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Abstract Cameras are now ubiquitous in our lives. A given
activity is often captured by multiple people from different
viewpoints resulting in a sizable collection of photograph
footage. We present a method that effectively organizes this
spatiotemporal content. Given an unorganized collection of
photographs taken by a number of photographers, capturing
some dynamic event at a number of time steps, we would
like to organize the collection into a space–time table. The
organization is an embedding of the photographs into clusters
that preserve the viewpoint and time order. Ourmethod relies
on a self-organizing map (SOM), which is a neural network
that embeds the trainingdata (the set of images) into a discrete
domain. We introduce BiSOM, which is a variation of SOM
that considers two features (space and time) rather than a
single one, to layout the given photograph collection into
a table. We demonstrate our method on several challenging
datasets, using different space and time descriptors.
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1 Introduction

Weconsider the following space–time layout problem:Given
an unorganized collection of N photographs taken by NH

photographers, capturing some dynamic event at NV time
steps roughly simultaneously, we would like to organize the
collection into a space–time table. An example of such a
space–time-organized table is illustrated in Fig. 1a. Each row
represents the set of photographs taken from about the same
position (likely by an individual photographer), and each col-
umn represents photographs taken at about the same time.We
assume that the photographers took shots of a rather short
event that occurred in a rather limited space–time domain,
so the commonality among the photographs is high. Such
a collection is likely to be found in social media networks,
where it lacks any image metadata (GPS location, EXIF time
tag, etc.). Moreover, as shown in [9], even if the image does
contain a time tag, it cannot be used for our task due to insuf-
ficient accuracy.

Wewere inspired by two recent works. Dekel et al. [9] pre-
sented a photograph sequencing technique that, given a set of
images that were captured roughly from the same viewpoint,
they determine the temporal order of the images. Averbuch et
al. [2] present a spatial ordering technique, where the images
are captured roughly at the same moment, but from different
unknown viewpoints, and the challenge is to find the spatial
order of the images. Our work aims to do both spatial and
temporal ordering, simultaneously.

Organizing such a collection of photographs boils down
into two apparently independent clustering problems: One
clusters the photographs by their spatial features, which is
the view direction, and the other by the temporal features,
which relies on the dynamic object in the scene. Without
enforcing any constraints on the clustering, a typical result
of such two independent clusterings is imperfect.
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Fig. 1 a Space–time table generated by our algorithm using the wall dataset. b The embedding of the input points into two 3D domains. The
coloring of the points represents the ground-truth clustering of the images into space and time clusters

The space–time layout problem can also be regarded as
an embedding problem. Here, the photograph collection has
to be embedded into a given table. In this sense, our work
is most similar to the recent works [12,30] that present a
method for arranging images into a grid according to their
similarities. However, unlike these methods, we use two sep-
arate features to organize the images into rows and columns.
The premise of our work is that better results can be achieved
by using both features together than by treating each sepa-
rately.

The technique that we present builds on a self-organizing
map (SOM) [16], which is a neural network that embeds
the high-dimensional training data into a two-dimensional
discrete domain. We introduce BiSOM, which is variation of
SOM that considers two features (space and time) rather than
one, to embed the given photograph collection in the table.
As we shall show, BiSOM does not consider the two features
independently. The key advantage of using a SOM is that,
unlike other clustering schemes, the intrinsic order among the
clusters is accounted for in the organization of clusters across
the table. We develop an objective function that evaluates the
quality of a given space–time table and define an optimiza-
tion problem to distribute the input images into a coherent
table.

2 Related work

Space–time Analysis Temporal analysis of visual data has
been studied extensively in the context of video synchro-
nization and alignment [5,10]. These methods try to align
the sequences captured by uncalibrated cameras of the same
dynamic scene fromdifferent viewpoints. Unlike thesemeth-
ods, in our problem, the temporal order of the photographs

is unknown. Dekel et al. [8,9] introduced a novel method for
temporal ordering a set of still images taken asynchronously
by a set of uncalibrated cameras that are colocated in space
and time.

Viewpoint analysis has received considerably more atten-
tion. It has primarily been studied in the context of shape-
from-motion (SFM) [31]. The viewing parameters are recov-
ered together with the reconstruction of a scene by consid-
ering the correspondence among many images of the same
scene. More recent methods [4,13,20,29], known as Photo
Tourism, reconstruct a static scene from an unorganized set
of tourist photographs, including the spatial position of the
photographers.

Averbuch et al. [2] present a technique to spatially order a
set of images capturing a static scene, taken simultaneously
by a group of people situated around the scene. This tech-
nique can deal with a single column in our space–time table,
independently of the other, without analyzing the temporal
domain.

The above space–time organization schemes are imper-
fect, so our technique focus is in employing global constraints
to improve their separation performance.

Self-Organizing Maps Self-organizing maps (SOMs)
were first introduced by Kohonen [16] as a method for
visualizing low-dimensional views of high-dimensional data.
Kiang [15] later showed how to extend self-organizing map
networks for clustering analysis. SOM has been further used
in the computer vision field for image segmentation [23],
image classification [18], clustering 2D shapes [11], face
recognition [3] and more.

An important result is that SOMs are topology preserving,
i.e., data vectors that are close in the input space will be close
in the resulting map. This aspect makes SOMs extremely
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valuable in data exploration tasks. Moehrmann et al. [21] use
arbitrary features for clustering the images, and the resulting
SOM is displayed to the user with one representative image
per unit, allowing to navigate and explore the image data
collection fast and intuitively.

Over the years, many modifications have been offered to
the traditional SOM[1,6,17], all presenting changes that only
affect the learning rule. In our work, we rely on the SOM
intuition and develop a novel technique that considers two
features, rather than only one, when organizing the input
elements into a low-dimensional domain.

Grid Layout Arranging images on a grid is a fundamental
task in infographics, data visualization and collection explo-
ration fields. A common approach for such task is to first
perform a standard graph layout without the grid constraint
and then align the images onto the grid points [12,24,30]. All
of the above methods use a single metric function to mea-
sure the pairwise distance between the images. Reinert et
al. [25] introduce a method for organizing images on a grid
according to two features, but their method is user supervised
and uses multiple image selections to define the separating
features.

In our work, we solve the grid layout problem by using
two separate and independent features and arrange the images
into rows and columns according to space and time features,
respectively. Furthermore, it should be emphasized that all
the abovemethods consider a rather fuzzymeasure of the cor-
rect grid layout, while in our work the ground-truth layout is
well defined.

3 Overview

Given an unorganized set of N images {I1, . . . , IN }, we
would like to organize the images into a space–time table of
size NH ×NV , where each row represents images taken from
about the same location and each column represent images
taken at about the same time. Defining such a table is equiv-
alent to clustering the images into (horizontal) rows {Hi }NH

1

and into (vertical) columns {Vi }NV
1 .

First, the images are analyzed, and for each image two fea-
ture descriptors xHi and xVi are extracted. These descriptors
aim to represent the horizontal and vertical properties of the
images. Images taken from close viewpoints have similar xHi
descriptors, while images taken from distant viewpoints have
distant descriptors. Similarly, the descriptor xVi aims to be
similar for images taken at about the same time. We assume
that the features that separate time and space are known,
but they are inaccurate. If they were accurate, the problem
of clustering the images into rows and columns would have
been trivial. Further details on feature extraction are given in
Sect. 7.

The xHi and xVi descriptors may be vectors of high dimen-
sions. To visualize them, we compute all pairs of distances
to define two similarity matrices and apply MDS to embed
the input images into two 3D domains (Fig. 1b). Notice how
the correct clustering in each domain is non-trivial.

We then imply our BiSOM algorithm which we describe
in Sect. 5. Our technique uses a grid of neurons, where each
neuron is associated with two weight vectors mH

i and mV
i ,

learns the data and clusters the data by optimizing the grid
network. During the training process, the neurons iteratively
adjust their weights to the input points, while maintaining
the inner relations, namely their grid structure. Besides the
clustering of the images into space clusters and time clus-
ters, the BiSOM algorithm outputs the order between the
clusters, thus defining the temporal order of the images and
the spatial order of the viewpoints. The output of the BiSOM
algorithm is an assignment of the input elements to a grid
of neurons, thus defining an initial guess for our space–time
table.

Finally, in Sect. 6 we develop an objective function based
on theNormalizedCut [28] criterion that evaluates the quality
of a given table. We use a heuristic relaxation process, which
locally optimizes this objective function, while maintaining
the order among the clusters, and yields the final space–time
table (Fig. 1a).

4 Unary-SOM

The self-organizing map (SOM), introduced by Kohonen
[16], is a method for embedding high-dimensional inputs
into a two-dimensional grid. Let us denote the set of input
elements as {xi }Ni=1 where each element is associated with a
singleweight vector xi ∈ R

D . Similarly, each neuron is asso-
ciated with a single weight vector with the same dimensions
mi ∈ R

D . The neurons are organized in a four-connected grid
structure of size NH × NV , reflecting the target dimension
of the table.

The training process is iterative, where at each iteration
t all input elements are fed one by one to the network, in
a random order. The closest neuron to the input element,
in terms of euclidean distance, is chosen to be the win-
ning neuron mc(t). The weights of mc(t) and the neurons
around it are updated to be closer and more similar to the
value of the input element. In the end of the training pro-
cess, the network of neurons has weights which reflect the
input data, so in fact, the input data are embedded into
the structure of the neurons. We call this SOM, Unary-
SOM, since it considers a single feature only, while later
we develop a BiSOM which considers two features. The
training algorithm of a Unary-SOM can be described as
follows:
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Algorithm 1 Unary-SOM

1: initialize the neurons {mi }Ni=1 with random weights
2: repeat
3: for all input element x do
4: set mc(t) to be the closest neuron to x
5: update theweights of the neuronsmi (t) aroundmc(t)w.r.t hi (t)
6: end for
7: until convergence

The update of the neighboring neurons’ weights is critical
and performed by the following process

mi (t + 1) = mi (t) + α (t) · hi (t) · [x (t) − mi (t)] (1)

The neighborhood function hi can be considered as a
smoothing kernel over the grid of neurons. The Unary-SOM
uses an isotropic Gaussian centered around mc(t), where ri
are the coordinates of the i-th neuron on the neuron grid and
rc are the coordinates of mc(t):

hi (t) = exp

{
−‖ri − rc‖2

2σ 2 (t)

}
(2)

Figure 2a shows the architecture of a 10 × 10 grid of
neurons and the definition of the neighborhood function hi .
In general, the farther a neuron is from mc(t), the lower the
amplitude of the Gaussian is, and hence, the lower is the
updating rate of the neuron’s weight vector.

The Gaussian width also decreases over time, by using
σ (t) = σ0 ·exp {− t

λ

}
as an exponential time-decaying func-

tion of the Gaussian width. Generally speaking, at the first
iterations of the training process, the neighborhood update
region includes the entire grid of neurons, and as it pro-
gresses, the neighborhood size decreases, until eventually,
it updates only a single neuron.

Furthermore, the update step amplitude is exponentially
decaying over time defined by the learning rate function
α (t) = α0 · exp {− t

λ

}
.

5 BiSOM

The BiSOM algorithm is based upon the Unary-SOM. As
the name implies, it is designed to deal with input ele-
ments that are defined by a bi-vector with two descriptors,
whereas the Unary-SOM deals with a single descriptor. We
denote each input point descriptors as xHi , xVi ∈ R

D . Simi-
larly, the neurons are also bi-vectors of the same dimensions
mH

i ,mV
i ∈ R

D . The BiSOM algorithm is described in Algo-
rithm 2.

Fig. 2 Architecture of Unary-SOM (a) and BiSOM (b). The gray tone
of the neurons represents the single feature that the Unary-SOM is
trained to. The red and blue tones are the horizontal and vertical descrip-
tors of the BiSOM algorithm. The current input element xi is used to
train the network, and the current winning neuron mc is marked in
white. Notice the isotropic (a) and anisotropic (b) neighborhood func-
tions centered around the winning neuron

Algorithm 2 BiSOM

1: initialize the neurons {mi }Ni=1 with random weights
2: repeat
3: for all input element x do
4: set mc(t) to be the closest neuron to x
5: update the H -weights of the neurons

{
mi

H (t)
}
around mc(t)

w.r.t hH
i (t)

6: update the V-weights of the neurons
{
mi

V (t)
}
around mc(t)

w.r.t hVi (t)
7: end for
8: until convergence

The major difference between the Unary-SOM and
BiSOM is the update step, which consists of two consecutive
steps:

mH
i (t + 1) = mH

i (t) + α (t) · hH
i (t) ·

[
xH (t) − mH

i (t)
]

mV
i (t + 1) = mV

i (t) + α (t) · hVi (t) ·
[
xV (t) − mV

i (t)
]
(3)

First, the neuron’s horizontal weight vector mH
i (t) is

updated using only xHi (t) and the neighborhood function
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Fig. 3 Training process of the Unary-SOM (top row) and BiSOM (bottom row) algorithm, demonstrating the adjustment of the neural network
grid to the input points (gray circles)

hH
i (t). The vertical neuron’s weight is then updated in a

similar manner.
Both of the neighborhood functions hH

i , hVi are defined
as an anisotropic Gaussian which has a different scale in
each dimension. We will further discuss the scale factor F
in Sect. 5.1. The location ri = (ui , vi ) of the i-th neuron
defines the neuron residing row and column on the grid.

hH
i (t) = exp

{
−

(
ui − uc

)2
F · 2σ 2(t)

+ (vi − vc)
2

2σ 2(t)

}

hVi (t) = exp

{
−

(
ui − uc

)2
2σ 2(t)

+ (vi − vc)
2

F · 2σ 2(t)

} (4)

Figure 3 demonstrates the training process of both algo-
rithms on a toy example.We use a set of 64 points as our input
elements, where the (x, y) coordinates of each point are the
xVi , xHi descriptors, respectively. To adopt theUnary-SOMto
our setup, we use a concatenated vector of our two descrip-
tors into one large single descriptor xi = [xHi , xVi ]. The
Unary-SOM algorithm (top row) is trained according to the
input elements’ locations, ignoring the valuable knowledge
about their horizontal and vertical distributions. Conversely,
the BiSOM algorithm (bottom row) maintains the neuron’s
grid structure during the whole process. The time complexity
of Algorithm 2 is similar to that of Algorithm 1 since the only
difference between the algorithms is the update step. For a
full demonstration of the training process, see the accompa-
nying video.

5.1 F factor

The factor F ∈ (0, 1] defines the ratio between the major
and the minor axis of the anisotropic Gaussian in the update
steps. In the first update step, we are updating the horizontal
weights of the neurons, using the neighborhood function hH

i
with the horizontal axis as themajor axis of the Gaussian (see
Fig. 2b). The update magnitude for the adjacent rows decays
faster than adjacent columns, thus encouraging neurons in the
mc’s row to have similar H -weights. Similarly, in the second
step, the neighborhood function hVi results in a bigger update
magnitude for neurons residing in the winning column than
for adjacent columns.

Basically, BiSOM is a generalized version of Unary-SOM
that allows us to give different weights to the horizontal and
vertical update steps. The ratioF plays an important role in
the training process and has a significant impact on the result.

Setting F → 1 causes the neighborhood function to
reduce back into an isotropic Gaussian with σH = σV =
σ (t). The BiSOMalgorithm then degenerates into anUnary-
SOM where the descriptor is the concatenated vector mi =[
mH

i ,mV
i

]
. The horizontal and vertical features are treated

equally during the update process. Thus, each neuron is
encouraged to be similar to each of its four neighbors equally.
Eventually, this leads the neurons to break down the grid
structure which means that neurons residing in the same
row/column are not necessarily similar.

On the other hand, setting F → 0 degenerates the
anisotropic Gaussian into a one-dimensional Gaussian. This
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Fig. 4 Grid stress and input stress as a function of F

implies that the first update step updates only the H -weights
of the H -neighbors, and the second step similarly. Eventu-
ally, the order between the rows and columns is violated.

In our work, we compromise between these two extreme
settings and allow the neurons to move independently to
preserve the data structure on the one hand and maintain
the grid structure on the other hand. To measure the trade-
off between these two requirements, we calculate the grid
stress which is the average distance between each neuron to
its four neighbors and the input stress which is the average
distance between each input element and its matching neu-
ron. Obviously, we would like to minimize both of the stress
parameters.

In Fig. 4, we elaborate on this and calculate the grid stress
and the input stress for different values ofF using different
sets of input elements. The input stress increases linearly as
F increases, while the grid stress is mostly constant for any
value of F , but rises fast for F < 0.1. We set empirically
F = 0.125 and use it through all our experiments.

5.2 Assignment

At the endof the trainingprocess,weobtain amapof neurons.
Each neuron represents an entry in the space–time table. Each
input element is then assigned by its nearest neuron to a table
entry. The assignment is not one to one, and some cells might
remain empty or crowded.

6 Refinement

In this section, we define an objective function f (T, SH , SV )

that evaluates the quality of a space–time table T according
to similarity matrices SH or SV . We then use a greedy local
search to relax our initial guess and to yield the final space–
time table.We briefly summarize the N -Cut technique below,

andwe then elaborate on how it is used to define our objective
function.

6.1 Normalized Cuts

Given a fully connected undirectedweighted graphG(V, E),
where the vertices V are points in the feature space and the
edge weightw(i, j) is associated with the similarity between
vertex i and j , the Normalized Cut algorithm [28] partitions
the vertex set V into two disjoint sets A, B by minimizing
the Normalized Cut criterion:

Ncut(A, B) = cut(A, B)

ass(A, V )
+ cut(A, B)

ass(B, V )
(5)

A cut is defined as the degree of dissimilarity between the
two disjoint sets A and B. Similarly, the association is the
partial volume of A from the entire set V :

cut (A, B) =
∑

a∈A,b∈B
w(a, b) (6)

ass (A, V ) =
∑

a∈A,v∈V
w(a, v) (7)

Shi andMalik [28] show thatminimizing theNormalizedCut
criterion is naturally related to maximizing the Normalized
Association criterion, given by:

Nass(A, B) = ass(A, B)

ass(A, V )
+ ass(A, B)

ass(B, V )
(8)

They further expand this criterion for K way partitioning of
the data into K disjoint sets:

NK
ass(A1, . . . , AK ) =

K∑
i=1

ass(Ai , Ai )

ass(Ai , V )
(9)

This implies that the best partition of the set V to K dis-
joint sets is the partition that maximizes the NK

ass criterion
calculated according to the similarity matrix.

6.2 The objective function

The objective function primarily aims to evaluate the clus-
ters’ quality. We use the well-known N -Cut scheme [28]
that evaluates the clustering structure directly from the
original data. The assignment of the input elements to a
space–time table T is equivalent to two separate clusters
partitions; first, partition of the elements into horizontal
clusters

{
H1, H2, . . . , HNH

}
and second, vertical clusters{

V1, V2, . . . , VNV

}
. The correctness of the H/V -clusters is
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measured using the NK
ass criterion, according to the corre-

sponding similarity matrix SH or SV , respectively.

f (T, SH , SV )

= NNH
ass

(
H1, . . . , HNH

) + NNV
ass

(
V1, . . . , VNV

) − P

(10)

To generate a smooth, uniform and coherent space–time
table,we define a penalty termP , which decreases the objec-
tive function when the table T does not satisfy the global
constraints. Let us denote the number of elements in the i-th
row of the table by nri , similarly ncj is the number of elements
in the j-th column, and nei, j is the number of elements in the
cell [i, j]. Basically, for a uniform distribution of the input
elements in the table, the optimal number of elements in each
row, column and cell is: N

NH
, N
NV

, N
NH ·NV

, respectively. The
penalty term is then defined by:

P = Wr

NH∑
i=1

g

(
nri − N

NH

)
+ Wc

NV∑
j=1

g

(
ncj − N

NV

)

+We

∑
i, j

g

(
nei, j − N

NH · NV

)
(11)

The penalty term penalizes the objective function for any
deviation from the optimal number of elements in each row,
columnor cell. The single-penalty function g () is an arbitrary
monotonic symmetric function around 0 that satisfies g (0) =
0. In our work, we use g (x) = 1− e−x2 . We set the penalty
weights Wcell = 1.5,Wrow = Wcol = 0.5 empirically to
generate a smooth and uniform table.

6.3 The refinement process

The refinement process assumes that most of the elements
are assigned to their correct entry in the table, with respect to
the ground-truth assignment. Furthermore, we assume that
the mismatches, if they exist, are small and local. Namely,
a mismatched element is likely to be assigned to one of the
adjacent neighbors of the correct cell. These assumptions are
strongbecause the typical performance ofBiSOMguarantees
that adjacent neurons have similar weights.

At each iteration of the refinement process, the silhou-
ette index1 [27] of each of the elements is computed for all
clusters. We then consider only the movements which have a
large si ( j) and try tomake small localmovements and swaps
in the table aiming to maximize the objective function.

1 The silhouette index −1 ≤ si ( j) ≤ 1 provides an indication for
how well the element i lies within the cluster j . A value of si ( j) close
to positive one means that the datum i is appropriately clustered in the
cluster j , conversely, a value close to negative one means that the datum
i is unlikely to belong to cluster j .

Fig. 5 Example from the red car dataset. a Static SIFT matches
used to compute to the transformation between the images. b Blended
registered images and the dynamic SIFT matches used to compute the
disparity between the images

Fig. 6 Example from the dancer dataset (a), and the IDSC matches
found using the two contours (b)

7 Implementation details

Feature extraction is a initial key step to our method. We
experimented with a number of spatial and temporal fea-
tures according to the nature of each scene. It should be
emphasized that automatic feature selection is an indepen-
dent challenging problem, but is not in the scope of our work.
The assumption is that the features used are leading to rea-
sonable but imperfect clustering. We now elaborate on each
feature category separately:

7.1 Temporal features

The temporal feature aims to separate the images according to
their time of acquisition.We define ametric thatmeasures the
time difference between each two images in the set. Notice
that we cannot predict the inner order within any two images;
thus, the final order of the images in the space–time table can
be reversed.

First, we extract the dynamic object in each image using
the Grabcut algorithm [26]. Next, according to the nature of
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Fig. 7 a, b and c Three typical layouts of the synthetic input points using σ = 0.1. d Rand index computed on the clustering result on each layout
as a function of σ

the motion in each scene, we manually choose a different
kind of descriptor.

For scenes with a fixed object moving along a linear
path (i.e., a car traveling on a road), we use SIFT point
tracking, similar to [32]. First, we extract the SIFT points
from each image and divide them into static and dynamic
points according to their locations on the foreground or
background (Fig. 5a). Next, we compute a projective trans-
formation between each pair of images according to the
matches between the static points only. We use this transfor-
mation to align each pair of images. Finally, after registering
both images, we compute the disparity between the dynamic
matches that reflects the temporal difference between the two
images (Fig. 5b).

For scenes demonstrating a human in a fixed position
changing his posture during the motion (i.e., ballet dancer),
we use contour-based descriptors (Fig. 6). We use the fore-
ground/background separation and extract the contour of
the dynamic object. We compare the contours of each two
images by using the inner-distance shape context (IDSC)
[19].

7.2 Spatial features

The spatial feature aims to separate the images according to
the viewpoint of the photographer.

We used the number of static SIFT matches as a metric
for measuring the similarity between two images. The farther
apart the images were captured, and the less SIFT matches
between them will be found. We also used the GIST descrip-
tor [22] to measure the spatial distance between each two
images. Furthermore, we experimented with simpler metrics
such as a Chi-square metric on the color histogram of each
image.

We display the results using the first feature, although our
method showed similar performance using any other choice
of spatial feature.

8 Results

8.1 Synthetic data

First, we demonstrate the strengths of our method on syn-
thetic data. We generate sets of 64 points divided into 8
clusters. The points in each cluster are sampled from a
3D anisotropic Gaussian where the average variance of
the Gaussian is denoted with σ . The cluster centers are
typically organized in one of the three configurations: scat-
tered, diagonal and horseshoe. We observed that diagonal
and horseshoe configurations are more typical when deal-
ing with space or time features like in our work (see
Fig. 1b).

For each configuration layout, we generate two different
point clouds defining our horizontal and vertical descrip-
tors xHi , xVi , with different values of σ . We compare our
BiSOM algorithm result to the result of two separate N -Cut
schemes on the horizontal and vertical descriptors separately.
To measure the correctness of the clustering result, we com-
pute the Rand index2 [14], comparing the clustering result to
the ground truth.

Figure 7d shows the average Rand index of the horizontal
and vertical clustering result as a function of σ . We can see
that our BiSOM algorithm which considers the two features
together outperform the N -Cut schemewhich considers each
feature independently.

8.2 Real visual data

To demonstrate the effectiveness of our method and to eval-
uate it, we generated 11 datasets3 of outdoor and indoor

2 The Rand index 0 ≤ RI ≤ 1 is a measure of the similarity between
two clustering results, with 0 indicating that the two data clusters do
not agree on any pair of points and 1 indicating that the data clusters
are exactly the same.
3 Datasets boats and slides in the courtesy of Dekel et al. [9]
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Table 1 Dataset evaluation.
Each dataset consists of N
images organized into a table of
NH by NV . The table displays
the horizontal and vertical Rand
index and the total swapping
distance of the resulting table
relative to the ground truth

Dataset BiSOM Unary-SOM N -Cut IsoMatch

Name N NH × NV Ri H RiV Swaps Ri H RiV Ri H RiV Ri H RiV

beer 20 5 × 4 1.00 1.00 0 0.70 0.61 0.96 0.74 0.74 0.66

dancer 30 5 × 6 1.00 1.00 0 0.74 0.85 0.98 0.89 0.72 0.79

red car 32 4 × 8 1.00 1.00 0 0.81 0.85 1.00 0.90 0.64 0.83

boats 20 2 × 10 1.00 1.00 1 0.48 0.88 1.00 0.94 0.47 0.90

bag 18 3 × 6 1.00 1.00 1 0.71 0.77 1.00 0.91 0.6 0.82

ballet 100 10 × 10 1.00 1.00 0 0.84 0.83 0.92 0.91 0.87 0.85

mall 21 3 × 7 1.00 0.96 0 0.54 0.76 1.00 0.84 0.57 0.83

slides 32 4 × 8 1.00 1.00 1 0.66 0.77 1.00 0.85 0.66 0.86

ladder 66 6 × 11 0.98 0.97 0 0.72 0.79 1.00 0.69 0.73 0.86

bridge 90 6 × 15 1.00 0.96 0 0.77 0.88 1.00 0.85 0.77 0.90

wall 84 7 × 12 0.97 0.98 0 0.83 0.88 0.95 0.86 0.77 0.86

Fig. 8 dancer—a girl poses dancing stances at the beach. Notice the
large variance in viewpoints and poses. The temporal order is not recov-
ered in this example, due to the nature of the scene

scenes. These datasets capture real-life dynamic scenes that
occur in a rather limited space–time domain. The events were
asynchronously captured with a multitude of capture devices
including DSLR cameras and mobile phones. The photogra-
phers might have moved slightly during the dynamic event.
Therefore, the images taken from the samephotographermay
differ slightly in the viewpoint. Furthermore, the photog-
raphers did not capture the dynamic event synchronously;
hence, the input images may have temporal differences in
acquisition.

Fig. 9 beer—a guy picking up a beer bottle to drink. Notice the tem-
poral order (right to left) and the spatial order of the viewpoints (top to
bottom)

Fig. 10 bag—a girl bending to pick up her bag
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Fig. 11 Ground-truth table of
ladder dataset (a), and the
generated space–time table (b)

Fig. 12 ballet—a ballet
dancer performing a jump on
stage, captured by an audience
seated in an amphitheater
around the stage. This dataset is
computer rendered

The problem of assigning the photographs into the space–
time table can be separated into two problems and the
evaluation, respectively: (i) correctly clustering the elements
into space clusters and time clusters and (ii) correctly order-
ing the elements within the clusters, namely the temporal and
spatial order among the clusters.

To evaluate the clustering result, we use the Rand index
described above. To evaluate the ordering result, we use the

swapping metric4 [7], which measures the distance from a
given permutation of the clusters to the correct one. Table 1
displays the Rand index and the swapping distance, for each
of the sets.

4 The swapping distance is defined to be theminimumnumber of swaps,
or transpositions, of two adjacent clusters that transforms one permu-
tation into another.
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Fig. 13 red car—a red car driving down the street from right to left

Fig. 14 boats—a couple of small boats traveling down the river

Fig. 15 mall—people walking at the mall. Notice the three different groups of people walking in different directions

Fig. 16 slides—kids slide down the slide
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Fig. 17 bridge—a boy walking on a bridge at the playground

Fig. 18 basketball—failure
case. In this dataset the audience
capturing the scene was spread
sparsely on the side of the field.
The spatial descriptor failed to
reflect the distances between the
viewpoints, and as a result our
method failed to organize the
images in a coherent table

Figures 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 show
the resulting space–time tables generated by our algorithm.
For a full resolution of the images, see our supplemen-
tary material. Notice how the inner order between the rows
defines the spatial order of the photographers, while the inner
order between the columns defines the temporal order of the
event.

Ourmethod can also handlemore realistic cases where the
ground-truth table contains a different number of images in
each row and column. To generate such dataset, we modified
the ladder dataset by removing some of the images and
duplicating others. Figure 11 shows the ground-truth table
and the resulting space–time table generated by our algo-
rithm. Although the objective function leads to a result with
some local mismatches, the final space–time table is more
uniform and coherent than the ground-truth table.

8.3 Comparison to other methods

First, we compare our results to the Unary-SOM method
introduced inSect. 4.Weuse the space descriptor and the time
descriptor as a single concatenated descriptor, and the rest of
the parameters of the neural network and the training process
are identical to the BiSOM method. Next, we compare our
results with the N -Cut [28] method by first applying the N -
Cut algorithm on the space descriptors obtaining the space

clusters, and similarly the time clusters. We further exper-
iment with IsoMatch [12], a grid layout technique which
organizes the set of images into a full grid. Although the
resulting table is always full and uniform, it doesn’t reflect
the temporal and spatial content of the event. Table 1 displays
the comparison results on all datasets. A major drawback of
all the alternative methods is their inability to provide the
temporal or spatial order among the clusters, meaning that
the rows and columns of the space–time table are not ordered
correctly.

9 Discussion and conclusions

We have presented a technique to organize a set of pho-
tographs into a space–time table. The embedding of the
photographs into the table reveals information regarding the
clustering of the images into space and time clusters and the
order within the clusters.

We introduced BiSOM, that is built upon SOM, which
considers two independent features rather than one, and
showed that it outperforms SOM.We also showed that using
the space and time features independently to solve two inde-
pendent clustering problems is inferior to using both the
features coupled with BiSOM. Furthermore, unlike other
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methods, our method reveals the temporal and spatial order
within the clusters.

Regarding the limitations of our work, we assume that the
number of clusters is given and use it to initialize the size
of our grid. Furthermore, note that our method relies on the
extracted features and descriptors used to describe the dis-
tances among the images. This implies that we are bounded
to common limitations of feature extraction methods. Figure
18 shows a failure case, where the images are captured from a
wide baseline, which means that dynamic object appearance
in adjacent viewpoints is significantly different.

Although our work focuses on space–time separation,
the technique is applicable for any set of features. Given
a set of images, we may use style and content descriptors to
embed the images into a style content table. Another possi-
ble application can be organizing human shapes according to
their body shape and postures. Furthermore, another possible
venue for research is extending the BiSOM to higher dimen-
sions, e.g., using three descriptors and a three-dimensional
grid of neurons to organize a set of tiles according to shape,
color and texture features.
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