
A Real-Time Photo-RealisticVisual FlythroughDaniel Cohen-Or1;2,Eran Rich1, Uri Lerner1, and Victor Shenkar11Tiltan System EngineeringBnei-Brak 51204, Israel2School of Mathematical SciencesTel-Aviv University, Ramat-Aviv 69978, IsraelAbstractIn this paper we present a comprehensive
ythrough system whichgenerates photo-realistic images in true real-time. The high perfor-mance is due to an innovative rendering algorithm based on a discreteray casting approach, accelerated by ray coherence and multiresolu-tion traversal. The terrain as well as the 3D objects are represented bya textured mapped voxel-based model. The system is based on a puresoftware algorithm and is thus portable. It was �rst implemented on aworkstation and then ported to a general-purpose parallel architectureto achieve real-time performance.Keywords: Terrain Visualization, Parallel Rendering, Flight Simulator, Vi-sual Simulations, Voxel-Based Modeling, Ray Casting1

1 IntroductionThe quest for real-time photo-realistic rendering has been one of the majorgoals of 3D computer graphics in recent years. Techniques for adding real-ism to the image, such as shading, shadow, textures, and transparency havebeen developed. The generation of realistic images in real-time is currentlybeing researched. Flight simulator applications have always led the wayin real-time performance [3]. Special-purpose machines, dedicated to
ightsimulation have been developed. These machines generate images with rea-sonable realism in real-time, but are expensive (more than a few million USdollars) [7, 15]. The main contribution of the work presented in this paper isthat the real-time performance was achieved on commercial general-purposeparallel architecture, as opposed to specialized rendering hardware.Generating images of arbitrary complex scenes is not within the reach ofcurrent technology. However, the rate of image generation in
ight simulationcan achieve real-time because the scenes that are viewed from the sky are nottoo complex. Typical views contain terrains which are merely 2.5D, or 3Dobjects which are seen as relatively simple, featureless objects. Nevertheless,simulating photo-realistic aerial views in real-time is by no means easy [10,8, 12, 13].The term visual
ythrough can be distinguished from
ight simulation.Visual
ythrough generates simulated images as seen from a video cameraattached to a
ying object. The camera generates photo-realistic images,although not necessarily in color, since many video cameras have a grey-leveloutput. It should be emphasized that the generation of true photo-realisticimages is critical for applications where the user needs to recognize the areaor identify objects on the ground (i.e. targeting, mission rehearsal). See thephoto-realistic impression of the images presented in Figure 1.In a typical
ythrough scenario the camera views a very large area, es-pecially when the camera pitch angle is high (i.e. towards the horizon). Inmany applications the camera
ies at high speed over long distances and thearea covered during a few seconds of
ight is vast. This suggests that it isnot possible to load the entire terrain data onto the main memory. For someapplications even a Gigabyte of RAM is not enough. It is safe to say thatno size will ever su�ce, since the application demands will always increaseaccording to the availability of space. This suggests that
ythroughs requirea large secondary storage together with a fast paging mechanism.2

An image of an aerial view gains its realistic impression by mapping adigital photograph onto the terrain model. In order to achieve high quality,full resolution of both the digital terrain model and the corresponding aerialphotograph need to be employed. This causes a major load on conventionalgraphics hardware based on a geometric pipeline. First, a high resolutionpolygonal terrain model contains a vast number of polygons which need to beprocessed by the geometric pipeline, while processing tiny polygons loses thecost-e�ectiveness of the rasterization hardware. The high resolution photo-graph that needs to be texture-mapped during rasterization, creates a furtherproblem since large photographic maps need to be loaded onto an expensivecache. For example, the Reality-Engine board cannot hold more than a fewKilobytes of texture [1], while larger textures need to be paged from themain memory in real-time [8]. To avoid that, many
ight simulators userepetitive patterns as ground texture, but for some applications where a spe-ci�c target area is a vital requirement, a true photograph has to be mappedon the terrain. These photographs are huge and must be loaded on the
yto the rasterization hardware, forming a serious bottleneck in the renderingpipeline.Instead of using a polygonal model and a geometric pipeline we havefavored a software solution where the model is represented by a voxel-basedrepresentation. The texture-mapping of the photograph over the model is apreprocessing stage, which is decoupled from the rendering stage [9]. Voxel-based modeling also lends itself to representing �ne grained geometry. Thevoxel data is regular, internally represented in an array, and o�ers easy andfast access to the data [5]. Each voxel represents and stores some discretelocal attributes of the model. Voxels representing the terrain contain a heightvalue and a color value, while the voxels representing a 3D model containa texture photograph as will be described below in Section 5. A voxel-based visual
ight simulator with real-time performance has been developedat Hughes Training, Inc. Their
ight simulator runs on special purposehardware, but yields poor results on a graphics workstation [15].The visual
ythrough that we have developed is hardware independent,and thus portable. Portability is important, since it enables integration ofthe
ythrough system with rapid progress in hardware platforms. However,a software rendering algorithm must be fast enough, around a second or twoper frame running on a sequential machine, so that on a parallel machinewith 32 processors it achieves a rate higher than 20 frames per second. That3

Figure 1: Two aerial photo-realistic images generated by the
ythough.is, of course, assuming little overhead is imposed on the parallel version ofthe algorithm.Although we have employed a parallel machine, the real time performanceis mainly due to an innovative rendering algorithm. The new algorithm gen-erates a photo-realistic image such as in Figure 1 within two seconds, on acommon workstation. The implementation of a parallel version of the al-gorithm on a 32-way multiprocessor architecture has sped up the renderingto achieve the desired real-time rates. It should be noted that other (hard-ware independent) ray casting algorithms have reached reasonable speeds([13, 5, 11]), but just for point sampling. Avoiding aliasing artifacts is quiteinvolved and time costly. The algorithm presented here resembles the prin-ciples of the projection algorithm in [15]. However, their algorithm is basedon a forward mapping method and was designed to be implemented in hard-ware. The algorithm presented in the next section is a simple ray casting4

Figure 2: The image footprint over the terrain is de�ned by the viewingparameters.(forward mapping) accelerated by ray coherence and multiresolution traver-sal and highly optimized for hardware independent implementation.The remainder of this paper is structured as follows: Section 2 describesthe rendering algorithm. Section 3 presents the IBM Power VisualizationSystem, the current parallel platform of the parallel algorithm, implementa-tion details concerning the parallelization of the algorithm, and some results.We discuss the generation of voxel-based objects in Section 5 and concludewith a brief discussion on our current activity and some �nal remarks.2 The Rendering AlgorithmThe sequence of images generated by the rendering algorithm is independent.Each image is de�ned by the location of the camera in 3D space, the camera�eld of view, and its orientation, namely the pitch, roll, yaw angles, and imageresolution. Figure 2 depicts the image footprint de�ned by the projectionof the image frame over the terrain. The terrain model is represented bya voxel-based map, generated from a discrete elevation map colored by acorresponding aerial photo map. The rendering algorithm is based on abackward mapping approach known as ray casting. The image is generatedby casting a ray-of-sight emanating from the viewpoint through each of theimage pixels towards the model (see Figure 3). The ray traverses above the5

Figure 3: Discrete ray casting of a voxel-based terrainterrain voxels until it intersects the terrain. The terrain color is sampledand mapped back to the source pixel. Since the model is discrete there is noexplicit intersection calculation, but a sequential search for a \hit" betweenthe ray and a voxel. The speed of the ray traversal is crucial for achievingreal-time performance.The technique we employ is based on a discrete grid traversal, where thesteps along the ray are performed on the projection of the ray on the planerather than in 3D. The heights along the ray are incrementally and uniformlysampled and compared to the height of the terrain below it, until a hit occursand the color of the terrain at the hit point is mapped back to the sourcepixel. If there is no hit, then the background color of the sky is mapped.This apparently naive traversal is \
at" ([12]) in contrast to a \hierarchical"traversal ([5]). In [5] a pyramidal elevation map is used. The multiresolutionpyramid is treated as a hierarchy of bounding boxes through which the raytraverses in a recursive top-down traversal. The number of steps of thehierarchical traversal is proportional to the height of the pyramid. Whena binary pyramid is used, the number of steps is logarithmic to the terrainlength, rather than linear to the terrain size as in the case of the
at traversal.6

Figure 4: Assuming the terrain has no caves, each ray can emanate from theprevious hit point.Our algorithm is based on the incremental \
at" traversal, but, as will beshown, some rays are \hierarchically" traversed.Since the terrain is a height �eld map we can assume that the terrainmodel has no vertical cavities or \overhangs" (i.e., a vertical line has onlyone intersection with the terrain). The traversal can be accelerated using raycoherence [6, 11]. The basic idea is that as long as the camera does not roll,a ray cast from a pixel vertically adjacent always hits the terrain at a greaterdistance from the viewpoint than that of the ray below it. The image pixelsare generated column by column from bottom to top. A ray i+1 emanatingabove ray i will always traverse a distance not shorter than the distance ofray i (see Figure 4). Thus, ray i + 1 can start its traversal from a distanceequal to the range of the previous hit of ray i. This feature shortens the ray'straversal considerably.The total number of steps required to generate one column is equal tothe length of the column footprint, eliminating the factor of the number ofpixel columns. In other words, a naive generation of one column has a timecomplexity of O(ml), where l is the length of the column footprint and mis the number of pixels in the image column. Using ray coherence the timecomplexity is reduced to O(l) only, providing an order of magnitude speed-up. The rays emanating from the bottom of the column cannot gain from aprevious hit and are thus accelerated by a hierarchical traversal [5].Using the above vertical ray coherence between consecutive rays, eachterrain voxel is virtually traversed once. The time complexity of the traversalis proportional to the number of voxels in the image footprint. This is still ahuge number since the image footprint can extend to the horizon. Moreover,this number is view-dependent and causes instability of the frame generationrate.Due to perspective projection, the rays diverge with the distance, caus-7

Figure 5: Multiresolution traversal. The voxel map resolution corresponds tothe sampling rate.ing a non-uniform sampling rate of the terrain voxels by the rays. The raysemanating from the bottom of the image frame hit the terrain at a closerrange than the upper rays. Assuming that the terrain dataset is representedin a single resolution, then, close voxels tend to be oversampled while farvoxels are undersampled. Using a hierarchy of data resolutions improves thesampling, since the rays can adaptively traverse and sample voxels of an ap-propriate size, proportional to the pixel footprint (see Figure 5). Optimally,in every step one pixel is generated. In multiresolution traversal the voxelsampling rate becomes proportional to the number of rays (i.e. pixels), andthe number of steps becomes independent of the viewing direction. Thatis, the number of steps over the terrain is in the order of the image spacerather than the object space. Thus, the adaptive hierarchical traversal notonly speeds up the rendering, but also helps to stabilize the frame generationrate.In our implementation, we use a pyramid of data resolutions where eachlevel has half of the resolution of the level below it. Using more resolutionscan be even more successful, in the sense of uniformity of the sampling,but then it would use more space. Another advantage of a binary pyramidis the simplicity of alternating between consecutive levels, where the stepsizes are either multiplied or divided by two, taking advantage of the integerarithmetic of the traversal [5]. Moreover, the pyramid o�ers a fast �rst hit forthe �rst rays which emanate from the bottom row of the pixel array. Thoserays cannot bene�t from coherency with the previous rays. For those rays atop-down traversal of the hierarchy speeds up their �rst hit [5].8

One important issue that must be taken care of in a real-time hierarchicalrendering is creating a soft transition when switching between levels. A sharptransition is very noticeable and causes an aliasing e�ect of a wave thatsweeps over the terrain. A simple solution is to interpolate between adjacenthierarchies [14] where the interpolation weights are de�ned by the distancefrom the viewpoint to the sampled voxels. Since the range gradually changes,so do the weights, causing a soft transition.Synthetic objects such as trees, buildings, and vehicles can be placedover the terrain. The 3D objects are represented by sticks (a run of voxels)of three types: uniform sticks which are colored by a single color like aterrain voxel, textured sticks which contain a vertical sequence of coloredvoxels, and complex sticks which are textured sticks, but contain some semi-transparent or fully transparent voxels (see [15]). Synthetic objects are thendescribed by a set of adjacent sticks. A ray which hits a textured stickclimbs onto the stick and maps back the stick texture to the screen. Whena semi-transparent value is encountered, a secondary ray continues throughthe voxel. The results of the secondary ray are then blended with the valuesof the primary ray according to the value of the semi-transparent voxels. Inmany cases the transparency value indicates a cavity in the stick; in this caseno blending is performed and the colors of the secondary rays are directlymapped to the pixels.Since cavities cause the spawning of secondary rays it is clear that theyslow down the rendering process. One way to reduce cavities is to �ll themup at coarse resolutions, assuming the cavities are small enough and theircontribution to the �nal image is insigni�cant. One should note that intypical scenes only a small fraction of the sticks need to be complex. Forexample, when viewing woods only the trees at the boundary needs to befully represented with their non convex parts, while most of the other treesare hidden and only their tops can be seen.A typical scene contains many replicated objects placed at di�erent loca-tions and orientations. Thus, many sticks are common to many objects. Acomplex voxel contains a pointer instead of a color which points into a sticktable. Each stick consists of a header and a sequence of values. The headercontains several attributes like the stick type and the stick length.9

2.1 The Basic AlgorithmIn this section we present in detail the basic algorithm that generates asingle column of the image. The algorithm is based on a fast traversal of thecolumn footprint over the terrain. The voxels along the footprint are testedfor visibility and the colors of the visible ones are sampled and mapped backto the image column. The pseudo-code is shown in Figure 7.Let E be the location of the eye and P the location of a column pixel.The parametric equation of a ray emanating from E and passing through Pis v = P + t(P �E). Denote the ray direction P �E by Q = (Q:x;Q:y;Q:z).Then for a given x, the coordinates along the ray are explicitly given by:z = P:z + (x� P:x)(Q:z=Q:x) (1)and y = P:y + (x� P:x)(Q:y=Q:x): (2)Assuming the ray is X major, i.e. Q:x > Q:y, then the sequence ofthe voxel coordinates (x; y) along Q is generated by a forward di�erencesevaluation of the line equation:zi+1 = zi + (Q:z=Q:x) (3)yi+1 = yi + (Q:y=Q:x) (4)where xi+1 = xi + SIGN(Q.x).Using �xed point arithmetic the integral coordinate of y, denoted by byc,is retrieved by a shift operation on the binary representation y, while thefraction part, w = y � byc, is used for linear interpolation at the samplingpoint (see below). The hit between the ray Qj and the terrain is detected bycomparing height(x; byc), the height of the terrain above (x; byc), against z.If z > height(x; byc) then x; y and z are incrementally updated, otherwise ahit has been detected. The terrain color at (x; byc) is sampled and mappedto the pixel Pj , and the process proceeds to the next ray Qj+1 emanatingfrom Pj+1.Since the terrain is a height �eld, the ray Qj+1 does not hit the terrainbefore it reaches the hit point of Qj. The algorithm continues to evaluate thesequence of the (x; y) coordinates, and their heights need to be compared tothe height of ray Qj+1 (see Figure 6). The slope (Q:z=Q:x) and the height10

image plane

Q

Q

i+1

iFigure 6: Climbing from the hit point of ray Qi to ray Qi+1.of ray Qj+1 above x is evaluated by Equation 3. Note that a small error isintroduced since the plane de�ned by the rays emanating from a column ofthe image plane is not perpendicular to the main plane and may be slightlyslanted due to the perspective projection. However, when the �eld of view issmall, say under 10 degrees, the error is insigni�cant.

11

Let ~E be the location of the eye.Let ~P be the location of the bottom pixel of the column.Let ~Up be the vector direction of the image columns.Let ~Q = ~P � ~E be the direction of the ray emanating from P .Assume Q:x > Q:y and E is above the terrain, and x = E:x and y = E:y.Let n be the distance between x and the end of the terrain.while (n - -)f // while not reaching end of terrainwhile (z < height[x; byc])f // test for a hitw = y � byc; // yield the subvoxel weightColor = Sample(x; byc; w); // sample the voxelsPixel(j++) = Color; // back map the resultsif column done return;~P+ = ~Up; // move up to next pixel~Q = ~P � ~E; // climb to the new rayz = P:z + (x� P:x) �Q:z=Q:x;g// Move on to the next voxel along the rayx += SIGN(Q.x); // move along the major axesy += Q.y/Q.x; // incrementally update the Y coordinatez += Q.z/Q.x; // incrementally update the ray heightgif (n) // the sky is seencolor the rest of the pixels with the sky color;Figure 7: The integer base incremental traversal.The function Sample(x; byc; w) samples the terrain colors at the integercoordinates of x. However, the resolution of the �xed point values is higherthan that of the voxel space, and the fraction value, denoted by w, yields thesubvoxel location of the hit point. The exact hit point lies on the vertical gridline between (x; byc) and (x; byc+ 1), (see Figure 8). Thus, the voxel colorsof x; byc and x; byc+ 1 are linearly interpolated at w. Since the size of the12

double step size

wFigure 8: The samples are always on the vertical grid lines, where w indicatesthe subvoxel vertical sample location. The switch to a double step size mustoccur at an even step.pixel footprint is about the size of a voxel, this simple �lter is satisfactory.The traversal algorithm has to switch to a lower resolution at some point.Since the steps are of unit size along the major direction it is rather simpleto double the step size, and respectively, the ray vector and its slopes. Topreserve the property that the steps are always at integer coordinates of themajor axes, the switching to a double step size at the lower resolution mustoccur at an even step of the current resolution (see Figure 8).The switch to a lower resolution occurs at the distance where the voxelfootprint in the image is narrower than a pixel. In other words we avoidundersampling the voxels. Since the vertical �eld of view is not equal to thehorizontal �eld of view, we consider only the horizontal one allowing verticaloversampling or undersampling to occur in some rare cases. In particular,when the viewing pitch angle is low (i.e., shallow), the pixel footprint tends toelongate and may cause signi�cant undersampling. Vertically supersamplingthe pixels to compensate for elongated footprints is not too costly since itdoes not require accessing a larger number of voxels. We have implementeda variation of supersampling where each pixel has been supersampled byparallel rays. The relaxed assumption that the rays cast from a single pixelare parallel enables e�cient implementation without any signi�cant loss ofquality. 13

3 Parallel ImplementationSequential implementation of the rendering algorithm cannot deliver the de-sired real-time rates on contemporary workstations. It is vital to use a pow-erful parallel machine, not only to speed up the rendering but also to supportthe processing of very large databases. The application requires
ying overthousands of square kilometers, including many 3D objects. Taking into ac-count the hierarchical data structures, the total amount of data is over 35Gigabytes (see below). Moreover, the relevant data, i.e. the image footprint,must be continuously loaded into main memory. Thus, the machine needsto have very large �rst and secondary memories, and high speed channelsbetween them. All these requirements need the support of a machine withhigh speed and very large storage capacity, with large bandwidth busses.However, a postprocessor is used to further accelerate the image generationrate and to enhance the image quality (described below).A block diagram of the system is illustrated in Figure 9. The IBM PowerVisualization System (PVS) is the parallel machine described below. It iscontrolled by an IBM RS/6000 Support Processor which also serves as a con-nection to the external world. It reads the commands from the user's controlstick and sends control command from the PVS to a Post Rendering Proces-sor (PRP) (see below) through an Ethernet LAN. The images generated bythe PVS are sent via an HIPPI (100MB/Sec) channel to the PRP and aredisplayed on a standard NTSC monitor.3.1 The IBM Power Visualization SystemThe IBM Power Visualization System (PVS) was designed to provide com-putational power, high-speed memory and I/O to realize very large amountsof complex data. The PVS is a shared memory architecture consisting of upto 32 parallel processing units, and up to 2.5GB of internal local and globalmemory.The architecture consists of up to eight processor cards. Each processorcard consists of four processor elements, each composed of an Intel i860XRor i860XP microprocessor operating at 40 or 45 MHz.Processor storage consists of 16 MBytes of local memory per processorand global memory which can be increased to 2048 MBytes. The globalmemory consists of up to four memory cards. Each card is designed to14

4 SCSI F/W Drives

Disk Array

Support Processor
Monitor

Bus Interface

RS/6000

i860

Post Rendering
Processor

Memory

Local

SCSI

Interface Interface

HIPPI

(up to 2GB)

512MB/Card

Shared Memory

System

Interface

PVS

100MB/sec

Control Stick

System Bus

1280MB/sec

EthernetFigure 9: A block diagram of the systemprovide a data bandwidth of 640MB/sec or 720MB/sec. This is accomplishedby partitioning the memory into four interleaved memory banks, each ofwhich can perform memory reads and writes, thus reducing the latency andimproving throughput. In addition, there is interleaving between cards ifthere are multiple memory cards in the system.An SCSI interface card with four Fast/Wide (peak of 20 MB/Sec) con-trollers is used to connect to the disk array. Using an SCSI disk reduces thesystem price and promises upgradability. The PVS strips the data into allthe controllers, giving a throughput of more than 70MB/Sec. Thus, it cancontain the database and can load the memory fast enough.The PVS also provides means for producing and outputting the frames inreal-time. A video controller which is attached via an HIPPI channel to theServer, includes two logically distinct frame bu�ers with a total capacity of15

up to 32MB. The �rst 8-bit bu�er is used for workstation graphics and textfrom an X-Windows system. The other is a 24-bit/pixel double-bu�ered fullcolor RGB image bu�er at HDTV resolutions and above.3.2 Implementation DetailsThe rendering task is partitioned among the processors. One of the them,selected arbitrarily, operates as the master and the rest are the slaves. Themaster processor, among its many tasks, sets the viewing parameters of thenext frame, including the new positioning of the camera and its orientation,according to the trajectories of the
ight. The generated image is treatedas a pool of columns, and each slave processor renders one column of pixelsas an atomic task. As soon as a slave terminates rendering one column, itpicks a new column from the pool. Access to the pool is monitored by asemaphore operation provided by the PVS library. The semaphore forcesexclusive access to the pool, so that only one processor at a time can picka column. Moreover, as soon as the last columns of the frames have beenpicked and generated, the free processors start to generate the �rst columnsof the next frame. Using this strategy the processors are kept busy with aperfect load balancing.Although the PVS contains as much as two Gigabytes of RAM, thedatabase cannot be loaded entirely into the main memory. The entire databaseis stored in the disk array while the relevant sections (i.e., the image footprint)are loaded dynamically into memory. The terrain database is partitioned intosmall square tiles. According to the viewing parameters, the master drawsthe rectangular frame of the image footprint on the terrain, makes sure thatthe tiles that fall in the frame footprint are already in memory, and loads themissing tiles from the disk-array. Since the footprint changes incrementally,only a few tiles need to be loaded at each frame. A large con�guration ofthe main memory consists of two Gigabytes and can contain more than thesize of one frame footprint; thus, we use an extended footprint. Some of thetiles that are in the larger footprint would otherwise have been loaded on thenext frame. Thus, the extended footprint saves many critical loadings. Thetiles that are loaded are actually prefetched and their presence is not criticalfor correct rendering of the current frame. This mechanism is found to bevery e�cient as it can treat fast changes of camera, as much as one entire�eld of view per second. 16

Pitch 32p 16p 8p 4p 2p14.6 11.0 5.4 2.5 1.1 0.3626.5 15.6 7.6 3.6 1.5 0.5139.0 16.3 8.0 3.7 1.6 0.53Table 1: Frames per second (fps) generated by the PVS as a function of thenumber of processors. Each line of the table shows the fps sampled at di�erentpitch angles.3.3 ResultsQuantitative results are presented in Table 1. The frame generation rate ofthe PVS has been measured at three di�erent angles for di�erent numbersof processors. These rates are further accelerated by the PRP to achieve asteady frame rate of 30 frames per second. However, from these numberswe can learn about the performance of the algorithm. First, a linear speedup is achieved. The above numbers imply that by doubling the number ofprocessors the frame generation rate is more than doubled. This is becauseone processor is dedicated as the master processor. A second observation isthe dependency between the performance and the pitch angle. As the pitchangle gets smaller, the frame generation rate decreases. This is because atsmall pitch angles the frame footprint extends. However, since we use ahierarchy, the size of the footprint is bounded. It should be noted that thereis a speed quality tradeo�. By scaling the pixel-to-voxel ratio it is possibleto speed up the frame generation rate. As the voxels used are \scaled",the footprint sizes (voxelwise) decrease. Of course as the pixel-to-voxel ratioincreases the voxels are oversampled and the image is blurred. However, thisratio is used as a tool to tune the quality of the image as the frame generationrate is guaranteed by the PRP.A typical database consists of a large terrain with tens of target areas.The global terrain is a 1 meter resolution playground of 55x80 square kilo-meters, which is 4.5Giga voxels. Each voxel is four bytes, thus the size of theglobal terrain is 17.6 Gigabytes. Adding the hierarchy requires a third more(5.9G), thus 23.5G bytes in total. Each target area consists of three levels ofdetail: 2.5x2.5 square kilometers of 0.5 meter resolution, 1.25 by 1.25 squarekilometers of 0.25 meter resolution, and 625 by 625 square meters of 12.5centimeters for the highest resolution. A single target area database size is17

0.3G bytes. No hierarchy is needed because the coarser levels are given inthe global terrain. Assuming, for example, 40 target areas require over 12Gbytes. In total 35G bytes are needed for the terrain data. The 3D objectsconsume more space. A typical object requires about 1.5M bytes. Here weshould mention that if true colors were needed, and not only grey levels, thedatabase would have been almost double the size.4 The Post Rendering ProcessorThe images generated by the PVS are asynchronous since their rate is depen-dent on the viewing direction. The frames are created at a rate of 10-15Hz.From these images an NTSC video signal should be produced. The image�elds, that is the even/odd NTSC rows, have to be transmitted at a rate of60 Hz (interlaced). If the �elds contain only the last frame generated by thePVS, the human eye would detect jumps every time the frame is changed.To achieve a smooth sequence of images that do not irritate the eye, it isnecessary to generate the frames at a synchronous rate. The idea is to sim-ulate small changes in the camera position as 2D transformations applied tothe last frame available. However, unlike the interpolation method [2], herethe image needs to be extrapolated. The image is digitally warped on the
y with respect to the
ying trajectories. The warping is done using theDatacube MaxVideo machine. The MaxVideo serves as the Post RenderingProcessor and is also used for some other 2D functions, such as automaticgain control (AGC), �ltering, scaling and rolling the image. It should be em-phasized that interpolating between available frames is not possible since itwould cause a small but critical latency which is not acceptable in real-timesystems, where real-time feedback is vital. The extrapolated images mayhave minor di�erences from the next real frame. However, since the
yingtrajectories are known and are relatively smooth, the transition between theextrapolated frame to the real frame is smooth. Since the warping functionmight mapped back a point outside the source frame, the real frames areslightly larger and include margins. These margins are relatively small since
ying trajectories are smooth, recalling that the real images are created at arate of 10-15Hz.Given an image A generated by some camera position, the goal is towarp the image so that it approximates the image B that would have been18

generated by a new camera position. Let us de�ne f as the function thatmaps B back to A, such that if p is a point in the 3D space that is seen frompixel �x in B and in pixel �x0 in A, then f(�x) = �x0. Once f is known, the pixelcolor at �x is determined by bilinear interpolation at �x0.A perspective warp function would be best; however, the MaxVideo sup-ports a second degree polynomial warp. Thus, f is composed of two functionsf = (fx; fy), where fx and fy are two second degree polynomials:fx(x; y) = a1 + a2x+ a3y + a4xy + a5x2 + a6y2and fy(x; y) = b1 + b2x+ b3y + b4xy + b5x2 + b6y2. To determine the above 12 coe�cients, a set of 2n > 12 equations isexplicitly de�ned by n control points. The system of 2n equations is` solvedusing a least squares method. The 2n equations are de�ned by calculatingthe position of n points in the 3D world coordinate for camera position Aand B, and projecting them back to the image space. We used nine pointsevenly distributed in the image plane. During rendering the 3D coordinatesof the terrain point seen from those nine �xed locations are registered.Denote the vector of unknown coe�cients by Cj = (aj; bj); 1 � j � 6.The system that we need to solve is FC = X, where Fi = (1; xi; yi; xiyi; x2i y2i)and Xi = (x0i; y0i); 1 � i � n. These are two sets of n equations for sixvariables. Assuming n is larger than six, the least squares solution gives usC = (F tF)�1F tX. Note that for n = 6, C = F�1X.Note also that since the roll rotation is a simple 2D transformation, itcan be implemented directly using the MaxVideo warper.5 Modeling Voxel-Based ObjectsThe process known as voxelization converts a continuous geometry into a dis-crete representation [4]. Many existing models are represented by a polygonmesh that approximates the real object. However, for a photo-realistic appli-cation photo mapping [9] is essential (see Figure 10). This requires warpingthe photograph of the object so that it matches the 3D model, and then ap-plying it as a texture map to the voxels. Alternatively, a sculpting technique19

Figure 10: Voxel-based objects: houses, trees and a tank.can be employed. Given a set of images of an object from known directions,one can craft the shape of the model by peeling away the background voxelsaround the projected images. We start from a solid box of \black" voxels.Then, given an image, rays are cast from the background pixels back into thevoxels, \clearing" the voxels encountered into background color. Repeatingthis process from many images which view the model from di�erent direc-tions, leaves the non-background voxels with the shape of the model. Thisprocess of reconstruction from projection yields the texture mapping inher-ently by projecting the non-background pixels back towards the voxels bymeans of ray casting.A simpli�ed implementation of the above sculpting technique has beenemployed. We use only three photographs of a toy object. For example,the three photographs of a toy Scud are shown in Figure 11(a). These threephotographs are scaled down to the voxel space resolution as can be seen inFigure 11(b). At this stage the object is separated from the background pixel.If this is not achieved by color thresholding, a contour is drawn manuallyaround the object. The result of the sculpting process and the photomappingfrom these images is a 3D voxel-based textured object which can be renderedfrom arbitrary viewing direction. The images shown in Figures 12 and 14 arerendered very close to the object in order to observe the �ne details. Note20

(a) (b)Figure 11: A toy Scud. (a) Three photographs (side,front,top). (b) the imagesafter scaling to the voxel space resolution.21

Figure 12: The voxelized Scud from three di�erent viewing directions.22

Figure 13: Three photographs of a T62 tank.23

Figure 14: The voxelized T62 from three di�erent viewing directions.24

that the resolution of the object is higher than of the terrain. However, theseobjects are to be seen from a distance as shown in the previous images.6 Current Porting ActivityThe development project was started in 1992 while the PVS was state-of-the-art, but since then the processing power of a single processor has grownby a factor of 10 compared to the i860.Although the performance achieved on the PVS is satisfactory, it is clearthat a faster platform will allow us to deal better with higher resolutions, andmore and more objects of richer detail. The portability of the applicationpermits the adoption of a new parallel shared memory architecture accordingto the behavior of the commercial market.Using a distributed memory machine was ruled out since the applicationwas designed for shared memory architecture. The only company that man-ufactures shared memory architecture in the same price range as the PVSis Silicon Graphics Inc. (SGI). SGI's machines have a similar architectureto the PVS with the exception that SGI uses a large cache (4 MBytes) incontrast to the 16MBytes of the PVS's local memory.SGI o�ers the Challenge with a maximum of 36 R4400/250Mhz CPUsand the Power Challenge with a maximum of 18 R8000/90Mhz CPUs. ThePower Challenge was designed for
oating point applications and each CPUis more than twice as fast in such applications. In integer applications theR4400 and R8000 have the same performance, giving the Challenge doublethe performance of the Power Challenge. Both machines can store up to 68.8GBytes internally and up to 6.3 TBytes externally.The primary results on the SGI Challenge indicate a speed up of about4.5 times faster than the PVS, while the scalability remains linear. This isachieved with only minor changes in the code used for the PVS, mainly tocompensate for the absence of local memory.7 Final RemarksWe have presented a discrete ray casting algorithm accelerated by ray coher-ence and multiresolution traversal. The time complexity of the algorithm is25

proportional to the number of image pixels, which can be regarded as con-stant. The combination of the e�cient rendering algorithm and the powerfulparallel machine results in a real-time photo-realistic visual
ythrough. Theparallel rendering task partitions the image space among the PVS proces-sor elements, putting the load at the scene space stored in the PVS sharedmemory. Due to data prefetching, the wide bandwidth of the busses, linearspeed-up has been observed as well as hardly any read or write contentions inthe shared memory. We have achieved perfect load balancing by overlappingbetween frames.It should be noted that the sequential version of the rendering algorithmruns well under two seconds on an SGI workstation for a terrain size that can�t into main memory. It is expected that in the future, with the progress ofmemory bandwidth and CPU speed, visual
ythrough will be able to run inreal-time on advanced sequential workstations.8 AcknowledgmentsThis work was developed at Tiltan System Engineering in collaboration withIBM Israel. Our thanks to Meir Nissim-Nir who built the terrain database,and to Sylvia Kohn who built the objects and developed some new ideasduring the process. We thank all the stu� at IBM who helped us along inmany di�erent ways.
26

References[1] K. Akeley. Reality Engine graphics. In Proceedings of SIGGRAPH '93,pages 109{116. ACM, 1993.[2] E.S. Chen and L. Williams. View interpolation for image synthesis. InProceedings of SIGGRAPH '93, pages 279{288, 1993.[3] D. Cohen and C. Gotsman. Photorealistic terrain imaging and
ightsimulation. IEEE Computer Graphics and Applications, 14(2):10{12,March 1994.[4] D. Cohen and A. Kaufman. 3D scan-conversion algorithms for linearand quadratic objects. In A. Kaufman, editor, Volume Visualization,pages 280{301. IEEE Computer Society Press, Los Alamitos, CA, 1991.[5] D. Cohen and A. Shaked. Photo-realistic imaging of digital terrains.Computer Graphics Forum, 12(3):363{373, 1993.[6] S. Coquillart and M. Gangnet. Shaded display of digital maps. IEEEComputer Graphics and Applications, 4(7):35{52, July 1984.[7] Evans and Sutherland Computer Corporation. Esig4000 technicaloverview. Technical report, 600 Komas Drive, Salt Lake City,UT 84108.[8] J. Folby, M. Zyda, D. Pratt, and R. Mackey. Npsnet: Hierarchical datastructures for real-time three dimensional visual simulation. Computersand Graphics, 17(1):437{446, 1991.[9] A. Kaufman, D. Cohen, and R. Yagel. Volume graphics. IEEE Com-puter, 26(7):51{64, July 1993.[10] Y.G. Leclerc and S.Q Lau. Terravision: A terrain visualization system.Technical report, Technical Report 540, SRI international, April 1994.[11] C. Lee and Y.G. Shin. An e�cient ray tracing method for terrain ren-dering. Paci�c Graphics '95, pages 180{193, 1995.[12] F.K. Musgrave. Grid tracing: Fast ray tracing for height �elds. Technicalreport, Department of Mathematics, Yale University, December 1991.27

[13] D.W. Paglieroni and S.M. Petersen. Height distributional distance trans-form methods for height �eld ray tracing. ACM Transactions on Graph-ics, 13(4):376{399, October 1994.[14] L. Williams. Pyramidal parametrics. In Computer Graphics, volume17(3), pages 1{11, 1983.[15] J. Wright and J. Hsieh. A voxel-based, forward projection algorithmfor rendering surface and volumetric data. In A.E Kaufman and G.MNielson, editors, Proceedings of Visualization '92, pages 340{348. IEEEComputer Society Press, 1992.

28

9 BioDaniel Cohen-Or is senior lecturer at the Department of Computer Sciencein Tel-Aviv University. His research interests include rendering techniques,volume visualization, architectures and algorithms for voxel-based graphics.He received a BSc Cum Laude in both Mathematics and Computer Science(1985), an MSc Cum Laude in Computer Science (1986) from Ben-GurionUniversity, and a Phd from the Department of Computer Science (1991) atState University of New York at Stony Brook.Dr. Cohen-Or has extensive industrial experience, in 1992-3 he designed areal-time
ythrough at Tiltan System Engineering, during 1994-5 he workedon the development of a new parallel architecture at Terra Computer, andrecently he has been working with MedSim Ltd. on the development of anultrasound simulator. He can be reached at the Department of Computer Sci-ence, Tel-Aviv University, Israel. His e-mail address is daniel@math.tau.ac.ilEran Rich received the B.Sc. degree in Electrical Engineering from theTel-Aviv University in 1992. Since then he has been working at Tiltan Sys-tem Engineering, leading the development group of the
ythrough and otherapplications. His main areas of interest are parallel computing, computergraphics and image processing. He is a member of IEEE Computer Societyand IEEE.Uri N. Lerner is a doctoral candidate in Computer Science in StanfordUniversity starting September, 1996. He received his B.Sc. summa cumlaude in both Mathematics and Computer Science from Tel-Aviv Universityin 1995. He joined the Tiltan System Engineering in 1994, and has led the
ythrough team for the last year. His current interests include computergraphics and parallel computing with a special emphasis on voxelized terrainrendering and anti-aliasing methods.Victor Shenkar is the General Manager of Tiltan System EngineeringLtd. in Bnei-Brak, Israel. He received a B.Sc and a M.Sc in ElectricalEngineering from the Technion, Israel Institute of Technology and a Ph.dfrom Stanford University. His current interest include accelerated imagerendering and digital photogrammetry.29

