
d

egment a
tting. Our
es
ane. The
features

select the
cific part
measure
t met, the
position.
atic user
Computer Aided Geometric Design 22 (2005) 444–465
www.elsevier.com/locate/cag

Mesh scissoring with minima rule and part salience

Yunjin Leea, Seungyong Leea,∗, Ariel Shamirb, Daniel Cohen-Orc, Hans-Peter Seideld

a POSTECH, Republic of Korea
b The Interdisciplinary Center, Israel

c Tel Aviv University, Israel
d MPI Informatik, Germany

Available online 23 May 2005

Abstract

This paper presents an intelligent scissoring operator for meshes. Unlike common approaches that s
mesh using clustering schemes, here we introduce a method that concentrates on the contours for cu
approach is based on theminima rule andpart salience theory from the cognitive theory. The minima rule stat
that human perception usually divides a surface into parts along the concave discontinuity of the tangent pl
part salience theory provides factors which determine the salience of segments. Our method first extracts
to find candidate contours based on the minima rule. Subsequently, these open contours are prioritized to
most salient one. Then, the selected open contour is automatically completed to form a loop around a spe
of the mesh. This loop is used as the initial position of a 3D geometric snake. Before applying a snake, we
the part salience of the segments obtained by the completed contour. If conditions for the salience are no
contour is rejected. Otherwise, the snake moves by relaxation until it settles to define the final scissoring
In this paper, we focus on a fully automatic scissoring scheme; nevertheless, we also report on semi-autom
interfaces for intelligent scissoring which are easy to use and intuitive.
 2005 Elsevier B.V. All rights reserved.

Keywords: Mesh segmentation; Mesh partitioning; Part-type segmentation; Geometric snake

* Corresponding author.

E-mail address: leesy@postech.ac.kr (S. Lee).

0167-8396/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cagd.2005.04.002



Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465 445

, recon-
anning
meshes,
ne such
es. In
d match-
gredient

nts and
nd et al.,
ontours

closed
a
inuity of
as been
herency
t follow

nd their

ily

on the
n either
ting the
ocedure
a range
g tool.
e et al.,
insignif-
itation
tic scis-

itation
esh into
1. Introduction

In the last decade we have witnessed tremendous developments in techniques for modeling
structing, and visualizing 3D meshes for various applications. With the advent of advanced sc
technology, meshes are becoming larger and more complicated. To repair, manipulate, or modify
there is a need for interactive and intelligent tools that assist and enable simpler mesh editing. O
basic operator is thescissoring operator, which extracts sub-parts and pieces from existing mesh
addition, many mesh related algorithms, such as parameterization, compression, morphing, an
ing, use mesh partitioning as an initial stage. This means mesh partitioning has become a key in
for many mesh manipulation applications (Shamir, 2004).

Most previous work on mesh partitioning use clustering of similar mesh elements or compone
then refine the border between these parts to find the segmentation (Katz and Tal, 2003; Garla
2001; Inoue et al., 2001; Lévy et al., 2002). In contrast, our approach directly targets the cutting c
by providing a scissoring operator, which separates a given mesh into two disjoint pieces along a
contour lying on the mesh. This idea is based on theminima rule from the cognitive theory. The minim
rule states that human perception usually divides an object into parts along the concave discont
the tangent plane (Hoffman and Richards, 1984; Hoffman and Signh, 1997). In various tests, it h
shown that humans take more notice to such discontinuity on the shape outline than to the co
of different shape parts. Therefore, our scissoring operator searches for contour candidates tha
minimum negative curvatures. Later selected candidates are completed to form cutting loops, a
positions are refined using geometric snake movements.

Our scissoring operator is carried out using four basic steps:

1. Feature contour extraction: Finding and selecting afeature contour on the mesh (not necessar
closed).

2. Loop completion: Completing the feature contour to a closedloop.
3. Part salience test: Rejecting the loop if the conditions ofpart salience are not satisfied.
4. Snake movement: Using the loop as the initial positioning of ageometric snake, and evolving the

snake to its final position for cutting.

The difference between automatic and semi-automatic scissoring in our approach is based
amount of user guidance in the first and second steps. The initial feature contour on the mesh ca
be indicated manually by the user or chosen automatically based on feature extraction. Comple
contour to a closed loop can either be done using guidance from the user or by an automatic pr
which directs the contour to loop around mesh parts. This approach provides the ability to define
of possible tools from a fully automatic partitioning tool to an easy-to-use semi-automatic scissorin

The basic idea of mesh scissoring with the minima rule was presented in our previous work (Le
2004). However, since the feature contour selection is based on heuristics, the scissor might cut
icant parts, which sometimes induces user intervention to reject the scissoring results. This lim
hinders the scissoring process from being fully automatic and we put emphasis on a semi-automa
soring tool in (Lee et al., 2004). A central contribution of this paper is that we can overcome the lim
by incorporating the part salience test and consequently achieve fully automatic scissoring of a m
meaningful parts.



446 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465

h
to the
ntitative
rts. After
alience of
are not
soring.
a large
ser a lot
manual
mprove
omatic
ring an

vature of
cond is
he last

d shorter
erties:

esult of

oring.

ningful
onents of
D mor-

ge et al.,
so on.

ngan
erging
undaries

ssoring
tracting
oother

n main
, while
Our part salience test builds on the theory ofsalience of visual parts proposed by Hoffman and Sing
(1997). According to their theory, the salience of a part is a function of the object size relative
whole object, the degree to which it protrudes, and the strength of its boundary. We developed qua
definitions for these measures that can be applied to meshes, and in particular the scissored pa
a selected contour has been completed to a closed curve around a mesh part, we test the part s
the segment that will be obtained by the scissoring with the curve. If the part salience conditions
met, the curve is rejected and a new contour is selected and completed to a closed curve for scis

In most cases, the partitioning is applied to a single model at a time. To efficiently process
database of models, an automatic algorithm, such as proposed in this paper, would help the u
to achieve high quality results in a short time. Nevertheless, here as well, we report on semi-
tools which are easy to use and intuitive. In this paper, in addition to the part salience test, we i
the performance of the loop completion step by adding the centricity to the weight terms for aut
completion. The centricity makes the automatic completion more robust especially when scisso
elongated object.

Our scissoring process uses three fundamental geometric mesh attributes. The first is the cur
the mesh and the rational behind using it lies in human perception and the minima rule. The se
the centricity of positions on the mesh, which separates main object parts from the peripheral. T
attribute deals with the length and smoothness of a scissoring cut. Using it assures smoother an
interfaces between segmented parts. As a result, our scissoring approach has the following prop

• The approach is guided by fundamental mesh geometric attributes based on perception.
• The final position of the cut is smoother and presents a more meaningful boundary as a r

using the geometric snake.
• The scissoring operator generates salient segments in a fully automatic way.
• The approach enables a continuous range of tools between fully automatic and manual sciss

Our scissoring operator is a part-type segmentation method, which divides a mesh into mea
parts along cutting contours (Shamir, 2004). Since extracted parts represent independent comp
a model, the part-type segmentation can be used for skeleton extraction (Katz and Tal, 2003), 3
phing (Shlafman et al., 2002), shape matching and reconstruction (Zuckerberger et al., 2002; Pa
2003b), modeling by example (Funkhouser et al., 2004), collision detection (Li et al., 2001), and

2. Related work

Automatic partitioning of a mesh is typically performed by growing regions incrementally (Ma
and Whitaker, 1999; Kalvin and Taylor, 1996; Shlafman et al., 2002; Sorkine et al., 2002), or by m
regions (Garland et al., 2001; DeRose et al., 1998; Faugeras and Hébert, 1987). Hence, the bo
between regions are implicitly defined by the regions themselves instead of explicitly using a sci
operator. Following human perception and the minima rule, we use an opposite approach by ex
the boundaries first and defining the mesh sub-parts implicitly. This also enables a definition of sm
and natural looking region boundaries which are not constrained to lay on the mesh edges.

The approach presented in (Katz and Tal, 2003) refines the final cut in a fuzzy region betwee
parts. However, the approach still uses clustering with a threshold to determine the fuzzy region



Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465 447

manual
omposed
proach
h surface

g region
ng, the
milar to
pute the
erquadric
o directly

nd Bar-
as to 3D
ications
parts of

khouser
. The cost
pecified
is paper,
ion. Al-
cheme

n an im-
rom 3D
e curve
stination
) where
hich is
tedious

ight the
provide

min-
used as

obtain a
concentrating less on feature boundaries. Unlike our approach, it does not support intelligent
operations and a cut is constrained to mesh edges. In (Li et al., 2001), a mesh is automatically dec
by searching critical points of characteristic functions defined by volume features. Although the ap
extracts the boundaries to determine components, it does not consider the features on the mes
and provides no interactive tool.

The minima rule has already been presented for segmentation of CAD models and meshes usin
growing and the watershed algorithm (Page et al., 2003a). Due to the limitation of region growi
technique cannot cut a part if the part boundary contains non-negative minimum curvatures. Si
this paper, Page et al. (2003b) used the factors proposed in (Hoffman and Signh, 1997) to com
salience of parts. However, contrary to our approach, they represented segmented parts as sup
models and used the models to compute the part salience. In this paper, we present methods t
compute the part salience on a mesh part.

Intelligent manual scissoring tools have been presented for image segmentation (Mortensen a
rett, 1998; Mortensen and Barrett, 1995; Falcão et al., 1998). In this paper we extend these ide
mesh editing and manipulation. Such simple-to-use but intelligent tools are a must in newer appl
of mesh editing such as modeling by example (Funkhouser et al., 2004), where the user extracts
a mesh in order to combine and paste them to other meshes. In the intelligent scissoring of (Fun
et al., 2004), the user paints strokes on a mesh to specify where the mesh should be segmented
for searching a cut depends on the current view direction; the visible part of a cut contains the s
stroke and the other part is guided to traverse the back-side of the mesh. On the other hand, in th
the cost of a cut is determined by a feature contour and independent of the current view direct
though considering the view information may help to make the cut completion more robust, our s
has the merit of supporting fully automatic cutting without user interaction.

Snakes were presented as active contour models for semi-automatic detection of features i
age (Kass et al., 1988). Active contour models for images were extended to extract features f
surfaces. In (Milroy et al., 1997), the snake position is updated directly on a 3D surface. Featur
detection on a 3D mesh by a minimal path (Cohen and Kimmel, 1997) between the source and de
points is presented in (Andrews, 2000). We follow the approach proposed in (Lee and Lee, 2002
the snake’s updated position is determined by energy minimization on a 2D embedding plane, w
computationally efficient. Using snakes as the final stage of the scissoring tool frees the user from
adjustments and smoothing of the cut.

3. Overview

In this section, we provide an overview of the mesh scissoring process (see Fig. 1), and highl
differences between automatic and semi-automatic use of our approach. The following sections
details on each of the stages.

Feature contour extraction. The first stage of finding candidate contours begins by computing the
imum curvature value for each vertex of the mesh. After proper normalization, these values are
feature values on the vertices. We use thresholding and thinning to obtain severalgraph structures of
a feature skeleton and then extract contour curves from the graphs. In this stage, we can also



448 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465

t on the

ur based
e mesh
ach part

user for

loop
between
her side
r semi-
can be

a plane
ts on the

ontour
egmen-
ision by
lience of
relative
Fig. 1. Overview of the scissoring process.

candidate contour manually, which is provided by a simple gesture of drawing a 2D line segmen
viewing window.

Feature contour selection. In the second stage, we select a contour which serves as the initialfeature
contour in the succeeding scissoring stages. For automatic scissoring, we choose the best conto
on two criteria: the length of the contour and its centricity on the mesh. Subsequently, when th
partitioning is done, the process of choosing the best contour can be repeated recursively on e
separately for multiple-parts segmentation. Another option for designating afeature contour is using
manual selection. A map of the automatically extracted feature contours is used to guide the
selecting natural cutting positions.

Feature contour completion. In the third stage, the feature contour is completed to form a closed
around a specific part of the mesh. For automatic completion, we find the weighted shortest path
the two endpoints of the contour. The weights are used both to direct the path to go over the ot
of the mesh and to attract it to mesh features, instead of finding the simple shortest path. Fo
automatic completion, a line drawing gesture similar to an interface making a candidate contour
used to create a full loop around the mesh. This line along with the center of projection defines
which cuts through the mesh. For delicate situations, the user can designate a sequence of poin
mesh which completes the loop.

Part salience test. The fourth stage determines whether segments obtained from the completed c
are significant enough or not. Automatic selection or completion might cause less meaningful s
tation by cutting off a piece which is not salient. For semi-automatic use, a user can make a dec
observing the shape of the loop on the mesh. To determine it automatically, we measure the sa
the segments which the scissoring operation is about to yield. The salience is estimated from the
areas, protrusions, and strength of features on the loop.



Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465 449

metric
ture field
snake is

low the
between

res, i.e.,
984). Fol-
hich is
nimum
m

eviation
value

pecific

e parts.
nce the
that pass

e defined
cted by
obtain
Snake movement. The last stage of scissoring uses the closed loop as an initial position of a geo
snake. To attract the cut to mesh features, the external energy of the snake uses the mean curva
over the mesh. The snake’s internal energy controls the length and smoothness of the cut. The
evolved until it is settled, defining the final smooth scissoring cut. The cut does not necessarily fol
mesh edges and it can partition triangles. This creates a smoother and more natural boundary
mesh parts.

4. Feature extraction

The minima rule states that human vision tends to define areas of minimum negative curvatu
concave shape areas, as interfaces separating between object parts (Hoffman and Richards, 1
lowing this rule, we define a feature value on each vertex by the minimum curvature value, w
calculated by the tensor field computation used in (Alliez et al., 2003). Since the ranges of mi
curvature values are too diverse among different meshes (e.g., the range of a horse model is fro−5.4
to 4.8 and the range of a hand model is from−0.3 to 0.19), we normalize the values. Ifκ(v) is the mini-
mum curvature value at a vertexv, the normalized value iscf (v) = (κ(v) − µ)/σ , whereµ is the mean
andσ is standard deviation ofκ(v) over all vertices of the mesh. We assign the normalized valuecf (v)

to each vertexv of the mesh as the feature value (see Fig. 2(a)). We use the mean and standard d
for normalization instead of simple scaling (dividing by the maximum value), since the curvature
distribution is not uniform in the range. This allows us to use similar values independent of a s
mesh in the succeeding thresholding stage.

Similar to (Hubeli and Gross, 2001), we use hysteresis thresholding on the values ofcf to define
high feature areas. In our experiments, the upper bound for the hysteresis is usually−1.2 and lower
bound is−0.8. This means we choose high negative-curvature values which designate concav
In the original paper (Hubeli and Gross, 2001), the thresholding is performed on the edges, si
feature curvature values are computed for edges. In our approach, we obtain a set of vertices
the thresholding. Fig. 3 shows the thresholding results with the same bounds−1.2 and−0.8. We can see
that the same value works well for different meshes due to the normalization of curvature values.

By connecting the vertices that pass the thresholding, we construct regions on the mesh surfac
by triangles that contain these vertices (see Fig. 2(b)). Next, the skeleton of each region is extra
peeling vertices from the boundary of the region towards the inside. As a result of the peeling, we
a set of graph structures of feature skeletons (see Fig. 2(c)).

Fig. 2. Stages of feature contour extraction.



450 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465

two fea-
hort. We
ger ones
ir major
ps of a

ajor di-
contours

creen
loop or
model
ed by

ses over
t-faces

didates
because
Fig. 3. Hysteresis thresholding.

Fig. 4. Contour connection.

To create feature contours, we disconnect the skeleton graphs at vertices where more than
ture edges meet. This creates a set of non-branching feature contours, some of which are too s
remove the useless short contours, and merge close and similar feature contours to create lon
(see Fig. 2(d)). The similarity between two close contours is measured by the angle between the
directions around end points. We first smooth the contours by applying energy minimization loo
geometric snake, proposed in (Lee and Lee, 2002) and also used in Section 8. Second, their m
rections are obtained by averaging edge directions around the end points. We then connect two
which have close endpoints and similar directions (see Fig. 4).

Another option for creating candidate contours is simply to draw a 2D guiding line on the s
over the mesh. This line is projected over front- and back-faces of the mesh to define a closed
only front-faces to define an open contour. Fig. 5 shows the case of cutting two wings of a feline
using contours created by drawing a 2D line. The left wing can be simply cut by the loop obtain
projecting a line over front- and back-faces. On the other hand, the loop around the right wing pas
the body of the feline. For that case, we can create a contour by projecting a line only over fron
and complete it by the automatic technique presented in Section 6. Fig. 5(c) shows the result.

5. Feature contour selection

In order to perform the scissoring, a single specific feature contour must be chosen from the can
obtained in the feature extraction stage. It is important to determine the selected order of contours



Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465 451

nto front

egion to

use two
divide a
nce
sic

rity

s),
y

st.
in the

hen we
utation,

simple
in
The edge
alues for
s
.

Fig. 5. Contours created by user specification: (a) 2D line drawing over the mesh; (b) contours created by projecting o
& back faces; (c) contours created by projecting only onto front faces and applying automatic curve completion.

our approach prevents the boundaries of segments from crossing each other, which limits the r
be cut in subsequent scissoring.

In automatic scissoring, the most salient feature contour must be chosen automatically. We
criteria to define the best contour: the length of the contour and its centricity because we want to
mesh into as large parts as possible. Thecentricity of a vertexv is defined as the average geodesic dista
(agd(v)) from v to all other vertices (Hilaga et al., 2001). Letm represent the maximum average geode
distance among all mesh vertices,m = maxv(agd(v)). We define the normalized centricity asc(v) =
1− agd(v)/m. For each candidate feature contourγ , which is a sequence of edges, we define its prio
as the sum of products of all normalized centricity of its edges by their lengths. More specifically, ifl(e) is
the length of an edgee andc(e) is the normalized centricity ofe (the average value of its two endpoint
we defineP(γ ) = ∑

e∈γ l(e) · c(e), and chooseγmax = argmaxγ P (γ ). Fig. 6 shows scissoring results b
automatic selection. We can observe that the longest contour nearest to the center is selected fir

After a mesh has been partitioned, the current centricity values of vertices are no longer valid
resulting segments. Hence, we should recompute the centricity values after each partitioning w
perform recursive partitioning on a mesh for multiple-parts segmentation. To accelerate the comp
we approximate centricity values using a subset of vertices.

We first apply hierarchical face clustering (Garland et al., 2001) to a given mesh and obtain a
graphG from the clustering result, as shown in Fig. 7. In graphG, vertices are the corner vertices
the clustering where more than two clusters meet and edges correspond to cluster boundaries.
lengths are determined as the 3D distances between the end vertices. We obtain the centricity v
the vertices ofG by computing the shortest paths through the edges ofG. From the centricity value
in G, we can interpolate the centricity values of vertices in the given mesh. Letv be a vertex in the mesh
We compute the distancesdk from v to the corner verticesvk of the cluster that containsv. The centricity
value ofv is determined by:

c(v) =
∑

k wk · c(vk)∑ ,

k wk



452 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465

; (c)–(f)

-

issoring.

the
rs are
tions

relatively
ntricity
w that
d 8(e),
ough to

centric-
eodesic
Fig. 6. Scissoring results with automatic selection: (a), (b) the distribution of centricity and extracted feature contours
sequential scissoring results.

Fig. 7. Graph obtained from clustering.

where wk = 1/dk. When a scissoring operation is performed, graphG is partitioned into two sub
graphsG1 andG2. We re-calculate the centricity values for the vertices inG1 andG2 and interpolate the
values to determine the updated centricity values of vertices in the segments resulting from the sc

In our implementation, the area of a cluster is constrained not to exceedδA, whereA is the total area
of the mesh surface. In the experiments, we usedδ = 0.01, which generated about 300 vertices for
graphG. For such a graphG, we can compute the centricity values of vertices very fast. Since cluste
nearly flat, the edge lengths inG determined by 3D distances between vertices give good approxima
of the exact distances through the mesh surface. Although the centricity forG is computed with the
shortest paths through edges, not the true geodesics on the mesh surfaces, the clusters have
small sizes and we can obtain good approximation for the centricity. In Fig. 8, we compare the ce
derived by the method in (Hilaga et al., 2001) with our approximation. Figs. 8(b) and 8(c) sho
our method gives a good approximation for the whole mesh before scissoring. In Figs. 8(d) an
the approximation of updated centricity has artifacts around cluster boundaries but is good en
automatically select the best contour.

In our previous work (Lee et al., 2004), we also used a subset of vertices to accelerate the
ity computation when a scissoring operation is performed. However, in that case, we store the g



Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465 453

2001);
(e) our
version

of all ver-
ulate the
re were
ined from
d to store
geodesic

urs, such
amples,

lete
around
nd
ically or

ed just
d which
ur to a
side of
sible. To

e of the

define
Fig. 8. Centricity update: (a) color table for centricity values; (b) centricity computed by the method in (Hilaga et al.,
(c) our approximation of (b); (d) updated centricity after scissoring, computed by the method in (Hilaga et al., 2001);
approximation of (d). (For interpretation of the references in color in this figure legend, the reader is referred to the web
of this article.)

distances between sample vertices and reuse the distances to compute the updated centricity
tices. Although the stored distances reduce the computational overhead, the approach still calc
geodesic distances between all pairs of vertices to obtain the centricity values. In addition, the
some artifacts near the sampled vertices because the geodesic distances for a vertex are obta
the nearest sampled vertex. On the other hand, our new method does not have a memory overhea
the geodesic distances between sample vertices. The computation is much faster because the
distances are calculated only among the vertices of graphG. The interpolation from the vertices ofG

generates a smooth distribution of the approximate centricity values.
In manual scissoring, the user can choose a specific contour using the map of candidate conto

as shown in Fig. 2(d). When the user wants to cut specific parts of a mesh sequentially, for ex
legs or foots of a horse, manual selection would be useful.

6. Feature contour completion

Let γ be a selected contour. Most of the timeγ is not a closed contour, and there is a need to comp
it to form a closed loop around the mesh. This can be done by designating a set of vertices
the mesh which form a loop from one endpoint ofγ to the other. However this method is tedious a
error-prone. In this section, we suggest methods to complete a contour to a closed loop automat
semi-automatically.

In order to perform fully automatic scissoring or when the 2D line drawn on the screen is project
over the front-faces in semi-automatic scissoring, we need an automatic contour closing metho
completesγ to a closed loop around the mesh. The basic problem of completing an open conto
closed loop is that the path from one endpoint to the other must be directed to go over the other
the mesh instead of the natural shortest path, and to follow the mesh features as much as pos
obtain this, we use a combination of four functions that guide the search towards the other sid
mesh and through mesh features.

Distance function. In order to make a loop to pass through the other side of the mesh, we first
distance functionη (v) which measures the distances fromγ to other vertices. The functionη (v) is
d d



454 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465

st func-
ith
the web

Let

r
l

e,

of a
e medial
d of the
aga et
xis. We

e

Fig. 9. Visualization of the four functions used to complete an open contour to a loop: (a) color table for values of co
tions; (b)–(d) the path is completed using each function; (e)ηf (v) is the feature energy; (f) the minimum path is found w
combination of all functions. (For interpretation of the references in color in this figure legend, the reader is referred to
version of this article.)

designed to be high in the vicinity of the contourγ , and drops as we get farther away (see Fig. 9(b)).
v be a mesh vertex. We define

ηd(v) =
∑
vi∈γ

1

d(v, vi)
.

ηd(v) is the sum of inverse distances from vertexv to all vertices onγ .

Normal function. The second functionηn(v) is lower for normals that face opposite directions ofγ (see
Fig. 9(c)), which also help search the path toward the other side of the mesh. Letnγ be the center vecto
of the normal cone of all vertex normals ofvi ∈ γ andα the angle of this cone. Letnv be the norma
vector of a vertexv. We define

ηn(v) =
{

1 if nγ · nv � cos(α),

nγ ·nv+1
cos(α)+1 otherwise.

In this equation,ηn(v) has the highest value (= 1) if the normalnv belongs to the normal cone. Otherwis
ηn(v) has a lower value asnv is apart from the normal cone.

Centricity function. The third functionηc(v) guides the loop to be perpendicular to the medial axis
mesh shape. The user often intends to cut a mesh along boundaries which is perpendicular to th
axis. Fig. 13 shows an example. To achieve this goal, we use the centricity over a mesh instea
medial axis because it is difficult to find a medial axis in a robust and stable way. In Fig. 4 of (Hil
al., 2001), contours which have the same centricity seem to cut a mesh perpendicularly to the a
define

ηc(v) =
∑
vi∈γ

∣∣c(vi) − c(v)
∣∣,

wherec(v) is the normalized centricity of a vertex. The functionηc(v) is higher for vertices that hav
different centricity values from the vertices onγ (see Fig. 9(d)).



Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465 455

formed.
esh
ndicular

one
feature

les two
Fig. 10. Effect of feature function.

Fig. 11. Feature connection in the contour completion.

Fig. 12. Combination of distance and normal functions.

As described in Section 5, we update the centricity values of vertices after a scissoring is per
However, to compute the functionηc(v), we use the original centricity value computed for the given m
before any scissoring operation is performed. The user would be more interested in the cuts perpe
to the medial axis of the whole mesh than specific parts resulted from scissoring.

Feature function. The fourth functionηf (v) guiding the path towards mesh features is the same
used to define the feature contours (see Fig. 9(e)), but it is normalized between 0 and 1. With the
functionηf (v), the loop passes around features as shown in Fig. 10. In addition, the function enab
feature contours far from each other to be connected in the completion stage (see Fig. 11).



456 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465

x

of
by

e other
ns, it is
e of the
mesh.

gle cost
tion. On
default

hich
mproves
ndent on

cutting
line
line
For an edgee, l(e) denotes the length ofe. The cost functions,ηd(e), ηn(e), ηf (e), andηc(e), are
defined as the averages of the values at the end vertices of edgee. To find the path from one end verte
to the other ofγ , we search for the shortest path using the edge cost

f (e) = l(e) · ηd(e)
wd · ηn(e)

wn · ηf (e)wf · ηc(e)
wc ,

where cost functionsηi(e) are normalized between 0 and 1 andwi are used to control the strengths
these functions. We usually setwd , wn, andwf to 1.0 andwc to 0.4, which are values determined
experiments.

In Figs. 9(b)–(d), we can see the contour may be successfully completed to pass through th
side of the mesh by each cost function. However, despite the costs to compute all four functio
advantageous to use them all instead of a single one. As shown in Fig. 12, when we use only on
cost functions, it is difficult to find proper parameters to make a loop go over the other side of the
In Figs. 12(a) and 12(b), several trials were needed to find proper parameter values for the sin
function. Also, large values of parameters may cause unexpected paths in the contour comple
the other hand, by using the combination of the cost functions, we can obtain a nice path with the
parameter values in Fig. 12(c).

The centricity functionηc(e) strongly affects the path of a completed contour. If the boundaries w
a mesh is cut along are expected to be perpendicular to the medial axis of the mesh, the function i
the completion results considerably (see Fig. 13). Otherwise, it may cause a path to be too depe
the distribution of the centricity. Depending on the input meshes, the user can choose thatηc(e) will not
be applied simply by settingwc to zero.

A loop around the mesh can also be defined using a 2D line drawn over the mesh. We define a
plane which passes endpoints ofγ and whose orientation is similar to the plane defined by the 2D
and the view direction. The normal vectorN of the cutting plane should be perpendicular to both the
directionL and the view directionV as much as possible. Therefore, we minimizeL ·N +V ·N and use
a Lagrange multiplier to constrain a cutting plane to pass the two endpoints; that is, we minimize

f (N) = L · N + V · N + λ
(
N · (P1 − P0)

)
,

whereλ is a Lagrange multiplier andP0 andP1 are the positions of two endpoints ofγ .

Fig. 13. Effect of centricity function.



Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465 457

wn by
rmal also
retation

cissoring
omatic

salient
of them
(a), we
enough

small to
Fig. 14. Semi-automatic contour completion.

Fig. 14 shows an example of manual guidance with 2D line drawing. Although a red line dra
a user does not pass the endpoints, the cutting plane not only passes the endpoints but its no
seems perpendicular to the view direction and the line direction as much as possible (for interp
of the references in color, the reader is referred to the web version of this article).

7. Part salience test

In the mesh scissoring process, a completed feature contour almost determines the shape of a s
cut because the final position of the snake is not much different from the initial one. However, aut
selection and completion can sometimes result in less meaningful contours, which produces no
segments. In Fig. 15, two open contours have similar lengths and centricity, which means either
can be chosen first. In order to select the contour in Fig. 15(b) first, instead of the one in Fig. 15
need a criterion to check whether segments obtained from the completed contour are significant
or not.

Fig. 15. Completion of two selected contours with similar lengths and centricity: (a) the area of the segment is too
partition; (b) The area of the segment is large enough to partition.



458 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465

relative
ose three
nerate

he
mming

ig. 15(a)

ints on
fter

es
r colors
d by the
otrusion

feature
eak fea-
urs from
flat and
egmen-

ss of

current
but may
Fig. 16. Part salience test by protrusion: (a)S is too flat to partition; (b)S is protrudent enough to partition.

Hoffman and Singh (1997) proposed three factors that determine the salience of a part: the
size, the boundary strength, and the degree of protrusion. We incorporate the test based on th
factors into our scissoring framework to automatically reject a closed contour that would not ge
salient parts.

Area. We measure the area factor by the ratio of the areaΣ of a segment before scissoring to t
areasΣ0 andΣ1 of the two segments after scissoring. The area of a segment is computed by su
the areas of triangles in the segment. Letσ be the smaller value amongΣ0 andΣ1. If σ/Σ < ξarea, we
reject the contour and select a new one in the contour candidates. For example, the contour in F
can be rejected by this area factor. We usually setξareato 0.05.

Protrusion. The protrusion factor is measured using a fitting plane obtained from the sample po
a contour. LetS be a segment before scissoring and letS0 be the segment with the smaller area a
scissoring. We compute the longest distancedp from the vertices onS0 to the fitting plane. Letr be the
radius of the bounding sphere of segmentS. If dp/r < ξprot, we reject the contour. In Fig. 16, blue plan
are the fitting planes of contours and red points indicate the farthest points from the planes (fo
see the web version of this article). The contour in Fig. 16(a) passes the area test but it is rejecte
protrusion test. On the other hand, the contour in Fig. 16(b) is accepted by both the area and pr
tests. In our experiments,ξprot is usually set to 0.05.

Feature. Completed contours usually have strong features since contours are extracted from
regions and contour completion considers featureness of edges. Accordingly, the rejection by w
tures hardly occurs. Instead, in the part salience test with features, we prevent high feature conto
being rejected by the protrusion test. In the case of Fig. 17, the region enclosed by the contour is
the contour is rejected by the protrusion test. However, the region could be a good candidate for s
tation because it is surrounded by strong features. We call an edge on a contour afeature edge if the end
vertices of the edge have passed the thresholding in the feature extraction step. Iflf / lc > ξfeat, wherelf
is the sum of feature edge lengths andlc is the length of the contour, we accept the contour regardle
the protrusion factor.ξfeat is usually set to 0.8.

In addition to automatic part salience test, the user can select another contour or remove the
contour manually. Fig. 18(a) shows an example of a contour that can pass the part salience test



Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465 459

nd, the

d using
rgy

re again.
r concave

posed in
2D plane.

ization.
um is

). Since
through
Fig. 17. Flat region enclosed by features.

Fig. 18. Manual rejection: A user can cut a wrist by rejecting a contour in (a) and selecting a contour in (b).

not be desirable by the user. If the user wants to cut a wrist, as in Fig. 18(b), or fingers of a ha
current contour in Fig. 18(a) can be manually rejected.

8. Snake movement

Once a feature contour is selected and closed to form a loop, a geometric snake is initialize
a sequence of sample pointss(i) which lay on the loop. The snake moves by minimizing an ene
functionalEsnakecomposed of internal and external parts;

Esnake(s) =
∫ (

Espline(s) + Emesh(s)
)
dt.

The snake external energyEmesh is designed to capture nearby features and its internal energyEspline to
smooth its shape and shorten its length. The external energy is defined using the mesh curvatu
However, as opposed to the feature extraction stage, we now search for any nearby feature eithe
or convex. Hence, we use the absolute values of the mean curvatures as the feature field.

To constrain a geometric snake on the mesh surface in the energy minimization process, as pro
(Lee and Lee, 2002), we use a local parameterization that embeds faces around a snake onto a
With this parameterization, we can use the same equation as an image snake for the energy minim
The snake position is incrementally updated by repeatedly solving linear equations until a minim
reached. See (Lee and Lee, 2002) for the details of snake movement.

The final position of a snake defines the scissoring position where a cut is made (see Fig. 19
snake sample points can lay at anywhere on the mesh surface, the snake contour may pass



460 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465

e position

Scissoring

between

1 Gb
traction

issoring
ontours
since the
ded very
e), the
odels

user can
ignated
ol can
equence,

models.
ur system
Fig. 19. Snake relaxation process: (a) initial positioning on a mesh based on a completed feature contour; (b) snak
after one iteration; (c) final snake position; (d) final position with feature energy; (e) scissoring with the snake.

Fig. 20. (a) The final snake position does not necessarily follow mesh edges, creating a smoother region boundary. (b)
divides the mesh faces following the final snake position.

triangles of a mesh. These triangles are subdivided along the snake to achieve smoother interface
the mesh parts (see Fig. 20).

9. Experimental results

All following experiments were carried out on a 3.2 GHz Intel(R) Pentium(R) M processor with
memory. Fig. 21 shows automatic partitioning results. These results were created by automatic ex
and completion of feature contours. Figs. 21(a)–(c) are fully automatic results, where the whole sc
process was performed without any user intervention. For the results in Figs. 21(d)–(g), some c
that passed the part salience test were rejected by the user to obtain better results. However,
part salience test can filter most contours with non-salient segments, the manual rejection is nee
rarely, only when there is real ambiguity such as shown in Fig. 18(a). For Figs. 21(b) and 21(
centricity function was applied to complete contours, while the function is not used for the other m
in Fig. 21.

Fig. 22 shows results of semi-automatic scissoring of meshes. In more complex situations, the
begin with automatic scissoring and then reject specific cuts and continue scissoring further in des
places (compare Fig. 21(c) and Fig. 22(a)). Figs. 22(c) and 22(d) show that our scissoring to
segment a mesh whose genus is not zero. By scissoring the mesh along yellow and green cuts in s
we can separate the tail from the body and leg (for colors see the web version of this article).

Fig. 23 shows the scissoring results of models which have sharp concave creases, such as CAD
For these models, it is better to constrain the boundaries of segments along mesh edges and o
provides such an option.



Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465 461

result.
telligent
smooth
Fig. 21. Mesh scissoring results using an automatic approach.

Fig. 22. Mesh scissoring results using a semi-automatic approach.

Fig. 24 shows manual scissoring with the 2D slicing approach. Fig. 25 is the final scissoring
Contours created by drawing 2D lines can disregard the feature contours altogether. However, in
scissoring with automatic contour completion and a geometric snake assures the cut would be
and follow natural shape features as much as possible as shown in Fig. 24.



462 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465

ane. This
mpleted
, hence

cessing
ed even

matic as
Fig. 23. Segmentation of models with concave creases.

Fig. 24. Manual mesh scissoring examples: a 2D line is drawn on the mesh (left) and projected to create a slicing pl
plane can be used to define the initial loop (middle left). Alternatively, the line projected on the front faces can be co
using our automatic completion method. Note that the initial slicing position is not a rigid constraint on the scissoring
the final cut can follow natural shape features (middle right and right).

Table 1 shows timing statistics on different meshes used in our experiments. After the pre-pro
for feature extraction and geodesic distance computation, the method runs at an interactive spe
on large meshes. Hence, using this approach, an interactive tool is provided where semi-auto



Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465 463

icity is
in fe-
e hand

for both
targets
tic scis-
rarely

traction
rformed
he given
utation,
owever,
educe
Fig. 25. The final result of manual scissoring in Fig. 24.

Table 1
Typical timing statistics (in seconds) of different steps of our mesh scissoring algorithm

Mesh # of
vertices

Curvature
extraction

Clustering Centricity
calculation

Contour
extraction

Closing &
salience test

Snake
movement

CAD 20,570 9∼ 10 3∼ 4 0.3∼ 0.4 3∼ 4 4∼ 5 1∼ 2
Horse 19,851 6∼ 7 3∼ 4 0.3∼ 0.4 1.5∼ 2.5 1∼ 2 2∼ 7
Igea 18,004 4∼ 5 3∼ 4 0.3∼ 0.4 2∼ 3 1∼ 2 2∼ 3
Eagle 14,618 37∼ 38 2∼ 3 0.3∼ 0.4 1.5∼ 2.5 0.5∼ 0.8 2∼ 3
Hand 10,070 2∼ 3 1∼ 2 0.2∼ 0.3 1.0 0.4∼ 0.7 1∼ 2
Alien 7,401 3∼ 4 1∼ 2 0.15 1.0 0.3∼ 0.5 1∼ 2
Doll 3,756 0.4∼ 0.5 1.5 0.1 0.70 0.3∼ 0.5 0.5∼ 1.0
Dino 3,323 0.9∼ 1 0.5 0.1 1.0 0.20 1∼ 2
Chess 1,514 0.3∼ 0.4 0.03 0.04 0.70 0.20 1∼ 2

well as automatic scissoring can be applied easily. The computation time for updating centr
similar to or less than centricity calculation for the whole mesh. Since the number of vertices
line, rabbit, and moai models are around 1K, the computation time is almost the same as th
model.

10. Summary and discussion

In this paper, we have presented an approach for 3D mesh scissoring which can be used
automatic partitioning and manual cutting. Based on the minima rule, our scissoring approach
the cutting positions determined by feature extraction. The part salience theory makes automa
soring more robust by automatically rejecting less meaningful segmentation. User intervention is
necessary, only when there is real ambiguity that automatic thresholding cannot figure out.

In our scissoring operator, most of the timing constraint for large meshes come from feature ex
and centricity calculation. Feature extraction is needed only once for each mesh and can be pe
as preprocessing before the scissoring process starts. The centricity should be computed for t
mesh and updated for the segments resulting from scissoring. To accelerate the centricity comp
we presented an approximation technique using a subset of vertices. For a very large mesh, h
feature extraction and centricity calculation may still incur much computational overhead. To r



464 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465

pproach
feature
riginal
smooth

ics Lab-
ported
nfor-
ce and

f SIG-

niversity

omput.

, ACM

mentation

: Kanade,

ing by

1 ACM

of 3D

2001,

surface
ter-Aided

Graph.

3, ACM
the overhead, we can use a simplified mesh in our scissoring process, in a similar way to the a
proposed in (Katz and Tal, 2003). That is, we can perform most steps of scissoring, including
extraction and centricity calculation, on a simplified mesh and map the resulting cuts onto the o
mesh. Only the geometric snake step is performed on the original mesh to determine the final
cuts, using the cuts from a simplified mesh as the initial positions.

Acknowledgements

The bunny, horse and Igea, and feline models are courtesy of the Stanford Computer Graph
oratory, Cyberware, and the Caltech Multi-Res Modeling Group, respectively. This work was sup
in part by the Korean Ministry of Education through the BK21 program, the Korean Ministry of I
mation and Communication through the ITRC support program, and the Israeli Ministry of Scien
Education Grant Tashtiot Grant No. 01-01-01509.

References

Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M., 2003. Anisotropic polygonal remeshing. In: Proc. o
GRAPH 2003, ACM Comput. Graph., 485–493.

Andrews, S., 2000. Interactive generation of feature curves on surfaces: A minimal path approach. Master’s thesis, U
of Toronto.

Cohen, L.D., Kimmel, R., 1997. Global minimum for active contour models: A minimal path approach. Internat. J. C
Vis. 24 (1), 57–78.

DeRose, T., Kass, M., Truong, T., 1998. Subdivision surfaces in character animation. In: Proc. of SIGGRAPH ’98
Comput. Graph., 85–94.

Falcão, A.X., Udupa, J.K., Samarasekera, S., Sharma, S., Hirsch, B.E., de A. Lotufo, R., 1998. User-steered image seg
paradigms: Live wire and live lane. Graph. Models Image Process. 60 (4), 233–260.

Faugeras, O.D., Hébert, M., 1987. The representation, recognition, and positioning of 3-D shapes from range data. In
T. (Ed.), Three-Dimensional Machine Vision. Kluwer Academic, Dordrecht, pp. 301–353.

Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D., 2004. Model
example. In: Proc. of SIGGRAPH 2004, ACM Comput. Graph. 23, 652–663.

Garland, M., Willmott, A., Heckbert, P.S., 2001. Hierarchical face clustering on polygonal surfaces. In: Proc. 200
Symposium on Interactive 3D Graphics, pp. 49–58.

Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L., 2001. Topology matching for fully automatic similarity estimation
shapes. In: Proc. of SIGGRAPH 2001, ACM Comput. Graph., 203–212.

Hoffman, D., Richards, W., 1984. Parts of recognition. Cognition 18, 65–96.
Hoffman, D., Signh, M., 1997. Salience of visual parts. Cognition 63, 29–78.
Hubeli, A., Gross, M., 2001. Multiresolution feature extraction for unstructured meshes. In: Proc. IEEE Visualization

pp. 287–294.
Inoue, K., Itoh, T., Yamada, A., Furuhata, T., Shimada, K., 2001. Face clustering of a large-scale CAD model for

mesh generation. In: 8th International Meshing Roundtable Special Issue: Advances in Mesh Generation. Compu
Design 33 (3), 251–261.

Kalvin, A.D., Taylor, R.H., 1996. Superfaces: Polygonal mesh simplification with bounded error. IEEE Comput.
Appl. 16 (3), 64–77.

Kass, M., Witkin, A., Terzopoulos, D., 1988. Snakes: Active contour models. Internat. J. Comput. Vis. 1 (4), 321–331.
Katz, S., Tal, A., 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. In: Proc. of SIGGRAPH 200

Comput. Graph. 22 (3), 954–961.



Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444–465 465

m 21 (3),

c. Pacific

. In: Proc.

1 ACM

. Comput.

r-Aided

mput.

s. 60 (5),

g water-

drics for

cessing,

ics 2002,

In: Proc.

phics 26
Lee, Y., Lee, S., 2002. Geometric snakes for triangular meshes. In: Proc. Eurographics 2002, Comput. Graph. Foru
229–238.

Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.-P., 2004. Intelligent mesh scissoring using 3d snakes. In: Pro
Graphics 2004, pp. 279–287.

Lévy, B., Petitjean, S., Ray, N., Maillot, J., 2002. Least squares conformal maps for automatic texture atlas generation
of SIGGRAPH, ACM Comput. Graph., 362–371.

Li, X., Toon, T., Tan, T., Huang, Z., 2001. Decomposing polygon meshes for interactive applications. In: Proc. 200
Symposium on Interactive 3D Graphics, pp. 35–42.

Mangan, A.P., Whitaker, R.T., 1999. Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. Vis
Graph. 5 (4), 308–321.

Milroy, M.J., Bradley, C., Vickers, G.W., 1997. Segmentation of a wrap-around model using an active contour. Compute
Design 29 (4), 299–320.

Mortensen, E.N., Barrett, W.A., 1995. Intelligent scissors for image composition. In: Proc. of SIGGRAPH ’95, ACM Co
Graph., 191–198.

Mortensen, E.N., Barrett, W.A., 1998. Interactive segmentation with intelligent scissors. Graph. Models Image Proces
349–384.

Page, D.L., Koschan, A.F., Abidi, M.A., 2003a. Perception-based 3D triangle mesh segmentation using fast marchin
sheds. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR ’03), vol. II, pp. 27–32.

Page, D.L., Abidi, M.A., Koschan, A.F., Zhang, Y., 2003b. Object representation using the minima rule and superqua
under vehicle inspection. In: 1st IEEE Latin American Conference on Robotics and Automation, pp. 91–97.

Shamir, A., 2004. A formulation of boundary mesh segmentation. In: 2nd International Symposium on 3D Data Pro
Visualization, and Transmission, pp. 82–89.

Shlafman, S., Tal, A., Katz, S., 2002. Metamorphosis of polyhedral surfaces using decomposition. In: Proc. Eurograph
Comput. Graph. Forum 21 (3), 219–228.

Sorkine, O., Cohen-Or, D., Goldenthal, R., Lischinski, D., 2002. Bounded-distortion piecewise mesh parameterization.
IEEE Visualization 2002, pp. 355–362.

Zuckerberger, E., Tal, A., Shlafman, S., 2002. Polyhedral surface decomposition with applications. Computer and Gra
(5), 733–743.


