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Abstract. Segmenting an image into semantically meaningful parts is a
fundamental and challenging task in computer vision. Automatic meth-
ods are able to segment an image into coherent regions, but such regions
generally do not correspond to complete meaningful parts. In this pa-
per, we show that even a single training example can greatly facilitate
the induction of a semantically meaningful segmentation on novel images
within the same domain: images depicting the same, or similar, objects
in a similar setting.

Our approach constructs a non-parametric representation of the ex-
ample segmentation by selecting patch-based representatives. This allows
us to represent complex semantic regions containing a large variety of col-
ors and textures. Given an input image, we first partition it into small
homogeneous fragments, and the possible labelings of each fragment are
assessed using a robust voting procedure. Graph-cuts optimization is
then used to label each fragment in a globally optimal manner.

1 Introduction

Image segmentation, the process of identifying homogeneous regions in an image,
is a fundamental task in a large number of applications in image and video pro-
cessing. A particularly challenging instance of image segmentation is the problem
of automatically identifying semantically meaningful regions in an image. This
problem is often referred to as image labeling, since its goal is to associate each
pixel in the image with a label denoting a semantically meaningful part.

While the objective of grouping pixels according to color, texture, and other
cues has been dealt with in many ways, the challenge of aggregating pixels into
segments representing meaningful parts is much harder. This is due to the fact
that such parts are often too complex to be characterized using low-level image
features, such as color or texture. Furthermore, the semantic interpretation of
an image is highly subjective, depending on both the application, and the user.
For example, while some applications are concerned with separating a person
from the background, others might require the partitioning of a person’s body
into its various parts, as demonstrated in Figure 1.

In this paper, we present a novel labeling method, which computes a seman-
tically meaningful partitioning of an input image, as induced from one (or more)
correctly segmented training image. Both the input and the training image(s)
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a b c d
Training Image Desired Labeling

a b c d
Test Image Induced Labeling

Fig. 1. Inducing different semantically meaningful segmentations. This figure
illustrates how four different labelings are induced. A single training labeling is provided
each time, all with respect to the train image in left upper corner. Labeling (a) is a
binary partitioning between foreground and background. Labeling (b) also distinguishes
between skin and clothes. Labeling (c) decomposes the figure into hair and clothes,
while labeling (d) breaks up the background into several parts. Note that in general,
the various parts cannot be characterized by common image space attributes, and they
cannot be inferred without an explicit description or an example.

are assumed to be from the same domain: having similar illumination, resolution
and scale characteristics, and depicting similar scenes. The meaningful parts in
the training image are recognized in the input image, and the correct assignment
of pixels into labels is induced. Such a mechanism is required in various appli-
cations, like removal, replacement, or recoloring of a certain object in a series of
images. For example, one might want to change the color of a garment worn by
a model in all the photographs taken during a particular session.

Our method constructs a non-parametric model of the provided training pair
by selecting a set of patch-based representatives inside each labeled region in
the training image. These representatives are used to quantify the degree of
resemblance between small regions in the input image and the labeled regions
in the training set. This simple, yet informative representation, which is derived
directly from the image, has proved its worth in other applications, such as
texture synthesis [1], image analogies [2], recoloring [3], and image and video
completion [4, 5]. Here we extend this approach to image labeling.

Image analogies and texture transfer [2, 6] are a general framework by which
various types of filters are learned from a single unfiltered and filtered image
pair, and induced on novel images. As mentioned above, these methods gain their
strength from a simple patch-based sampling scheme. The method we present
has a similar flavor and shares their simplicity. However, the former methods
cannot induce labeling since the decisions they make are inherently local. In
contrast, our method makes use of a global optimization step for finding an
optimal pixel labeling.
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Fig. 2. An overview of our method: The labeled training image is sampled, creating sets
of square patches, one set for each label. Given an input image it is first over-segmented
into a collection of small homogeneous fragments. Assignment costs are then computed
for each fragment-label pair. Finally, a graph-cuts multi-label optimization is used to
find the globally optimal labeling of the fragments.

In this work, we assume that small homogeneous regions always belong to
the same semantic part of the image. Hence, we over-segment the input image
into fragments, small arbitrarily-shaped and simply-connected pixel clusters, and
compute the labeling at the fragment level. The fragmentation has a profound
effect on the final result, as it enforces a locally coherent labeling and facilitates
a voting scheme as a means for a robust per fragment label assignment. Further-
more, working at the fragment level reduces the computational complexity and
improves performance.

Figure 2 outlines our method. Patch sampling is performed over the labeled
training image, defining a set of patches, each representing a labeled region
of the image. During labeling induction, the input image is first partitioned
into small fragments. Then, assignment cost is computed for every fragment-
label pair. Next, these costs together with additional contiguity constraints are
incorporated into a graph-cuts multi-label optimization, to yield a global labeling
of the fragments. The combination of patch-based sampling, fragmentation, and
the graph-cuts optimization results in a segmentation scheme that incorporates
both local and global information, allowing effective induction of semantically
meaningful labelings from one image to another.

2 Background and Related Work

Segmentation is a well-studied problem. A common approach for segmentation
aggregates local cues such as color, texture, edges or various filter responses, by
which pixels are clustered into contiguous, homogeneous regions (e.g, [7, 8]. For
a survey of segmentation methods, see [9].
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While these methods are successful in clustering image pixels into homoge-
neous regions, they cannot automatically group the resulting clusters into se-
mantically meaningful parts. However, they do provide natural image building
blocks, or image fragments, which can facilitate various region based decisions,
such as label assignments. We argue that determining whether an entity belongs
to a particular semantic part is more easily done at the fragment level, than on
a pixel-by-pixel basis.

The limitations of a pixel level decision are also addressed by global meth-
ods. By global methods we refer to methods that formulate the problem as a
minimization problem over the space of labelings/segmentations. The feasibility
of the global approaches is bounded by the exponential complexity of the space
of all possible solutions. Therefore, different algorithms restrict the space in or-
der to make the minimization tractable. The restrictions are usually formulated
with priors, such as continuity or smoothness. They yield a minimization of an
error function comprised of two error terms: the data constraint, and a pair-
wise constraint. Examples of global methods include normalized cuts [10], belief
propagation [11], and graph-cuts [12], which is used in this paper.

Another limitation of previous segmentation methods is the descriptive power
of the parametric model that they use to represent a segment, e.g., distribution
of colors, textures or some other features. A powerful alternative is to use ex-
amples as an implicit representation. Example-based non-parametric modeling
avoids the complications of parametric modeling. This approach has been applied
successfully in applications ranging from texture synthesis to image completion
[1, 2, 6, 13, 3, 4].

An example based representation is also used for detection and segmentation
of objects from a specific class [14]. There, the task is to segment an object in an
image, based on a large set of pre-segmented images, all from the same family
(e.g., horses). In contrast, we are interested in labelings induced by as few as a
single example. The image building blocks used in their method are also termed
fragments. However, their fragments are rectangular tiles of variable size, while
in our work, fragments may have an arbitrary shape determined by the context
of the image.

Segmentation is also closely related to the problem of extracting objects from
images. Because the task is so challenging, interactive solutions were developed,
where the user assists the segmentation process. In particular, graph-cuts opti-
mization has proved to be an effective tool for interactive image segmentation
[15, 16]. The optimization is used to find segmentations, which are consistent with
color, edges, and the user defined constraints. Graph-cuts have been extended to
handle multiple (more than two) segment problems, using the alpha-expansion
algorithm [17]. Recent works on video tooning [18] and rotoscoping [19] are
related to our work. They also face the problem of producing a consistent seg-
mentation for a sequence of similar images. Their approach takes advantage of
frame coherence, computing 3D clusters of pixels in the space-time video volume.
The user then outlines the semantic regions using a rotoscoping interface. We are
also interested in segmenting similar images, but make no assumptions regarding
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coherence among the images, and identify semantic regions automatically based
on a small training set.

3 Algorithm

In this section we describe our algorithm for inducing the labeling of the training
image onto the test image. Let Itrain denote the training image and Ltrain the
labeling of its pixels by k different labels. Given an input (test) image Itest our
goal is to compute its corresponding labeling Ltest. We begin by describing how
patches in Itrain are used to compute labeling costs for pixels in Itest (Sec. 3.1).
Rather than attempting to label each individual pixel in Itest we partition it into
small homogeneous fragments (Sec. 3.2) and compute more robust labeling costs
for each fragment (Sec. 3.3). Finally, we use graph-cuts optimization to assign a
label to each fragment in a globally optimal manner (Sec. 3.4).

3.1 Pixel Labeling Costs

Given Itrain and Ltrain we create a patch-based classifier by representing each
label by a set of square patches, sampled from the corresponding region in Itrain.
We get k such sets {Sl}k

l=1, one for each label. Each set contains a variable
number of patches, depending on the number of pixels with that label in Itrain.
All patches are of uniform size m × m, which is chosen beforehand so it is
proportional to the scale of details in the image, such as m = 7 or m = 20.
Figure 3 depicts the representation of each segment class by a set of sampled
patches. Next, we define ϕ(p, l) to be the cost of assigning label l to a pixel
p ∈ Itest. Informally, a low cost ϕ(p, l) indicates that there is a high likelihood
that p should be labeled with l, and vice versa. We compute ϕ(p, l) by matching
P , the m × m square patch centered at p, with the patches in the set Sl. The
cost is proportional to the distance to the nearest neighbor of P within Sl:

ϕ(p, l) = min
P ′∈Sl

ssd(P, P ′)
M

,

where ssd(P, P ′) is the sum of squared distances between the patches P and P ′,
both treated as M -length vectors, where M = m × m × 3 in the case of three
RGB color channels.

Fig. 3. Patch-based classifier. Each semantic part is represented by a set of square
patches, sampled from within the corresponding region in the training image.
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Fig. 4. Visualization of fragment labeling costs. Costs range in the interval [0,1] and
are colorized according to each label’s representative color, as defined in the Figure 3.

3.2 Fragmentation

The search for the nearest-neighboring patches within each set Sl is computation-
ally intensive. In order to reduce the number of such searches, we partition Itest

into small, color-homogeneous regions, which we refer to as fragments. These
fragments are arbitrarily-shaped and may contain from a few pixels to thou-
sands of pixels. We exploit the resulting structure to accelerate the algorithm
by evaluating the labeling costs only for a small fraction of the pixels within
each fragment, and then use voting to arrive at a set of labeling costs for each
fragment.

The fragmentation is performed such that fragments are smaller in more de-
tailed areas of Itest, and larger in more homogeneous regions. In addition, it is im-
portant that fragment boundaries align with edges in the image, since such edges
may correspond to the boundary between different semantic regions. Fragments
which comply to these criteria may be computed using mean-shift segmentation
[8] with sufficiently small kernel bandwidths. Figure 5 demonstrates the result of
fragmentation. Notice how small fragments form in highly detailed areas (such
as the hair and shirt regions), while large fragments form in homogeneous areas
(such as the walls in the background).

In addition to reducing the computational cost, fragmentation actually helps
produce better results, for two reasons. First, fragmentation constrains pixels
within the same fragment to be assigned to the same label, thereby enforcing
a locally coherent labeling. Second, the voting procedure performed on pixels
within each fragment produces more robust labeling costs.

random colorization mean value colorization detailed close-up representative patches

Fig. 5. Fragmentation. The input image is fragmented into arbitrarily-shaped homoge-
neous regions, which we call fragments. Fragment sizes vary according to the amount
of detail in various image areas, and their boundaries are aligned with edges in the
image. The label assignment of each fragment is computed by choosing representative
patches.
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3.3 Fragment Labeling Costs

We apply a voting scheme in order to compute the labeling costs of each frag-
ment. For each fragment f ∈ Itest we pick a few representative pixels:

Rep(f) = {pi ∈ f}Rf

i=1,

where Rf is proportional to the number of pixels in f , for example: Rf = �
√

|f |�.
Figure 5 visualizes fragments along with their representative pixels (and the
corresponding patches). The cost of assigning label l to fragment f ∈ Itest is
defined as:

ϕ(f, l) = median {ϕ(p, l)|p ∈ Rep(f)} .

Choosing the median value is a robust voting scheme, which is insensitive to
outliers. By the end of this process, each fragment is associated with k different
costs, one for each label. Figure 4 shows a visualization of the labeling costs that
were computed for the example in Figure 1.

As patches and fragment dimensions are frequently similar, it is often the
case that the patches centered at the representative pixels contain pixels outside
the fragment, affecting the fragment’s labeling costs. A simple solution would be
to introduce weights into the computation of the distance between patches, but
this interferes with the efficient nearest neighbor search that our implementation
currently employs. It should be noted however that the effect of these outliers is
significantly reduced by the voting scheme.

3.4 Graph-Cuts Optimization

After all pixels in the test image Itest have their labeling costs, we need to find
Ltest, the globally optimal labeling. A label assignment that minimizes the total
labeling cost and also is devoid of small, disconnected segments. Thus, we also re-
quire the labeling to be consistent with the presence (or absence) of edges in Itest.

In order to satisfy these requirements, we add an additional pairwise con-
straint ψ (p, q, L(p), L(q)) between each pair of neighboring pixels 〈p, q〉. This
constraint enforces label assignments to change only across evident edges in
Itest. The constraint ψ(p, q, L(p), L(q)) is 0 when the labels assigned to p and q
are the same (L(p) = L(q)) and otherwise, proportional to the evidence of 〈p, q〉
not being an edge in Itest. Specifically,

ψ (p, q, L(p), L(q)) =
{

0 L(p) = L(q)
1 − ∇(p, q) otherwise (1)

where ∇(p, q) is the difference (in RGB distance) between pixels p and q, atten-
uated and scaled to the range [0, 1]. Furthermore, we enforce the restriction that
pixels within each fragment should be labeled the same, in order to reduce the
combinatorial search-space and achieve a satisfactory approximation at reduced
computational costs. This is implemented the by specifing our energy term E(L)
in terms of fragments instead of pixels:

E(L) =
∑

f

|f | · ϕ (f, L(f)) + α
∑

〈f1,f2〉
ψ (f1, f2, L(f1), L(f2)) .
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Training Image Training Segmentation Input Image

(a) Pixel Labeling (b) Fragment Labeling
(c) Labeling after

Graph-Cuts Optimization

Fig. 6. The contribution of fragmentation and global optimization. The training set
consists of four semantically meaningful segments: three plants and the background.
Notice that the plants’ segments have very similar local characteristics, except in their
upper part, which has a unique color. (a) shows that a direct labeling of pixels fails
to induce a locally coherent segmentation, due to the close similarity. (b) shows that
labeling of fragments produces coherent labeling, but the labeling is over-segmented.
(c) shows that a global combinatorial optimization captures semantically meaningful
parts, and assigns the correct label.

Here 〈f1, f2〉 are neighboring fragments in Itest. ϕ (f, L(f)) is the cost defined in
Sec. 3.3, weighted by the size of each fragment. The pairwise constraint ψ() is
extended to neighboring fragments by summing the constraint over their shared
boundary:

ψ (f1, f2, L(f1), L(f2)) =
∑

〈p,q〉,p∈f1,q∈f2

ψ (p, q, L(f1), L(f2)) .

Finally, Ltest is determined by solving: Ltest = minL E(L). We apply the graph-
cuts multi-label optimization technique for the fragment-based energy term
E(L), using the alpha-expansion method [12].

4 Implementation and Results

Image fragmentation is implemented with the mean-shift algorithm from [20].
Graph-cuts optimization is implemented with the Maxflow algorithm from [21],
which computes the optimal cut for each alpha-expansion move. In this imple-
mentation the trade-off between regions and boundaries, is controlled by a single
parameter α. Figure 7 demonstrates the profound effect of this parameter on the
results. In all our experiments we used a fixed α value for all the images within
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the same series, typically setting α to one or a nearby value. For searching square
patches we uses a kd-tree [22]. In most of our results, we use patches of size 7×7.
To reduce computation time, we sample only 5% of possible patches within each
label in the training pair. Labeling of images of size 256× 256 pixels, with three
to six labels takes a few seconds on a 1.8 GHz Pentium 4 machine.

We test our method in the following scenario: Within a set of similar images,
one image is chosen to be the training image. We manually segmented the image
into multiple semantically meaningful parts, and colored each part with a unique
color. Ambiguous pixels were marked in black. Trained by this image pair, our al-
gorithm is used to induce the correct labeling on the remaining images. By image
similarity we require that all images should depict the same subject (e.g., birds
on the grass), have similar illumination conditions and are of similar resolution
and scale. In some of the examples, we apply manual histogram equalizations
and scaling in order to enforce these requirements.

Depending on the application, there are many ways to segment a particular
image into semantically meaningful parts. Figure 1 depicts our experiments of
creating different conceivable labelings and their induction on another image
within the same domain. Note that certain semantically meaningful labelings,
like the one that merges clothes and hair under the same label, cannot be char-
acterized in terms of simple image features, and thus cannot be inferred without
an explicit description or an example.

As described above, we use fragmentation to enforce locally-coherent labeling
of pixels, and graph-cuts optimization to induce the globally optimal assignment
of labels to fragments. Particularly, propagation of information across fragments
is crucial in scenarios where different semantic parts share similar sub-parts. We

Training Image Training Segmentation Input Image

α = 0.1 α = 5 α = 1

Fig. 7. The tradeoff between fragment labeling costs and the pairwise smoothness
constraints is controlled by a single parameter α. A low α value favors boundaries and
produces a over-segmentation, while a high α value penalizes boundaries, producing
under-segmentation.
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Training Set (a) (b) (c)

Fig. 8. Arbitrary segment shapes. The segmentation between bear and water is induced
on three different images. Notice that the induced segmentation may contain holes (a),
and be non-contiguous (b), but our method cannot separate multiple objects belonging
to the same label (c).

Training Set (a) (b) (c) (d)

Fig. 9. Object detection and identification. Images of two types of birds are given as a
training set, each bird marked by a distinct label. Labeling results (a-c) demonstrate
our algorithm’s ability to detect the presence of each bird. The gray scale image (d)
demonstrates the labeling assignment costs of image (c), disclosing a greater confidence
over the labeling of the left bird than the right bird, as the latter differ from the training
image. Results without graph cut optimization (d) illustrate its contribution.

demonstrate the effect of the fragmentation and global optimization in Figure 6,
by showing the consequences of omitting each of them.

Our method is invariant to the number of instances of each semantic part
within the image, and insensitive to the shape of each part. Figure 8 shows the
labeling of parts with different topology, in particular, holes (b) and discon-
tinuities (c). On the other hand, our method cannot separate segments which
correspond to multiple instances of the same semantic label, as in the bear family
image (c).
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The ability to segment an image and detect the semantic meaning of each part
is demonstrated in Figure 9. Images of two types of birds are given as a train-
ing set, where each bird is marked by a distinct label. The results demonstrate
the ability to correctly detect and distinguish between the birds (a). The bot-
tom image in (b) also demonstrates that since fragments respect image edges,
the labeled regions have correct boundaries, which agree with the underlying
image.

Note that the lower right bird in (c) top constitutes a difficult case, since it is
a bit darker than its counterpart in the example image, making it more similar
to the second type of bird. This is evident in the gray-scale figure (d) top, which
visualizes the optimal cost of the globally optimal labeling, demonstrating the
problem of making clear cut decision. This image can be treated as a confidence
map, and it discloses a greater confidence over the labeling of the left bird than
the right bird.

5 Discussion and Future Work

“The whole is greater than the sum of its parts” [23] is one of the Gestalt prin-
ciples. In this paper, we identify the parts (fragments) of the whole (meaningful
object) by assigning them a common label. In general, labeling meaningful parts
is known to be a difficult task. We have shown that inducing a labeling from
an example can effectively perform this task for a set of images from the same
domain. We can attribute this to the following reasons: (i) The example defines
the granularity of the desired output. That is, whether we expect to label a
complete human body, or its sub-parts: hands, torso, head, etc. (ii) The example
allows the use of a non-parametric model to alleviate the huge space of parts.
These have more discriminative properties than parametric models. Figure 6
demonstrates that applying the labeling to fragments rather than pixels pro-
vides better results. Note that the shapes of our fragments are data dependent
rather than being predefined (e.g., rectangles or ellipses). We believe that the
labeling problem should address meaningful building blocks, and that pixels are
too small to be informative.

In the future we would like to investigate the applicability of our method
to a series of images with some spatial coherence. Such coherence can assist
the labeling of fragments across the images by considering their relative spatial
position in the image. This can then lead to various tracking methods applicable
to video with scenarios which include occlusions and frequent scene cuts.
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