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Abstract

In this paper we present a comprehensive flythrough system which
generates photo-realistic images in true real-time. The high perfor-
mance is due to an innovative rendering algorithm based on a discrete
ray casting approach, accelerated by ray coherence and multiresolu-
tion traversal. The terrain as well as the 3D objects are represented by
a textured mapped voxel-based model. The system is based on a pure
software algorithm and is thus portable. It was first implemented on a
workstation and then ported to a general-purpose parallel architecture
to achieve real-time performance.

Keywords: Terrain Visualization, Parallel Rendering, Flight Simulator, Vi-
sual Simulations, Voxel-Based Modeling, Ray Casting



1 Introduction

The quest for real-time photo-realistic rendering has been one of the major
goals of 3D computer graphics in recent years. Techniques for adding real-
ism to the image, such as shading, shadow, textures, and transparency have
been developed. The generation of realistic images in real-time is currently
being researched. Flight simulator applications have always led the way
in real-time performance [3]. Special-purpose machines, dedicated to flight
simulation have been developed. These machines generate images with rea-
sonable realism in real-time, but are expensive (more than a few million US
dollars) [7, 15]. The main contribution of the work presented in this paper is
that the real-time performance was achieved on commercial general-purpose
parallel architecture, as opposed to specialized rendering hardware.

Generating images of arbitrary complex scenes is not within the reach of
current technology. However, the rate of image generation in flight simulation
can achieve real-time because the scenes that are viewed from the sky are not
too complex. Typical views contain terrains which are merely 2.5D, or 3D
objects which are seen as relatively simple, featureless objects. Nevertheless,
simulating photo-realistic aerial views in real-time is by no means easy [10,
8, 12, 13].

The term visual flythrough can be distinguished from flight simulation.
Visual flythrough generates simulated images as seen from a video camera
attached to a flying object. The camera generates photo-realistic images,
although not necessarily in color, since many video cameras have a grey-level
output. It should be emphasized that the generation of true photo-realistic
images is critical for applications where the user needs to recognize the area
or identify objects on the ground (i.e. targeting, mission rehearsal). See the
photo-realistic impression of the images presented in Figure 1.

In a typical flythrough scenario the camera views a very large area, es-
pecially when the camera pitch angle is high (i.e. towards the horizon). In
many applications the camera flies at high speed over long distances and the
area covered during a few seconds of flight is vast. This suggests that it is
not possible to load the entire terrain data onto the main memory. For some
applications even a Gigabyte of RAM is not enough. It is safe to say that
no size will ever suffice, since the application demands will always increase
according to the availability of space. This suggests that flythroughs require
a large secondary storage together with a fast paging mechanism.



An image of an aerial view gains its realistic impression by mapping a
digital photograph onto the terrain model. In order to achieve high quality,
full resolution of both the digital terrain model and the corresponding aerial
photograph need to be employed. This causes a major load on conventional
graphics hardware based on a geometric pipeline. First, a high resolution
polygonal terrain model contains a vast number of polygons which need to be
processed by the geometric pipeline, while processing tiny polygons loses the
cost-effectiveness of the rasterization hardware. The high resolution photo-
graph that needs to be texture-mapped during rasterization, creates a further
problem since large photographic maps need to be loaded onto an expensive
cache. For example, the Reality-Engine board cannot hold more than a few
Kilobytes of texture [1], while larger textures need to be paged from the
main memory in real-time [8]. To avoid that, many flight simulators use
repetitive patterns as ground texture, but for some applications where a spe-
cific target area is a vital requirement, a true photograph has to be mapped
on the terrain. These photographs are huge and must be loaded on the fly
to the rasterization hardware, forming a serious bottleneck in the rendering
pipeline.

Instead of using a polygonal model and a geometric pipeline we have
favored a software solution where the model is represented by a voxel-based
representation. The texture-mapping of the photograph over the model is a
preprocessing stage, which is decoupled from the rendering stage [9]. Voxel-
based modeling also lends itself to representing fine grained geometry. The
voxel data is regular, internally represented in an array, and offers easy and
fast access to the data [5]. Each voxel represents and stores some discrete
local attributes of the model. Voxels representing the terrain contain a height
value and a color value, while the voxels representing a 3D model contain
a texture photograph as will be described below in Section 5. A voxel-
based visual flight simulator with real-time performance has been developed
at Hughes Training, Inc. Their flight simulator runs on special purpose
hardware, but yields poor results on a graphics workstation [15].

The visual flythrough that we have developed is hardware independent,
and thus portable. Portability is important, since it enables integration of
the flythrough system with rapid progress in hardware platforms. However,
a software rendering algorithm must be fast enough, around a second or two
per frame running on a sequential machine, so that on a parallel machine
with 32 processors it achieves a rate higher than 20 frames per second. That



Figure 1: Two aerial photo-realistic images generated by the flythough.

is, of course, assuming little overhead is imposed on the parallel version of
the algorithm.

Although we have employed a parallel machine, the real time performance
is mainly due to an innovative rendering algorithm. The new algorithm gen-
erates a photo-realistic image such as in Figure 1 within two seconds, on a
common workstation. The implementation of a parallel version of the al-
gorithm on a 32-way multiprocessor architecture has sped up the rendering
to achieve the desired real-time rates. It should be noted that other (hard-
ware independent) ray casting algorithms have reached reasonable speeds
([13, 5, 11]), but just for point sampling. Avoiding aliasing artifacts is quite
involved and time costly. The algorithm presented here resembles the prin-
ciples of the projection algorithm in [15]. However, their algorithm is based
on a forward mapping method and was designed to be implemented in hard-
ware. The algorithm presented in the next section is a simple ray casting



Figure 2: The image footprint over the terrain is defined by the viewing
parameters.

(forward mapping) accelerated by ray coherence and multiresolution traver-
sal and highly optimized for hardware independent implementation.

The remainder of this paper is structured as follows: Section 2 describes
the rendering algorithm. Section 3 presents the IBM Power Visualization
System, the current parallel platform of the parallel algorithm, implementa-
tion details concerning the parallelization of the algorithm, and some results.
We discuss the generation of voxel-based objects in Section 5 and conclude
with a brief discussion on our current activity and some final remarks.

2 The Rendering Algorithm

The sequence of images generated by the rendering algorithm is independent.
Each image is defined by the location of the camera in 3D space, the camera
field of view, and its orientation, namely the pitch, roll, yaw angles, and image
resolution. Figure 2 depicts the image footprint defined by the projection
of the image frame over the terrain. The terrain model is represented by
a voxel-based map, generated from a discrete elevation map colored by a
corresponding aerial photo map. The rendering algorithm is based on a
backward mapping approach known as ray casting. The image is generated
by casting a ray-of-sight emanating from the viewpoint through each of the
image pixels towards the model (see Figure 3). The ray traverses above the
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Figure 3: Discrete ray casting of a voxel-based terrain

terrain voxels until it intersects the terrain. The terrain color is sampled
and mapped back to the source pixel. Since the model is discrete there is no
explicit intersection calculation, but a sequential search for a “hit” between
the ray and a voxel. The speed of the ray traversal is crucial for achieving
real-time performance.

The technique we employ is based on a discrete grid traversal, where the
steps along the ray are performed on the projection of the ray on the plane
rather than in 3D. The heights along the ray are incrementally and uniformly
sampled and compared to the height of the terrain below it, until a hit occurs
and the color of the terrain at the hit point is mapped back to the source
pixel. If there is no hit, then the background color of the sky is mapped.
This apparently naive traversal is “flat” ([12]) in contrast to a “hierarchical”
traversal ([5]). In [5] a pyramidal elevation map is used. The multiresolution
pyramid is treated as a hierarchy of bounding boxes through which the ray
traverses in a recursive top-down traversal. The number of steps of the
hierarchical traversal is proportional to the height of the pyramid. When
a binary pyramid is used, the number of steps is logarithmic to the terrain
length, rather than linear to the terrain size as in the case of the flat traversal.
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Figure 4: Assuming the terrain has no caves, each ray can emanate from the

previous hit point.

Our algorithm is based on the incremental “flat” traversal, but, as will be
shown, some rays are “hierarchically” traversed.

Since the terrain is a height field map we can assume that the terrain
model has no vertical cavities or “overhangs” (i.e., a vertical line has only
one intersection with the terrain). The traversal can be accelerated using ray
coherence [6, 11]. The basic idea is that as long as the camera does not roll,
a ray cast from a pixel vertically adjacent always hits the terrain at a greater
distance from the viewpoint than that of the ray below it. The image pixels
are generated column by column from bottom to top. A ray ¢+ 1 emanating
above ray ¢ will always traverse a distance not shorter than the distance of
ray ¢ (see Figure 4). Thus, ray 7 + 1 can start its traversal from a distance
equal to the range of the previous hit of ray ¢. This feature shortens the ray’s
traversal considerably.

The total number of steps required to generate one column is equal to
the length of the column footprint, eliminating the factor of the number of
pixel columns. In other words, a naive generation of one column has a time
complexity of O(ml), where [ is the length of the column footprint and m
is the number of pixels in the image column. Using ray coherence the time
complexity is reduced to O(!) only, providing an order of magnitude speed-
up. The rays emanating from the bottom of the column cannot gain from a
previous hit and are thus accelerated by a hierarchical traversal [5].

Using the above vertical ray coherence between consecutive rays, each
terrain voxel is virtually traversed once. The time complexity of the traversal
is proportional to the number of voxels in the image footprint. This is still a
huge number since the image footprint can extend to the horizon. Moreover,
this number is view-dependent and causes instability of the frame generation
rate.

Due to perspective projection, the rays diverge with the distance, caus-



Figure 5: Multiresolution traversal. The voxel map resolution corresponds to
the sampling rate.

ing a non-uniform sampling rate of the terrain voxels by the rays. The rays
emanating from the bottom of the image frame hit the terrain at a closer
range than the upper rays. Assuming that the terrain dataset is represented
in a single resolution, then, close voxels tend to be oversampled while far
voxels are undersampled. Using a hierarchy of data resolutions improves the
sampling, since the rays can adaptively traverse and sample voxels of an ap-
propriate size, proportional to the pixel footprint (see Figure 5). Optimally,
in every step one pixel is generated. In multiresolution traversal the voxel
sampling rate becomes proportional to the number of rays (i.e. pixels), and
the number of steps becomes independent of the viewing direction. That
is, the number of steps over the terrain is in the order of the image space
rather than the object space. Thus, the adaptive hierarchical traversal not
only speeds up the rendering, but also helps to stabilize the frame generation
rate.

In our implementation, we use a pyramid of data resolutions where each
level has half of the resolution of the level below it. Using more resolutions
can be even more successful, in the sense of uniformity of the sampling,
but then it would use more space. Another advantage of a binary pyramid
is the simplicity of alternating between consecutive levels, where the step
sizes are either multiplied or divided by two, taking advantage of the integer
arithmetic of the traversal [5]. Moreover, the pyramid offers a fast first hit for
the first rays which emanate from the bottom row of the pixel array. Those
rays cannot benefit from coherency with the previous rays. For those rays a
top-down traversal of the hierarchy speeds up their first hit [5].



One important issue that must be taken care of in a real-time hierarchical
rendering is creating a soft transition when switching between levels. A sharp
transition is very noticeable and causes an aliasing effect of a wave that
sweeps over the terrain. A simple solution is to interpolate between adjacent
hierarchies [14] where the interpolation weights are defined by the distance
from the viewpoint to the sampled voxels. Since the range gradually changes,
so do the weights, causing a soft transition.

Synthetic objects such as trees, buildings, and vehicles can be placed
over the terrain. The 3D objects are represented by sticks (a run of voxels)
of three types: wuniform sticks which are colored by a single color like a
terrain voxel, textured sticks which contain a vertical sequence of colored
voxels, and complex sticks which are textured sticks, but contain some semi-
transparent or fully transparent voxels (see [15]). Synthetic objects are then
described by a set of adjacent sticks. A ray which hits a textured stick
climbs onto the stick and maps back the stick texture to the screen. When
a semi-transparent value is encountered, a secondary ray continues through
the voxel. The results of the secondary ray are then blended with the values
of the primary ray according to the value of the semi-transparent voxels. In
many cases the transparency value indicates a cavity in the stick; in this case
no blending is performed and the colors of the secondary rays are directly
mapped to the pixels.

Since cavities cause the spawning of secondary rays it is clear that they
slow down the rendering process. One way to reduce cavities is to fill them
up at coarse resolutions, assuming the cavities are small enough and their
contribution to the final image is insignificant. One should note that in
typical scenes only a small fraction of the sticks need to be complex. For
example, when viewing woods only the trees at the boundary needs to be
fully represented with their non convex parts, while most of the other trees
are hidden and only their tops can be seen.

A typical scene contains many replicated objects placed at different loca-
tions and orientations. Thus, many sticks are common to many objects. A
complex voxel contains a pointer instead of a color which points into a stick
table. Each stick consists of a header and a sequence of values. The header
contains several attributes like the stick type and the stick length.



2.1 The Basic Algorithm

In this section we present in detail the basic algorithm that generates a
single column of the image. The algorithm is based on a fast traversal of the
column footprint over the terrain. The voxels along the footprint are tested
for visibility and the colors of the visible ones are sampled and mapped back
to the image column. The pseudo-code is shown in Figure 7.

Let E be the location of the eye and P the location of a column pixel.
The parametric equation of a ray emanating from £ and passing through P
isv=P+1t(P—FE). Denote the ray direction P — F by Q = (Q.z,Q.y,Q.z).

Then for a given x, the coordinates along the ray are explicitly given by:

z=Pz+(x—Px)(Q.2/Q.x) (1)
and

y=Py+(z— Px)(Qy/Q.x) (2)

Assuming the ray is X major, i.e. .z > .y, then the sequence of
the voxel coordinates (z,y) along @ is generated by a forward differences
evaluation of the line equation:

Zip = zi 4 (Q2/Qu) (3)

Yirr = ¥ + (Q.y/Q.v) (4)

where 2,41 = @; + SIGN(Q.x).

Using fixed point arithmetic the integral coordinate of y, denoted by |y|,
is retrieved by a shift operation on the binary representation y, while the
fraction part, w = y — |y], is used for linear interpolation at the sampling
point (see below). The hit between the ray (); and the terrain is detected by
comparing height(xz, |y]), the height of the terrain above (z,|y]), against z.
If z > height(x, |y]) then x,y and z are incrementally updated, otherwise a
hit has been detected. The terrain color at (x, |y]) is sampled and mapped
to the pixel P;, and the process proceeds to the next ray ();1; emanating
from Pjyq.

Since the terrain is a height field, the ray ;41 does not hit the terrain
before it reaches the hit point of );. The algorithm continues to evaluate the
sequence of the (x,y) coordinates, and their heights need to be compared to

the height of ray ()41 (see Figure 6). The slope (Q.z/Q.x) and the height
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image plane

Figure 6: Climbing from the hit point of ray Q); to ray (1.

of ray ();41 above z is evaluated by Equation 3. Note that a small error is
introduced since the plane defined by the rays emanating from a column of
the image plane is not perpendicular to the main plane and may be slightly
slanted due to the perspective projection. However, when the field of view is
small, say under 10 degrees, the error is insignificant.
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Let I be the location of the eye.

Let P be the location of the bottom pixel of the column.

Let U}? be the vector direction of the image columns.

Let Cj = P — E be the direction of the ray emanating from P.

Assume ().x > ).y and F is above the terrain, and + = F.x and y = E.y.
Let n be the distance between x and the end of the terrain.

while (n - -){ // while not reaching end of terrain
while (z < height[x, |y]]){ // test for a hit
w =1y — |y|; // yield the subvoxel weight
Color = Sample(z, |y]|,w); // sample the voxels
Pixel(j+4) = Color; // back map the results
if column done return;
P+ = Up; // move up to next pixel
Q="P—FE; // climb to the new ray
z=Pz+(x—Pa)xQ.z/Q.x;
1
// Move on to the next voxel along the ray
x += SIGN(Q.x); // move along the major axes
y += Q.y/Q.x; // incrementally update the Y coordinate
z += Q.z/Q.x; // incrementally update the ray height
1
if (n) // the sky is seen
color the rest of the pixels with the sky color;

Figure 7: The integer base incremental traversal.

The function Sample(x, |y, w) samples the terrain colors at the integer
coordinates of x. However, the resolution of the fixed point values is higher
than that of the voxel space, and the fraction value, denoted by w, yields the
subvoxel location of the hit point. The exact hit point lies on the vertical grid
line between (z, |y|) and (x, |y| + 1), (see Figure 8). Thus, the voxel colors
of z,|y| and x, |y| + 1 are linearly interpolated at w. Since the size of the
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Figure 8: The samples are always on the vertical grid lines, where w indicates
the subvoxel vertical sample location. The switch to a double step size must
occur at an even step.

pixel footprint is about the size of a voxel, this simple filter is satisfactory.

The traversal algorithm has to switch to a lower resolution at some point.
Since the steps are of unit size along the major direction it is rather simple
to double the step size, and respectively, the ray vector and its slopes. To
preserve the property that the steps are always at integer coordinates of the
major axes, the switching to a double step size at the lower resolution must
occur at an even step of the current resolution (see Figure 8).

The switch to a lower resolution occurs at the distance where the voxel
footprint in the image is narrower than a pixel. In other words we avoid
undersampling the voxels. Since the vertical field of view is not equal to the
horizontal field of view, we consider only the horizontal one allowing vertical
oversampling or undersampling to occur in some rare cases. In particular,
when the viewing pitch angle is low (i.e., shallow), the pixel footprint tends to
elongate and may cause significant undersampling. Vertically supersampling
the pixels to compensate for elongated footprints is not too costly since it
does not require accessing a larger number of voxels. We have implemented
a variation of supersampling where each pixel has been supersampled by
parallel rays. The relaxed assumption that the rays cast from a single pixel
are parallel enables efficient implementation without any significant loss of
quality.
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3 Parallel Implementation

Sequential implementation of the rendering algorithm cannot deliver the de-
sired real-time rates on contemporary workstations. It is vital to use a pow-
erful parallel machine, not only to speed up the rendering but also to support
the processing of very large databases. The application requires flying over
thousands of square kilometers, including many 3D objects. Taking into ac-
count the hierarchical data structures, the total amount of data is over 35
Gigabytes (see below). Moreover, the relevant data, i.e. the image footprint,
must be continuously loaded into main memory. Thus, the machine needs
to have very large first and secondary memories, and high speed channels
between them. All these requirements need the support of a machine with
high speed and very large storage capacity, with large bandwidth busses.
However, a postprocessor is used to further accelerate the image generation
rate and to enhance the image quality (described below).

A block diagram of the system is illustrated in Figure 9. The IBM Power
Visualization System (PVS) is the parallel machine described below. It is
controlled by an IBM RS/6000 Support Processor which also serves as a con-
nection to the external world. It reads the commands from the user’s control
stick and sends control command from the PVS to a Post Rendering Proces-
sor (PRP) (see below) through an Ethernet LAN. The images generated by
the PVS are sent via an HIPPI (100MB/Sec) channel to the PRP and are
displayed on a standard NTSC monitor.

3.1 The IBM Power Visualization System

The IBM Power Visualization System (PVS) was designed to provide com-
putational power, high-speed memory and /0O to realize very large amounts
of complex data. The PVS is a shared memory architecture consisting of up
to 32 parallel processing units, and up to 2.5GB of internal local and global
memory.

The architecture consists of up to eight processor cards. Each processor
card consists of four processor elements, each composed of an Intel i860XR
or 1I860XP microprocessor operating at 40 or 45 MHz.

Processor storage consists of 16 MBytes of local memory per processor
and global memory which can be increased to 2048 MBytes. The global
memory consists of up to four memory cards. FEach card is designed to
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Figure 9: A block diagram of the system

provide a data bandwidth of 640MB/sec or 720MB/sec. This is accomplished
by partitioning the memory into four interleaved memory banks, each of
which can perform memory reads and writes, thus reducing the latency and
improving throughput. In addition, there is interleaving between cards if
there are multiple memory cards in the system.

An SCSI interface card with four Fast/Wide (peak of 20 MB/Sec) con-
trollers is used to connect to the disk array. Using an SCSI disk reduces the
system price and promises upgradability. The PVS strips the data into all
the controllers, giving a throughput of more than 70MB/Sec. Thus, it can
contain the database and can load the memory fast enough.

The PVS also provides means for producing and outputting the frames in
real-time. A video controller which is attached via an HIPPI channel to the

Server, includes two logically distinct frame buffers with a total capacity of
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up to 32MB. The first 8-bit buffer is used for workstation graphics and text
from an X-Windows system. The other is a 24-bit/pixel double-buffered full
color RGB image buffer at HDTV resolutions and above.

3.2 Implementation Details

The rendering task is partitioned among the processors. One of the them,
selected arbitrarily, operates as the master and the rest are the slaves. The
master processor, among its many tasks, sets the viewing parameters of the
next frame, including the new positioning of the camera and its orientation,
according to the trajectories of the flight. The generated image is treated
as a pool of columns, and each slave processor renders one column of pixels
as an atomic task. As soon as a slave terminates rendering one column, it
picks a new column from the pool. Access to the pool is monitored by a
semaphore operation provided by the PVS library. The semaphore forces
exclusive access to the pool, so that only one processor at a time can pick
a column. Moreover, as soon as the last columns of the frames have been
picked and generated, the free processors start to generate the first columns
of the next frame. Using this strategy the processors are kept busy with a
perfect load balancing.

Although the PVS contains as much as two Gigabytes of RAM, the
database cannot be loaded entirely into the main memory. The entire database
is stored in the disk array while the relevant sections (i.e., the image footprint)
are loaded dynamically into memory. The terrain database is partitioned into
small square tiles. According to the viewing parameters, the master draws
the rectangular frame of the image footprint on the terrain, makes sure that
the tiles that fall in the frame footprint are already in memory, and loads the
missing tiles from the disk-array. Since the footprint changes incrementally,
only a few tiles need to be loaded at each frame. A large configuration of
the main memory consists of two Gigabytes and can contain more than the
size of one frame footprint; thus, we use an extended footprint. Some of the
tiles that are in the larger footprint would otherwise have been loaded on the
next frame. Thus, the extended footprint saves many critical loadings. The
tiles that are loaded are actually prefetched and their presence is not critical
for correct rendering of the current frame. This mechanism is found to be
very efficient as it can treat fast changes of camera, as much as one entire
field of view per second.
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Pitch || 32p | 16p | 8p | 4p | 2p
14.6 || 11.0 | 5.4 | 25| 1.1 | 0.36
26.5 || 15.6 | 7.6 | 3.6 | 1.5 | 0.51
39.0 || 16.3 | 8.0 | 3.7 | 1.6 | 0.53

Table 1: Frames per second (fps) generated by the PVS as a function of the
number of processors. Fach line of the table shows the fps sampled at different
pitch angles.

3.3 Results

Quantitative results are presented in Table 1. The frame generation rate of
the PVS has been measured at three different angles for different numbers
of processors. These rates are further accelerated by the PRP to achieve a
steady frame rate of 30 frames per second. However, from these numbers
we can learn about the performance of the algorithm. First, a linear speed
up is achieved. The above numbers imply that by doubling the number of
processors the frame generation rate is more than doubled. This is because
one processor is dedicated as the master processor. A second observation is
the dependency between the performance and the pitch angle. As the pitch
angle gets smaller, the frame generation rate decreases. This is because at
small pitch angles the frame footprint extends. However, since we use a
hierarchy, the size of the footprint is bounded. It should be noted that there
is a speed quality tradeoff. By scaling the pixel-to-voxel ratio it is possible
to speed up the frame generation rate. As the voxels used are “scaled”,
the footprint sizes (voxelwise) decrease. Of course as the pixel-to-voxel ratio
increases the voxels are oversampled and the image is blurred. However, this
ratio is used as a tool to tune the quality of the image as the frame generation
rate is guaranteed by the PRP.

A typical database consists of a large terrain with tens of target areas.
The global terrain is a 1 meter resolution playground of 55x80 square kilo-
meters, which is 4.5Giga voxels. Each voxel is four bytes, thus the size of the
global terrain is 17.6 Gigabytes. Adding the hierarchy requires a third more
(5.9G), thus 23.5G bytes in total. Each target area consists of three levels of
detail: 2.5x2.5 square kilometers of 0.5 meter resolution, 1.25 by 1.25 square
kilometers of 0.25 meter resolution, and 625 by 625 square meters of 12.5
centimeters for the highest resolution. A single target area database size is
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0.3G bytes. No hierarchy is needed because the coarser levels are given in
the global terrain. Assuming, for example, 40 target areas require over 12G
bytes. In total 35G bytes are needed for the terrain data. The 3D objects
consume more space. A typical object requires about 1.5M bytes. Here we
should mention that if true colors were needed, and not only grey levels, the
database would have been almost double the size.

4 The Post Rendering Processor

The images generated by the PVS are asynchronous since their rate is depen-
dent on the viewing direction. The frames are created at a rate of 10-15Hz.
From these images an NTSC video signal should be produced. The image
fields, that is the even/odd NTSC rows, have to be transmitted at a rate of
60 Hz (interlaced). If the fields contain only the last frame generated by the
PVS, the human eye would detect jumps every time the frame is changed.
To achieve a smooth sequence of images that do not irritate the eye, it is
necessary to generate the frames at a synchronous rate. The idea is to sim-
ulate small changes in the camera position as 2D transformations applied to
the last frame available. However, unlike the interpolation method [2], here
the image needs to be extrapolated. The image is digitally warped on the
fly with respect to the flying trajectories. The warping is done using the
Datacube MaxVideo machine. The MaxVideo serves as the Post Rendering
Processor and is also used for some other 2D functions, such as automatic
gain control (AGC), filtering, scaling and rolling the image. It should be em-
phasized that interpolating between available frames is not possible since it
would cause a small but critical latency which is not acceptable in real-time
systems, where real-time feedback is vital. The extrapolated images may
have minor differences from the next real frame. However, since the flying
trajectories are known and are relatively smooth, the transition between the
extrapolated frame to the real frame is smooth. Since the warping function
might mapped back a point outside the source frame, the real frames are
slightly larger and include margins. These margins are relatively small since
flying trajectories are smooth, recalling that the real images are created at a
rate of 10-15Hz.

Given an image A generated by some camera position, the goal is to
warp the image so that it approximates the image B that would have been
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generated by a new camera position. Let us define f as the function that
maps B back to A, such that if p is a point in the 3D space that is seen from
pixel # in B and in pixel ' in A, then f(z) = &’. Once f is known, the pixel
color at z is determined by bilinear interpolation at z’.

A perspective warp function would be best; however, the MaxVideo sup-
ports a second degree polynomial warp. Thus, f is composed of two functions
f=(fs, [,), where f, and f, are two second degree polynomials:

fo(z,y) = ay + asx + azy + ayzy + asx® + agy’

and

To(z,y) = by + byx + bay + byay + bsa® + bey®

To determine the above 12 coefficients, a set of 2n > 12 equations is
explicitly defined by n control points. The system of 2n equations is‘ solved
using a least squares method. The 2n equations are defined by calculating
the position of n points in the 3D world coordinate for camera position A
and B, and projecting them back to the image space. We used nine points
evenly distributed in the image plane. During rendering the 3D coordinates
of the terrain point seen from those nine fixed locations are registered.

Denote the vector of unknown coefficients by C; = (a;,b;), 1 < 5 < 6.
The system that we need to solve is FFC' = X, where F; = (1, x;, y;, w:y;, x7y?)
and X; = (2/;,9;), 1 <@ < n. These are two sets of n equations for six
variables. Assuming n is larger than six, the least squares solution gives us
C' = (F'F) ' F'X. Note that for n =6, ¢ = F~'X.

Note also that since the roll rotation is a simple 2D transformation, it
can be implemented directly using the MaxVideo warper.

5 Modeling Voxel-Based Objects

The process known as vozelization converts a continuous geometry into a dis-
crete representation [4]. Many existing models are represented by a polygon
mesh that approximates the real object. However, for a photo-realistic appli-
cation photo mapping [9] is essential (see Figure 10). This requires warping
the photograph of the object so that it matches the 3D model, and then ap-
plying it as a texture map to the voxels. Alternatively, a sculpting technique
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Figure 10: Vozel-based objects: houses, trees and a tank.

can be employed. Given a set of images of an object from known directions,
one can craft the shape of the model by peeling away the background voxels
around the projected images. We start from a solid box of “black” voxels.
Then, given an image, rays are cast from the background pixels back into the
voxels, “clearing” the voxels encountered into background color. Repeating
this process from many images which view the model from different direc-
tions, leaves the non-background voxels with the shape of the model. This
process of reconstruction from projection yields the texture mapping inher-
ently by projecting the non-background pixels back towards the voxels by
means of ray casting.

A simplified implementation of the above sculpting technique has been
employed. We use only three photographs of a toy object. For example,
the three photographs of a toy Scud are shown in Figure 11(a). These three
photographs are scaled down to the voxel space resolution as can be seen in
Figure 11(b). At this stage the object is separated from the background pixel.
It this is not achieved by color thresholding, a contour is drawn manually
around the object. The result of the sculpting process and the photomapping
from these images is a 3D voxel-based textured object which can be rendered
from arbitrary viewing direction. The images shown in Figures 12 and 14 are
rendered very close to the object in order to observe the fine details. Note
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Figure 11: A toy Scud. (a) Three photographs (side,front,top). (b) the images
after scaling to the voxel space resolution.
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Figure 12: The vozelized Scud from three different viewing directions.
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Figure 13: Three photographs of a T62 tank.
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Figure 14: The vozelized T62 from three different viewing directions.
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that the resolution of the object is higher than of the terrain. However, these
objects are to be seen from a distance as shown in the previous images.

6 Current Porting Activity

The development project was started in 1992 while the PVS was state-of-
the-art, but since then the processing power of a single processor has grown
by a factor of 10 compared to the i860.

Although the performance achieved on the PVS is satisfactory, it is clear
that a faster platform will allow us to deal better with higher resolutions, and
more and more objects of richer detail. The portability of the application
permits the adoption of a new parallel shared memory architecture according
to the behavior of the commercial market.

Using a distributed memory machine was ruled out since the application
was designed for shared memory architecture. The only company that man-
ufactures shared memory architecture in the same price range as the PVS
is Silicon Graphics Inc. (SGI). SGI’s machines have a similar architecture
to the PVS with the exception that SGI uses a large cache (4 MBytes) in
contrast to the 16MBytes of the PVS’s local memory.

SGI offers the Challenge with a maximum of 36 R4400/250Mhz CPUs
and the Power Challenge with a maximum of 18 R8000/90Mhz CPUs. The
Power Challenge was designed for floating point applications and each CPU
is more than twice as fast in such applications. In integer applications the
R4400 and R8000 have the same performance, giving the Challenge double
the performance of the Power Challenge. Both machines can store up to 68.8
GBytes internally and up to 6.3 TBytes externally.

The primary results on the SGI Challenge indicate a speed up of about
4.5 times faster than the PVS, while the scalability remains linear. This is
achieved with only minor changes in the code used for the PVS, mainly to
compensate for the absence of local memory.

7 Final Remarks

We have presented a discrete ray casting algorithm accelerated by ray coher-
ence and multiresolution traversal. The time complexity of the algorithm is
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proportional to the number of image pixels, which can be regarded as con-
stant. The combination of the efficient rendering algorithm and the powerful
parallel machine results in a real-time photo-realistic visual flythrough. The
parallel rendering task partitions the image space among the PVS proces-
sor elements, putting the load at the scene space stored in the PVS shared
memory. Due to data prefetching, the wide bandwidth of the busses, linear
speed-up has been observed as well as hardly any read or write contentions in
the shared memory. We have achieved perfect load balancing by overlapping
between frames.

It should be noted that the sequential version of the rendering algorithm
runs well under two seconds on an SGI workstation for a terrain size that can
fit into main memory. It is expected that in the future, with the progress of
memory bandwidth and CPU speed, visual flythrough will be able to run in
real-time on advanced sequential workstations.
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