulsion (A-SAF).

and for an evolving manifold fx. Hence repulsion in SAF
counteracts the mean curvature smoothing and shrinkage,
and it leads to more uniform densities on the manifold due to
tangential diffusion. In practice (Section 3.3.2), our approach
converges to stable structures without collapsing. In addi-
tion, if we choose the parameters according to Theorem 1,
we obtain thin manifolds without noise. Nonetheless, the
analysis provided here can only give an intuition; a thorough
proof for non-linear cases is left for future work.

3.3 Discrete SAF with Anisotropic Repulsion
We implement a discretized version of SAF following a
Lagrangian approach, i.e., we represent densities by sets
of sample points. The input density fp is given by points
{pj}, and fx by points {xi(t)}. Then the data term from
Equation (2) (without normalization) is

fp ∗
(
ξk′(

1

2
‖ξ‖2)

)
(z) =

∑
j

(pj − z)k′(
1

2
‖pj − z‖2).

In addition, let us generalize the continuous formulation
from Equation (2) to anisotropic kernels for repulsion,
which will allow for more effective repulsion in practice as
discussed below. We implement an anisotropy by including
a matrix A to linearly deform the repulsion kernel, that is
L(Aξ) = l( 1

2‖Aξ‖
2). This leads to the generalized repulsion

term and its discretized form

fx ∗
(
ATAξk′(

1

2
‖Aξ‖2)

)
(z)

=
∑
j

ATA(pj − z)k′(
1

2
‖A(pj − z)‖2).

Now we evaluate the velocity field only at the sample
points {xi(t)}, and advect the samples with unit time steps.
Their updated positions {xi(t + 1)} in the next time step
immediately define fx for the next iteration. For simplicity
of notation, denote xi = xi(t) and x′i = xi(t+ 1). Then the
discretized version of SAF defined at each sample point is

x′i =xi +

∑
j(pj − xi)k′( 1

2‖pj − xi‖
2)∑

j k
′( 1

2‖pj − xi‖2)

− µ
∑
i′ A

TA(xi′ − xi)l′( 1
2‖A(xi′ − xi)‖2)∑

i′ l
′( 1

2‖A(xi′ − xi)‖2)

=

∑
j pjk

′( 1
2‖pj − xi‖

2)∑
j k
′( 1

2‖pj − xi‖2)

− µ
∑
i′ A

TA(xi′ − xi)l′( 1
2‖A(xi′ − xi)‖2)∑

i′ l
′( 1

2‖A(xi′ − xi)‖2)
.

The motivation behind the anisotropic repulsion is that, if
the data forms a lower dimensional structure embedded in a
higher dimensional space, we would like to direct repulsion
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Fig. 4. We illustrate the iterative consolidation process in a 2D example with a data distribution fp = G0,(∞,4). The user parameters are h = 4 and
µ = 0.5, which leads to convergence according to Equation (3). The first row shows the actual point movements where the dots are current positions
and the vectors are pointing to the next locations. The second row shows both empirical and theoretical (Equation (6)) update ratios of z′1/z1.

Fig. 5. Top row: we illustrate changes of point densities during the iterative consolidation process with different h values. Bottom row: empirical
estimate and theoretical prediction of the variances ω of the intermediate point distributions. We show results using mean and median repulsion with
blue and red crosses, respectively. While theoretical analysis with median repulsion is difficult, it empirically follows our prediction.

to move points around on the structure itself [19], [20]. In
practice, for each output point xi we perform a PCA analysis
on its k nearest neighbors and get the corresponding eigen-
vectors {v1

i , v
2
i , · · · , vni } and eigenvalues {λ1

i , λ
2
i , · · · , λni },

where n is the dimension of the input data. We denote the
n× n column matrix Ai = [λ1

i v
1
i ;λ2

i v
2
i ; · · · ;λDi v

D
i ], and use

it to adjust the shape of the repulsion kernel. Note that our
analysis from Section 3.2 also applies to anisotropic repulsion.
Anisotropic repulsion simply means that the variances hi in
the repulsion term in Equation (6) are scaled with the PCA
eigenvalue along the corresponding coordinate axis.

Figure 2 illustrates the consolidation process using
anisotropic SAF. The anisotropic repulsion force mainly
pushes points along the local major PCA directions, which
improves the regularity of data distribution and eventually
can lead to better clustering, as demonstrated in Figure 3.

3.3.1 Kernel Selection

The kernel k for the data term should be smooth to eliminate
noise in the input density, hence we use a (multidimensional)
Gaussian k( 1

2‖ξ‖
2) = g0,h2( 1

2‖ξ‖
2). The kernel l for the

repulsion term should have large derivatives around the
origin, such that close-by points are effectively pushed away
from each other. Therefore, in practice we also use a modified

repulsion kernel defined by its derivative

l′(
1

2
‖ξ‖2) =

{
−g0,h2( 1

2‖ξ‖
2)/‖ξ‖ ξ 6= 0,

0 ξ = 0.
(8)

In the discrete setting, using Gaussian repulsion kernels
means that the repulsion term vanishes if each output point
xi minimizes a locally weighted sum of square distances, i.e.,
if each point is the mean of its locally weighted neighbors.
We refer to it as “mean repulsion”. With modified repulsion
kernels defined in Equation (8), the repulsion term vanishes
if each point minimizes a locally weighted sum of absolute
distances, i.e., if each point is the median of its locally
weighted neighbors. We refer to this as “median repulsion”.

3.3.2 Empirical Validation

We empirically validate the theoretical results, that is, the
velocity from Equation (6) and the convergence criterion
from Equation (3), in a 2D setup with axes (z0, z1), following
the notation in Equation (6). The input points are uniformly
distributed along z0, and normally distributed along z1, that
is, σ0 = ∞, σ1 = 2 (subscript indices are dimensions as in
Equation (6)) and fp = G0,(∞,4). This is a degenerate 2D
Gaussian modeling a 1D line in 2D. We set the repulsion
strength to µ = 0.5. According to Equation (3) we need h2 >
4 (omitting the subscript index 1 for clarity) for convergence.
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Fig. 6. Convergence in different dimensions and with median repulsion. We add Gaussian noise (σ = 0.15) to 2D circles (first row, single circle and
two concentric ones) and 4D spheres (second row, single sphere and two concentric ones). We set the kernel size h = 0.1, and show results with
different µ values. Equation (3) predicts convergence for µ < 0.31. The third row shows histograms of distances to the center of the 4D spheres. The
values next to the red bell curves are their empirical means and variances, demonstrating convergence to thin manifolds as predicted for µ < 0.31.

Fig. 7. Performance of dimensionality reduction without (top) and with MD [21] (second row), MFD [26] (third row), and SAF (bottom) consolidation.

We visualize the convergence process for h = 4 in Figure 4,
where mean repulsion is used.

In Figure 5 we show evolution of the point density
over the iterations for different values of h2. This shows
that for h2 < 4 the distribution fails (or stops) to contract
because of the repulsion term. For h2 > 4 the distribution
continuously sharpens at a rate that is well predicted by the
theory. Deviations of empirical behavior from the theory can
be explained by the fact that the discrete point sets do not
exactly correspond to continuous Gaussian distributions.

Figure 6 illustrates that our theory well predicts the
convergence behavior with median repulsion for data in

different dimensions. While there is some shrinkage due to
the curved manifolds, SAF converges to stable structures
because of repulsion. In the supplementary we also compare
empirical results for mean and median repulsion, which
generates more uniform point distributions in practice.

3.3.3 Comparison with Mean Shift and LOP

The SAF data term is equivalent to mean shift, which accumu-
lates output density at local extrema of the input. We are not
interested in finding modes of the input, however. Instead,
we want to produce an output density that removes noise
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Fig. 8. Dimensionality reduction and clustering: the input consists of two
concentric 2D circles corrupted with 5D noise (the black dots). We elevate
2D rings to 5D by appending zeros, and then add standard Gaussian
noise. The leftmost column shows ground truth labeling (green and blue,
outliers black), the consolidated points (red) and the input points (gray).
We use PCA to project the 5D data to 2D. We compare four strategies
(from the top row to the bottom), “direct clustering”, “consolidation +
clustering”, “projection + clustering” and “consolidation + projection +
clustering”, with different clustering algorithms (from left to right). The
second row reveals the sensitivity of most clustering techniques to
higher dimensional data, which is not clustered well even though the
consolidation exposes the structure of the data. The third row shows that
reducing the dimensionality of the data does not solve the problem
due to the noisy data. In general, the “consolidation + projection +
clustering” strategy in the bottom row gives the best performance (AMI
scores in bottom right of subfigures). Some techniques (k-means, affinity
propagation, mean shift) are not suitable to cluster this type of data, and
they do not benefit from consolidation.

from the input and consolidates and reveals its continuous
structures. For this, the repulsion term is crucial.

The discrete formulation reveals that SAF is also a gen-
eralization of LOP operators [16], [17], [18], where the LOP
weights correspond to the derivatives of certain radial kernels
k and l. LOP with isotropic repulsion based on Euclidean
distances [17] corresponds to median repulsion (Equation 8),
while anisotropic SAF puts more effort on revealing and
consolidating continuous high density structures in the
underlying noisy data; see e.g., Figures 2 and 3.

4 RESULTS

Here we discuss the application of our approach to di-
mensionality reduction and clustering. We provide more
extensive experimental results in the supplemental material.

4.1 Dimensionality Reduction
Dimensionality reduction, or manifold learning, is an in-
dispensable tool for data analysis, such as visualization
or clustering. Existing techniques, however, often suffer
from noise present in the high dimensional data. Our SAF
can serve as a dimension consolidation tool that removes
noise in high dimensional space, which greatly improves
the performance of subsequent dimensionality reduction. In
Figure 7 we test some of the most common dimensionality
reduction methods with and without SAF consolidation.

We also compare SAF with two recent manifold denoising
methods, Manifold Denoising (MD) [21], and Manifold
Frequency Denoising (MFD) [26]. The resulting 2D embed-
dings show that the intrinsic shape of the data can be best
preserved when the data is consolidated with SAF before
dimensionality reduction.

4.2 Clustering

We evaluate our method by comparing the performance
of selected clustering techniques with and without our
data consolidation approach. As baseline techniques we
selected clustering algorithms that are commonly used,
widely available with source code, and representative for
various clustering strategies: KMeans clustering (KM) [29],
Affinity propagation (AP) [30], Mean Shift clustering (MS) [1],
Spectral clustering (SP) [31], Ward clustering (WD) [32],
Agglomerative clustering (AG) [33], DBSCAN clustering
(DB) [7], and Birch clustering (BI) [34], all implemented in
the scikit-learn library [35]. In each experiment, we tune the
parameters for all the selected algorithms to achieve optimal
consolidation results, and we compare results with and
without our data consolidation approach. For each clustering
algorithm, however, we use the same parameters regardless
of using consolidation or not. SAF parameters for all the
experiments can be found in supplemental material. When
the ground truth labeling is given, we compute the Adjusted
Mutual Information (AMI) to evaluate the clustering results.
Note that we exclude the extremely noisy points (depicted
as small black dots in the figures) from the calculation of
AMI scores, because assigning ground truth labels for those
points could be very ambiguous.

4.2.1 Dimensionality Reduction and Clustering
Many clustering algorithms cannot cope with high dimen-
sional data well. In Figure 8, although our method can
successfully clean up high dimensional noise and expose
the low dimensional structure, the clustering algorithms do
not benefit from the consolidation because the consolidated
points remain in high dimension. Projecting the input data
directly to a lower dimensional space often does not solve
the problem if the data is noisy. Once we project the
consolidated data into a lower dimensional space, however,
the improvement of clustering is significant.

This suggests that our consolidation method neither stops
working in high dimensional space, nor does it solve the high
dimensionality problem on its own. Consolidation using SAF
followed by dimensionality reduction and finally clustering,
however, is an effective scheme.

4.2.2 Different Dimensionalities
In Figure 9 we investigate how our consolidation performs
with increasing dimensionality. We test on data consisting of
two concentric hyperspheres with different radii, corrupted
by Gaussian noise. We keep the radii, the number of
sample points, and the noise level constant independent
of the data dimensionality. Note that we do not apply any
dimensionality reduction in this experiment.

As shown in Figure 9, the clusterings degrade as the
dimensionality increases up to 6D. One reason is that many
clustering algorithms themselves cannot handle high dimen-
sional data well. And, in higher dimensions, the data points
become sparser, which inevitably affects the robustness of our
consolidation. In other words, our method requires denser
data points or a better neighborhood definition (distance
metric) as the dimensionality increases. We also observe
similar effects with MD [21] and MFD [26]. In general,
however, SAF performs better in high dimensional cases.
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Fig. 9. Performance of SAF with increasing dimensionality, compared with MD [21] and MFD [26]. The data consists of two concentric hyperspheres
with different radii, corrupted with Gaussian noise. The rightmost bars “AVG” show the average over all clustering methods.

Fig. 10. Performance under different noise levels and for different datasets. We compare the clustering scores of our SAF consolidation to those of
direct clustering, MD [21] and MFD [26]. SAF performs the best, especially when the noise level is high where the structures are better preserved by
SAF. See also the supplemental material for visual comparisons.

Fig. 11. Clustering the MINST data with different 3D embedding spaces using PCA, isomap [36], LLE [8], spectral [10], and MDS [37]. The AMI
scores suggest that here agglomerative clustering (AG) and DBSCAN (DB) benefit most from consolidation, whereas spectral clustering does not.

Fig. 12. Clustering the Yale face data. The AMI scores show the benefit of SAF in almost all cases.
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4.2.3 Different Noise Levels
In Figure 10 we evaluate the performance of consolidation
under different input noise levels. We use the data generator
in the scikit-learn library to generate test data with desired
Gaussian noise. As shown in the figure, our consolidation
approach can substantially improve the clustering perfor-
mance under a wide range of input noise levels. MD [21] and
MFD [26] also improve the clustering performance under low
noise levels, but SAF better preserves underlying structures
when noise levels are high. Please refer to the supplementary
for visual comparisons.

4.2.4 Different Embedding Spaces
As discussed above, we found that dimensionality reduction
is important when dealing with high dimensional data. In the
experiment in Figure 11 we investigate the influence of using
different embedding spaces before clustering. We test on the
MINST data set and project the 96 dimensional input data
into 3D. Results suggest that using different dimensionality
reduction techniques will not make a big impact on our
consolidation method, as long as the underlying structure
can be preserved in the embedding space. While MD [21]
and MFD [26] also improve clustering performance, SAF
shows an overall performance advantage.

4.2.5 Different Target Cluster Numbers
We test the clustering performance for different target cluster
numbers using the extended Yale Face Dataset B [38]. This
dataset contains 38 individuals and around 64 frontal images.
We randomly selected 2, 4, 6 ,8 and 10 individuals from the
dataset and report the AMI scores in Figure 12. The original
face image is 1024 dimensions, which is projected onto a
9D affine subspace via PCA. The subspace is constructed by
randomly selecting 1900 training images from the dataset.
This pre-processing step was adapted and justified by Wang
et al. [39]. In average, our method can best improve the
clustering performance for different numbers of clusters
compared to MD [21] and MFD [26]. All three methods
work best for clustering only two groups of faces, where the
underlying structure can be more easily found. Please refer
to the supplementary for further details.

5 CONCLUSIONS

We present a novel structure-aware filtering (SAF) algorithm
with applications in dimensionality reduction and clustering.
We also provide a theoretical analysis of SAF that shows un-
der what circumstances SAF converges to a point distribution
on the underlying structures.

Through consolidating high-dimensional data, SAF can
greatly facilitate existing dimensionality reduction and clus-
tering techniques. Experiments on both synthetic and real
data demonstrate that the performances of a variety of
clustering algorithms are significantly boosted after SAF
is applied, and SAF outperforms other state of the art
techniques for manifold denoising.
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