Available online at www.sciencedirect.com

. COMPUTER
SCIENCE@DIHECT AlDED
GEOMETRIC
DESIGN
ELSEVIER Computer Aided Geometric Design 22 (2005) 444-465

www.elsevier.com/locate/cagd

Mesh scissoring with minima rule and part salience

Yunjin Lee?, Seungyong Le&*, Ariel Shamir®, Daniel Cohen-Of, Hans-Peter Seidél

& POSTECH, Republic of Korea
b The Interdisciplinary Center, Israel
€ Tel Aviv University, Israel
d MPI Informatik, Germany

Available online 23 May 2005

Abstract

This paper presents an intelligent scissoring operator for meshes. Unlike common approaches that segment &
mesh using clustering schemes, here we introduce a method that concentrates on the contours for cutting. Our
approach is based on thenima rule andpart salience theory from the cognitive theory. The minima rule states
that human perception usually divides a surface into parts along the concave discontinuity of the tangent plane. The
part salience theory provides factors which determine the salience of segments. Our method first extracts features
to find candidate contours based on the minima rule. Subsequently, these open contours are prioritized to select the
most salient one. Then, the selected open contour is automatically completed to form a loop around a specific part
of the mesh. This loop is used as the initial position of a 3D geometric shake. Before applying a snake, we measure
the part salience of the segments obtained by the completed contour. If conditions for the salience are not met, the
contour is rejected. Otherwise, the snake moves by relaxation until it settles to define the final scissoring position.
In this paper, we focus on a fully automatic scissoring scheme; nevertheless, we also report on semi-automatic usel
interfaces for intelligent scissoring which are easy to use and intuitive.

0 2005 Elsevier B.V. All rights reserved.

Keywords: Mesh segmentation; Mesh partitioning; Part-type segmentation; Geometric snake

* Corresponding author.
E-mail address: leesy@postech.ac.kr (S. Lee).

0167-8396/$ — see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cagd.2005.04.002

Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465 445
1. Introduction

In the last decade we have witnessed tremendous developments in techniques for modeling, recon-
structing, and visualizing 3D meshes for various applications. With the advent of advanced scanning
technology, meshes are becoming larger and more complicated. To repair, manipulate, or modify meshes.
there is a need for interactive and intelligent tools that assist and enable simpler mesh editing. One such
basic operator is thecissoring operator, which extracts sub-parts and pieces from existing meshes. In
addition, many mesh related algorithms, such as parameterization, compression, morphing, and match:-
ing, use mesh partitioning as an initial stage. This means mesh partitioning has become a key ingredient
for many mesh manipulation applications (Shamir, 2004).

Most previous work on mesh partitioning use clustering of similar mesh elements or components and
then refine the border between these parts to find the segmentation (Katz and Tal, 2003; Garland et al.,
2001; Inoue et al., 2001; Lévy et al., 2002). In contrast, our approach directly targets the cutting contours
by providing a scissoring operator, which separates a given mesh into two disjoint pieces along a closed
contour lying on the mesh. This idea is based omth@ma rule from the cognitive theory. The minima
rule states that human perception usually divides an object into parts along the concave discontinuity of
the tangent plane (Hoffman and Richards, 1984; Hoffman and Signh, 1997). In various tests, it has been
shown that humans take more notice to such discontinuity on the shape outline than to the coherency
of different shape parts. Therefore, our scissoring operator searches for contour candidates that follow
minimum negative curvatures. Later selected candidates are completed to form cutting loops, and their
positions are refined using geometric snake movements.

Our scissoring operator is carried out using four basic steps:

1. Feature contour extraction: Finding and selecting &ature contour on the mesh (not necessarily
closed).

. Loop completion: Completing the feature contour to a clodedp.

. Part saliencetest: Rejecting the loop if the conditions pért salience are not satisfied.

. Shake movement: Using the loop as the initial positioning ofgeometric snake, and evolving the
snake to its final position for cutting.

A WN

The difference between automatic and semi-automatic scissoring in our approach is based on the
amount of user guidance in the first and second steps. The initial feature contour on the mesh can either
be indicated manually by the user or chosen automatically based on feature extraction. Completing the
contour to a closed loop can either be done using guidance from the user or by an automatic procedure
which directs the contour to loop around mesh parts. This approach provides the ability to define a range
of possible tools from a fully automatic partitioning tool to an easy-to-use semi-automatic scissoring tool.

The basic idea of mesh scissoring with the minima rule was presented in our previous work (Lee et al.,
2004). However, since the feature contour selection is based on heuristics, the scissor might cut insignif-
icant parts, which sometimes induces user intervention to reject the scissoring results. This limitation
hinders the scissoring process from being fully automatic and we put emphasis on a semi-automatic scis-
soring tool in (Lee et al., 2004). A central contribution of this paper is that we can overcome the limitation
by incorporating the part salience test and consequently achieve fully automatic scissoring of a mesh into
meaningful parts.

446 Y. Leeet al. / Computer Aided Geometric Design 22 (2005) 444-465

Our part salience test builds on the theonsalfence of visual parts proposed by Hoffman and Singh
(1997). According to their theory, the salience of a part is a function of the object size relative to the
whole object, the degree to which it protrudes, and the strength of its boundary. We developed quantitative
definitions for these measures that can be applied to meshes, and in particular the scissored parts. Afte
a selected contour has been completed to a closed curve around a mesh part, we test the part salience
the segment that will be obtained by the scissoring with the curve. If the part salience conditions are not
met, the curve is rejected and a new contour is selected and completed to a closed curve for scissoring.

In most cases, the partitioning is applied to a single model at a time. To efficiently process a large
database of models, an automatic algorithm, such as proposed in this paper, would help the user a lof
to achieve high quality results in a short time. Nevertheless, here as well, we report on semi-manual
tools which are easy to use and intuitive. In this paper, in addition to the part salience test, we improve
the performance of the loop completion step by adding the centricity to the weight terms for automatic
completion. The centricity makes the automatic completion more robust especially when scissoring an
elongated object.

Our scissoring process uses three fundamental geometric mesh attributes. The first is the curvature of
the mesh and the rational behind using it lies in human perception and the minima rule. The second is
the centricity of positions on the mesh, which separates main object parts from the peripheral. The last
attribute deals with the length and smoothness of a scissoring cut. Using it assures smoother and shorte
interfaces between segmented parts. As a result, our scissoring approach has the following properties:

The approach is guided by fundamental mesh geometric attributes based on perception.

The final position of the cut is smoother and presents a more meaningful boundary as a result of
using the geometric shake.

The scissoring operator generates salient segments in a fully automatic way.

The approach enables a continuous range of tools between fully automatic and manual scissoring.

Our scissoring operator is a part-type segmentation method, which divides a mesh into meaningful
parts along cutting contours (Shamir, 2004). Since extracted parts represent independent components o
a model, the part-type segmentation can be used for skeleton extraction (Katz and Tal, 2003), 3D mor-
phing (Shlafman et al., 2002), shape matching and reconstruction (Zuckerberger et al., 2002; Page et al.
2003b), modeling by example (Funkhouser et al., 2004), collision detection (Li et al., 2001), and so on.

2. Related work

Automatic partitioning of a mesh is typically performed by growing regions incrementally (Mangan
and Whitaker, 1999; Kalvin and Taylor, 1996; Shlafman et al., 2002; Sorkine et al., 2002), or by merging
regions (Garland et al., 2001; DeRose et al., 1998; Faugeras and Hébert, 1987). Hence, the boundarie
between regions are implicitly defined by the regions themselves instead of explicitly using a scissoring
operator. Following human perception and the minima rule, we use an opposite approach by extracting
the boundaries first and defining the mesh sub-parts implicitly. This also enables a definition of smoother
and natural looking region boundaries which are not constrained to lay on the mesh edges.

The approach presented in (Katz and Tal, 2003) refines the final cut in a fuzzy region between main
parts. However, the approach still uses clustering with a threshold to determine the fuzzy region, while

Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465 447

concentrating less on feature boundaries. Unlike our approach, it does not support intelligent manual
operations and a cutis constrained to mesh edges. In (Li et al., 2001), a mesh is automatically decomposet
by searching critical points of characteristic functions defined by volume features. Although the approach
extracts the boundaries to determine components, it does not consider the features on the mesh surfac
and provides no interactive tool.

The minima rule has already been presented for segmentation of CAD models and meshes using regior
growing and the watershed algorithm (Page et al., 2003a). Due to the limitation of region growing, the
technique cannot cut a part if the part boundary contains non-negative minimum curvatures. Similar to
this paper, Page et al. (2003b) used the factors proposed in (Hoffman and Signh, 1997) to compute the
salience of parts. However, contrary to our approach, they represented segmented parts as superquadr
models and used the models to compute the part salience. In this paper, we present methods to directly
compute the part salience on a mesh part.

Intelligent manual scissoring tools have been presented for image segmentation (Mortensen and Bar-
rett, 1998; Mortensen and Barrett, 1995; Falcdo et al., 1998). In this paper we extend these ideas to 3D
mesh editing and manipulation. Such simple-to-use but intelligent tools are a must in newer applications
of mesh editing such as modeling by example (Funkhouser et al., 2004), where the user extracts parts of
a mesh in order to combine and paste them to other meshes. In the intelligent scissoring of (Funkhouser
et al., 2004), the user paints strokes on a mesh to specify where the mesh should be segmented. The co
for searching a cut depends on the current view direction; the visible part of a cut contains the specified
stroke and the other part is guided to traverse the back-side of the mesh. On the other hand, in this paper
the cost of a cut is determined by a feature contour and independent of the current view direction. Al-
though considering the view information may help to make the cut completion more robust, our scheme
has the merit of supporting fully automatic cutting without user interaction.

Snakes were presented as active contour models for semi-automatic detection of features in an im-
age (Kass et al., 1988). Active contour models for images were extended to extract features from 3D
surfaces. In (Milroy et al., 1997), the snake position is updated directly on a 3D surface. Feature curve
detection on a 3D mesh by a minimal path (Cohen and Kimmel, 1997) between the source and destination
points is presented in (Andrews, 2000). We follow the approach proposed in (Lee and Lee, 2002) where
the snake’s updated position is determined by energy minimization on a 2D embedding plane, which is
computationally efficient. Using snakes as the final stage of the scissoring tool frees the user from tedious
adjustments and smoothing of the cut.

3. Overview

In this section, we provide an overview of the mesh scissoring process (see Fig. 1), and highlight the
differences between automatic and semi-automatic use of our approach. The following sections provide
details on each of the stages.

Feature contour extraction. The first stage of finding candidate contours begins by computing the min-
imum curvature value for each vertex of the mesh. After proper normalization, these values are used as
feature values on the vertices. We use thresholding and thinning to obtain segeagh structures of

a feature skeleton and then extract contour curves from the graphs. In this stage, we can also obtain &

448 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465

Minimum curvatures Feature contour extraction Feature contour completion

wATR
3 Feature
A
Y Y " gl [contour [

'ﬁ ’; selection

] L]

%

4 ¢ 3

&

Scissoring result Snake movement

accept | Part salience
test

reject

Fig. 1. Overview of the scissoring process.

candidate contour manually, which is provided by a simple gesture of drawing a 2D line segment on the
viewing window.

Feature contour selection. In the second stage, we select a contour which serves as the figtiale

contour in the succeeding scissoring stages. For automatic scissoring, we choose the best contour base
on two criteria: the length of the contour and its centricity on the mesh. Subsequently, when the mesh

partitioning is done, the process of choosing the best contour can be repeated recursively on each par
separately for multiple-parts segmentation. Another option for designatfegte contour is using

manual selection. A map of the automatically extracted feature contours is used to guide the user for

selecting natural cutting positions.

Feature contour completion. In the third stage, the feature contour is completed to form a closed loop
around a specific part of the mesh. For automatic completion, we find the weighted shortest path between
the two endpoints of the contour. The weights are used both to direct the path to go over the other side
of the mesh and to attract it to mesh features, instead of finding the simple shortest path. For semi-
automatic completion, a line drawing gesture similar to an interface making a candidate contour can be
used to create a full loop around the mesh. This line along with the center of projection defines a plane
which cuts through the mesh. For delicate situations, the user can designate a sequence of points on thi
mesh which completes the loop.

Part saliencetest. The fourth stage determines whether segments obtained from the completed contour
are significant enough or not. Automatic selection or completion might cause less meaningful segmen-
tation by cutting off a piece which is not salient. For semi-automatic use, a user can make a decision by
observing the shape of the loop on the mesh. To determine it automatically, we measure the salience of
the segments which the scissoring operation is about to yield. The salience is estimated from the relative
areas, protrusions, and strength of features on the loop.

Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465 449

Shake movement. The last stage of scissoring uses the closed loop as an initial position of a geometric
shake. To attract the cut to mesh features, the external energy of the snake uses the mean curvature fiel
over the mesh. The snake’s internal energy controls the length and smoothness of the cut. The snake i
evolved until it is settled, defining the final smooth scissoring cut. The cut does not necessarily follow the
mesh edges and it can partition triangles. This creates a smoother and more natural boundary betweel
mesh parts.

4. Feature extraction

The minima rule states that human vision tends to define areas of minimum negative curvatures, i.e.,
concave shape areas, as interfaces separating between object parts (Hoffman and Richards, 1984). Fo
lowing this rule, we define a feature value on each vertex by the minimum curvature value, which is
calculated by the tensor field computation used in (Alliez et al., 2003). Since the ranges of minimum
curvature values are too diverse among different meshes (e.g., the range of a horse modeh-s.4rom
to 4.8 and the range of a hand model is frei).3 to 0.19), we normalize the values«gv) is the mini-
mum curvature value at a vertexthe normalized value is; (v) = (x (v) —) /o, wherep is the mean
ando is standard deviation af(v) over all vertices of the mesh. We assign the normalized vaj(e)
to each vertex of the mesh as the feature value (see Fig. 2(a)). We use the mean and standard deviation
for normalization instead of simple scaling (dividing by the maximum value), since the curvature value
distribution is not uniform in the range. This allows us to use similar values independent of a specific
mesh in the succeeding thresholding stage.

Similar to (Hubeli and Gross, 2001), we use hysteresis thresholding on the valuggsmilefine
high feature areas. In our experiments, the upper bound for the hysteresis is uslidllgnd lower
bound is—0.8. This means we choose high negative-curvature values which designate concave parts.
In the original paper (Hubeli and Gross, 2001), the thresholding is performed on the edges, since the
feature curvature values are computed for edges. In our approach, we obtain a set of vertices that pas:
the thresholding. Fig. 3 shows the thresholding results with the same bedrn2isnd—0.8. We can see
that the same value works well for different meshes due to the normalization of curvature values.

By connecting the vertices that pass the thresholding, we construct regions on the mesh surface definec
by triangles that contain these vertices (see Fig. 2(b)). Next, the skeleton of each region is extracted by
peeling vertices from the boundary of the region towards the inside. As a result of the peeling, we obtain
a set of graph structures of feature skeletons (see Fig. 2(c)).

(a) feature field (b) feature regions (c) feature graphs (d) feature contours

Fig. 2. Stages of feature contour extraction.

450 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465

(a) two close contours (b) smoothed contours (c) connected contour

Fig. 4. Contour connection.

To create feature contours, we disconnect the skeleton graphs at vertices where more than two fea-
ture edges meet. This creates a set of non-branching feature contours, some of which are too short. We
remove the useless short contours, and merge close and similar feature contours to create longer one
(see Fig. 2(d)). The similarity between two close contours is measured by the angle between their major
directions around end points. We first smooth the contours by applying energy minimization loops of a
geometric snake, proposed in (Lee and Lee, 2002) and also used in Section 8. Second, their major di-
rections are obtained by averaging edge directions around the end points. We then connect two contours
which have close endpoints and similar directions (see Fig. 4).

Another option for creating candidate contours is simply to draw a 2D guiding line on the screen
over the mesh. This line is projected over front- and back-faces of the mesh to define a closed loop or
only front-faces to define an open contour. Fig. 5 shows the case of cutting two wings of a feline model
using contours created by drawing a 2D line. The left wing can be simply cut by the loop obtained by
projecting a line over front- and back-faces. On the other hand, the loop around the right wing passes over
the body of the feline. For that case, we can create a contour by projecting a line only over front-faces
and complete it by the automatic technique presented in Section 6. Fig. 5(c) shows the result.

5. Feature contour selection

In order to perform the scissoring, a single specific feature contour must be chosen from the candidates
obtained in the feature extraction stage. It is important to determine the selected order of contours because

Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465 451

(a) line drawing (b) front and back face projection (c) front face projection

Fig. 5. Contours created by user specification: (a) 2D line drawing over the mesh; (b) contours created by projecting onto front
& back faces; (c) contours created by projecting only onto front faces and applying automatic curve completion.

our approach prevents the boundaries of segments from crossing each other, which limits the region to
be cut in subsequent scissoring.

In automatic scissoring, the most salient feature contour must be chosen automatically. We use two
criteria to define the best contour: the length of the contour and its centricity because we want to divide a
mesh into as large parts as possible. @dégricity of a vertexv is defined as the average geodesic distance
(agdw)) from v to all other vertices (Hilaga et al., 2001). Letrepresent the maximum average geodesic
distance among all mesh vertices,= max,(agdv)). We define the normalized centricity atv) =
1—agdv)/m. For each candidate feature contpywhich is a sequence of edges, we define its priority
as the sum of products of all normalized centricity of its edges by their lengths. More specifi¢éyisf
the length of an edgeandc(e) is the normalized centricity of (the average value of its two endpoints),
we defineP (y) = Zeey I(e) - c(e), and choosgmax = argmay P(y). Fig. 6 shows scissoring results by
automatic selection. We can observe that the longest contour nearest to the center is selected first.

After a mesh has been partitioned, the current centricity values of vertices are no longer valid in the
resulting segments. Hence, we should recompute the centricity values after each partitioning when we
perform recursive partitioning on a mesh for multiple-parts segmentation. To accelerate the computation,
we approximate centricity values using a subset of vertices.

We first apply hierarchical face clustering (Garland et al., 2001) to a given mesh and obtain a simple
graphG from the clustering result, as shown in Fig. 7. In graghvertices are the corner vertices in
the clustering where more than two clusters meet and edges correspond to cluster boundaries. The edg
lengths are determined as the 3D distances between the end vertices. We obtain the centricity values fol
the vertices ofG by computing the shortest paths through the edges.dfrom the centricity values
in G, we can interpolate the centricity values of vertices in the given mesh. lhet vertex in the mesh.

We compute the distancds from v to the corner vertices; of the cluster that contains The centricity
value ofv is determined by:

Zk wy - c(vg)
dawk

c(v) =

452 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465

(d) (e) (f)

Fig. 6. Scissoring results with automatic selection: (a), (b) the distribution of centricity and extracted feature contours; (c)—(f)
sequential scissoring results.

(a) clusters (b) graph

Fig. 7. Graph obtained from clustering.

where w;, = 1/d,. When a scissoring operation is performed, graphs partitioned into two sub-
graphsG: andG,. We re-calculate the centricity values for the vertice&inandG, and interpolate the
values to determine the updated centricity values of vertices in the segments resulting from the scissoring.
In our implementation, the area of a cluster is constrained not to exXceadhereA is the total area
of the mesh surface. In the experiments, we used0.01, which generated about 300 vertices for the
graphG. For such a graplty, we can compute the centricity values of vertices very fast. Since clusters are
nearly flat, the edge lengths éh determined by 3D distances between vertices give good approximations
of the exact distances through the mesh surface. Although the centricity fercomputed with the
shortest paths through edges, not the true geodesics on the mesh surfaces, the clusters have relative
small sizes and we can obtain good approximation for the centricity. In Fig. 8, we compare the centricity
derived by the method in (Hilaga et al., 2001) with our approximation. Figs. 8(b) and 8(c) show that
our method gives a good approximation for the whole mesh before scissoring. In Figs. 8(d) and 8(e),
the approximation of updated centricity has artifacts around cluster boundaries but is good enough to
automatically select the best contour.
In our previous work (Lee et al., 2004), we also used a subset of vertices to accelerate the centric-
ity computation when a scissoring operation is performed. However, in that case, we store the geodesic

Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465 453

(e)

Fig. 8. Centricity update: (a) color table for centricity values; (b) centricity computed by the method in (Hilaga et al., 2001);
(c) our approximation of (b); (d) updated centricity after scissoring, computed by the method in (Hilaga et al., 2001); (e) our
approximation of (d). (For interpretation of the references in color in this figure legend, the reader is referred to the web version
of this article.)

distances between sample vertices and reuse the distances to compute the updated centricity of all ver
tices. Although the stored distances reduce the computational overhead, the approach still calculate the
geodesic distances between all pairs of vertices to obtain the centricity values. In addition, there were
some artifacts near the sampled vertices because the geodesic distances for a vertex are obtained frol
the nearest sampled vertex. On the other hand, our new method does not have a memory overhead to stot
the geodesic distances between sample vertices. The computation is much faster because the geodes
distances are calculated only among the vertices of géaphhe interpolation from the vertices of
generates a smooth distribution of the approximate centricity values.

In manual scissoring, the user can choose a specific contour using the map of candidate contours, sucl
as shown in Fig. 2(d). When the user wants to cut specific parts of a mesh sequentially, for examples,
legs or foots of a horse, manual selection would be useful.

6. Feature contour completion

Lety be a selected contour. Most of the timeés not a closed contour, and there is a need to complete
it to form a closed loop around the mesh. This can be done by designating a set of vertices around
the mesh which form a loop from one endpointyoto the other. However this method is tedious and
error-prone. In this section, we suggest methods to complete a contour to a closed loop automatically or
semi-automatically.

In order to perform fully automatic scissoring or when the 2D line drawn on the screen is projected just
over the front-faces in semi-automatic scissoring, we need an automatic contour closing method which
completesy to a closed loop around the mesh. The basic problem of completing an open contour to a
closed loop is that the path from one endpoint to the other must be directed to go over the other side of
the mesh instead of the natural shortest path, and to follow the mesh features as much as possible. T
obtain this, we use a combination of four functions that guide the search towards the other side of the
mesh and through mesh features.

Distance function. In order to make a loop to pass through the other side of the mesh, we first define
distance functiom,(v) which measures the distances frgnto other vertices. The function, (v) is

454 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465

ILOW : \ ,_ N
High U

(a) coloring (b) distance (c) normal (d) centricity (e) feature (f) all

Fig. 9. Visualization of the four functions used to complete an open contour to a loop: (a) color table for values of cost func-
tions; (b)—(d) the path is completed using each functiony(e(p) is the feature energy; (f) the minimum path is found with
combination of all functions. (For interpretation of the references in color in this figure legend, the reader is referred to the web
version of this article.)

designed to be high in the vicinity of the contgurand drops as we get farther away (see Fig. 9(b)). Let
v be a mesh vertex. We define

1
na(v) = Zd(v’ -t

vi€Y

nq(v) is the sum of inverse distances from verteto all vertices ory.

Normal function. The second function, (v) is lower for normals that face opposite directiongdlsee
Fig. 9(c)), which also help search the path toward the other side of the mesh,. hetthe center vector
of the normal cone of all vertex normals of € y and« the angle of this cone. Let, be the normal
vector of a vertex. We define

1 if n, - n, > cogw),
Un(U) ny-ny+1 .
sgar1 Otherwise

In this equationy, (v) has the highest value<1) if the normak, belongs to the normal cone. Otherwise,
n.(v) has a lower value as, is apart from the normal cone.

Centricity function. The third functiony.(v) guides the loop to be perpendicular to the medial axis of a
mesh shape. The user often intends to cut a mesh along boundaries which is perpendicular to the media
axis. Fig. 13 shows an example. To achieve this goal, we use the centricity over a mesh instead of the
medial axis because it is difficult to find a medial axis in a robust and stable way. In Fig. 4 of (Hilaga et
al., 2001), contours which have the same centricity seem to cut a mesh perpendicularly to the axis. We
define

)=y _le(v;

v,y

wherec(v) is the normalized centricity of a vertex. The functign(v) is higher for vertices that have
different centricity values from the vertices pn(see Fig. 9(d)).

Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465 455

(a) feature function 7y (b) without 7

Fig. 10. Effect of feature function.

A

) two contours b) completed contour

Fig. 11. Feature connection in the contour completion.

(a) wy = 2 b) w, = 10 (wy=1,w,=1

Fig. 12. Combination of distance and normal functions.

As described in Section 5, we update the centricity values of vertices after a scissoring is performed.
However, to compute the function(v), we use the original centricity value computed for the given mesh
before any scissoring operation is performed. The user would be more interested in the cuts perpendicular
to the medial axis of the whole mesh than specific parts resulted from scissoring.

Feature function. The fourth functiony ¢ (v) guiding the path towards mesh features is the same one
used to define the feature contours (see Fig. 9(e)), but it is normalized between 0 and 1. With the feature
functionn ¢ (v), the loop passes around features as shown in Fig. 10. In addition, the function enables two
feature contours far from each other to be connected in the completion stage (see Fig. 11).

456 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465

For an edge, /(e) denotes the length af. The cost functionsy,(e), n.(e), ns(e), andn.(e), are
defined as the averages of the values at the end vertices otedigdind the path from one end vertex
to the other ofy, we search for the shortest path using the edge cost

fley=1e) -nie)” -n,(e)” -nr(e)’’ - n.(e)",

where cost functiong; (e) are normalized between 0 and 1 angdare used to control the strengths of
these functions. We usually set;, w,, andw, to 1.0 andw,. to 0.4, which are values determined by
experiments.

In Figs. 9(b)—(d), we can see the contour may be successfully completed to pass through the other
side of the mesh by each cost function. However, despite the costs to compute all four functions, it is
advantageous to use them all instead of a single one. As shown in Fig. 12, when we use only one of the
cost functions, it is difficult to find proper parameters to make a loop go over the other side of the mesh.
In Figs. 12(a) and 12(b), several trials were needed to find proper parameter values for the single cost
function. Also, large values of parameters may cause unexpected paths in the contour completion. On
the other hand, by using the combination of the cost functions, we can obtain a nice path with the default
parameter values in Fig. 12(c).

The centricity functiom,(e) strongly affects the path of a completed contour. If the boundaries which
amesh s cut along are expected to be perpendicular to the medial axis of the mesh, the function improves
the completion results considerably (see Fig. 13). Otherwise, it may cause a path to be too dependent or
the distribution of the centricity. Depending on the input meshes, the user can choogédhaill not
be applied simply by setting. to zero.

A loop around the mesh can also be defined using a 2D line drawn over the mesh. We define a cutting
plane which passes endpointsyofand whose orientation is similar to the plane defined by the 2D line
and the view direction. The normal vectdirof the cutting plane should be perpendicular to both the line
directionL and the view directiorV as much as possible. Therefore, we minimizeV + V - N and use
a Lagrange multiplier to constrain a cutting plane to pass the two endpoints; that is, we minimize

f(NY=L-N+V-N+A(N-(PL— Py)),

wherea is a Lagrange multiplier ané&, and P; are the positions of two endpoints pf

(a) wy =w, =wy=1,w.=0 (b) wg =w, =w;=1,w, =04

Fig. 13. Effect of centricity function.

Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465 457

(a) line drawing (b) completed contour

Fig. 14. Semi-automatic contour completion.

Fig. 14 shows an example of manual guidance with 2D line drawing. Although a red line drawn by
a user does not pass the endpoints, the cutting plane not only passes the endpoints but its normal als
seems perpendicular to the view direction and the line direction as much as possible (for interpretation
of the references in color, the reader is referred to the web version of this article).

7. Part saliencetest

In the mesh scissoring process, a completed feature contour almost determines the shape of a scissorin
cut because the final position of the snake is not much different from the initial one. However, automatic
selection and completion can sometimes result in less meaningful contours, which produces no salient
segments. In Fig. 15, two open contours have similar lengths and centricity, which means either of them
can be chosen first. In order to select the contour in Fig. 15(b) first, instead of the one in Fig. 15(a), we
need a criterion to check whether segments obtained from the completed contour are significant enough
or not.

(a) rejected contour (b) accepted contour

Fig. 15. Completion of two selected contours with similar lengths and centricity: (a) the area of the segment is too small to
partition; (b) The area of the segment is large enough to partition.

458 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465

(a) rejected contour (b) accepted contour

Fig. 16. Part salience test by protrusion: §a} too flat to partition; (b)S is protrudent enough to partition.

Hoffman and Singh (1997) proposed three factors that determine the salience of a part: the relative
size, the boundary strength, and the degree of protrusion. We incorporate the test based on those thre
factors into our scissoring framework to automatically reject a closed contour that would not generate
salient parts.

Area. We measure the area factor by the ratio of the areaf a segment before scissoring to the
areasXy and X; of the two segments after scissoring. The area of a segment is computed by summing
the areas of triangles in the segment. kebe the smaller value amongy and X1. If 0/ X < &3rea WE

reject the contour and select a new one in the contour candidates. For example, the contour in Fig. 15(a)
can be rejected by this area factor. We usuallyégefto 0.05.

Protrusion. The protrusion factor is measured using a fitting plane obtained from the sample points on
a contour. LetS be a segment before scissoring anddgbe the segment with the smaller area after
scissoring. We compute the longest distadgérom the vertices orfy to the fitting plane. Let be the

radius of the bounding sphere of segmé&nif d,,/r < &y, We reject the contour. In Fig. 16, blue planes

are the fitting planes of contours and red points indicate the farthest points from the planes (for colors
see the web version of this article). The contour in Fig. 16(a) passes the area test but it is rejected by the
protrusion test. On the other hand, the contour in Fig. 16(b) is accepted by both the area and protrusion
tests. In our experiments;o is usually set to M5.

Feature. Completed contours usually have strong features since contours are extracted from feature
regions and contour completion considers featureness of edges. Accordingly, the rejection by weak fea-
tures hardly occurs. Instead, in the part salience test with features, we prevent high feature contours from
being rejected by the protrusion test. In the case of Fig. 17, the region enclosed by the contour is flat and
the contour is rejected by the protrusion test. However, the region could be a good candidate for segmen-
tation because it is surrounded by strong features. We call an edge on a cofeiuresedge if the end
vertices of the edge have passed the thresholding in the feature extraction 5tgf. H &rear, Wherel s
is the sum of feature edge lengths dnd the length of the contour, we accept the contour regardless of
the protrusion factok is usually set to (8.

In addition to automatic part salience test, the user can select another contour or remove the current
contour manually. Fig. 18(a) shows an example of a contour that can pass the part salience test but may

Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465 459

Fig. 17. Flat region enclosed by features.

S

(a) rejected contour (b) accepted contour

Fig. 18. Manual rejection: A user can cut a wrist by rejecting a contour in (a) and selecting a contour in (b).

not be desirable by the user. If the user wants to cut a wrist, as in Fig. 18(b), or fingers of a hand, the
current contour in Fig. 18(a) can be manually rejected.

8. Snake movement

Once a feature contour is selected and closed to form a loop, a geometric snake is initialized using
a sequence of sample point§) which lay on the loop. The snake moves by minimizing an energy
functional Esnakecomposed of internal and external parts;

Esnakds) = /(Espline(s) + Emesh(s)) dr.

The snake external energimesnis designed to capture nearby features and its internal edg&ggye to

smooth its shape and shorten its length. The external energy is defined using the mesh curvature again
However, as opposed to the feature extraction stage, we now search for any nearby feature either concav
or convex. Hence, we use the absolute values of the mean curvatures as the feature field.

To constrain a geometric snake on the mesh surface in the energy minimization process, as proposed ir
(Lee and Lee, 2002), we use a local parameterization that embeds faces around a snake onto a 2D plane
With this parameterization, we can use the same equation as an image snake for the energy minimization
The snake position is incrementally updated by repeatedly solving linear equations until a minimum is
reached. See (Lee and Lee, 2002) for the details of snake movement.

The final position of a snake defines the scissoring position where a cut is made (see Fig. 19). Since
shake sample points can lay at anywhere on the mesh surface, the snake contour may pass throug

460 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465

(d) ()

Fig. 19. Snake relaxation process: (a) initial positioning on a mesh based on a completed feature contour; (b) snake position
after one iteration; (c) final snake position; (d) final position with feature energy; (e) scissoring with the snake.

e

) final snake position) scissoring result

(a) (b) ()

Fig. 20. (a) The final snake position does not hecessarily follow mesh edges, creating a smoother region boundary. (b) Scissoring
divides the mesh faces following the final snake position.

triangles of a mesh. These triangles are subdivided along the snake to achieve smoother interface betwee
the mesh parts (see Fig. 20).

9. Experimental results

All following experiments were carried out on a 3.2 GHz Intel(R) Pentium(R) M processor with 1 Gb
memory. Fig. 21 shows automatic partitioning results. These results were created by automatic extraction
and completion of feature contours. Figs. 21(a)—(c) are fully automatic results, where the whole scissoring
process was performed without any user intervention. For the results in Figs. 21(d)—(g), some contours
that passed the part salience test were rejected by the user to obtain better results. However, since th
part salience test can filter most contours with non-salient segments, the manual rejection is needed very
rarely, only when there is real ambiguity such as shown in Fig. 18(a). For Figs. 21(b) and 21(e), the
centricity function was applied to complete contours, while the function is not used for the other models
in Fig. 21.

Fig. 22 shows results of semi-automatic scissoring of meshes. In more complex situations, the user can
begin with automatic scissoring and then reject specific cuts and continue scissoring further in designated
places (compare Fig. 21(c) and Fig. 22(a)). Figs. 22(c) and 22(d) show that our scissoring tool can
segment a mesh whose genus is not zero. By scissoring the mesh along yellow and green cuts in sequenc
we can separate the tail from the body and leg (for colors see the web version of this article).

Fig. 23 shows the scissoring results of models which have sharp concave creases, such as CAD models
For these models, it is better to constrain the boundaries of segments along mesh edges and our syster
provides such an option.

Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465 461

Fig. 22. Mesh scissoring results using a semi-automatic approach.

Fig. 24 shows manual scissoring with the 2D slicing approach. Fig. 25 is the final scissoring result.
Contours created by drawing 2D lines can disregard the feature contours altogether. However, intelligent
scissoring with automatic contour completion and a geometric snake assures the cut would be smooth
and follow natural shape features as much as possible as shown in Fig. 24.

462 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465

Fig. 24. Manual mesh scissoring examples: a 2D line is drawn on the mesh (left) and projected to create a slicing plane. This
plane can be used to define the initial loop (middle left). Alternatively, the line projected on the front faces can be completed
using our automatic completion method. Note that the initial slicing position is not a rigid constraint on the scissoring, hence
the final cut can follow natural shape features (middle right and right).

Table 1 shows timing statistics on different meshes used in our experiments. After the pre-processing
for feature extraction and geodesic distance computation, the method runs at an interactive speed evel
on large meshes. Hence, using this approach, an interactive tool is provided where semi-automatic as

Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465 463

)

Fig. 25. The final result of manual scissoring in Fig. 24.

Table 1
Typical timing statistics (in seconds) of different steps of our mesh scissoring algorithm
Mesh # of Curvature Clustering Centricity Contour Closing & Snake
vertices extraction calculation extraction salience test movement
CAD 20,570 910 3~4 03~04 3~4 4~5 1~2
Horse 19,851 6-7 3~4 03~04 15~25 1~2 2~7
Igea 18,004 4-5 3~4 03~04 2~3 1~2 2~3
Eagle 14,618 3738 2~3 03~04 15~25 05~0.8 2~3
Hand 10,070 23 1~2 02~0.3 1.0 Q4~0.7 1~2
Alien 7,401 34 1~2 0.15 1.0 B~ 05 1~2
Doll 3,756 Q4~05 15 0.1 0.70 B~05 05~1.0
Dino 3,323 09~1 0.5 0.1 1.0 0.20 2
Chess 1,514 3~04 0.03 0.04 0.70 0.20 42

well as automatic scissoring can be applied easily. The computation time for updating centricity is
similar to or less than centricity calculation for the whole mesh. Since the number of vertices in fe-

line, rabbit, and moai models are around 1K, the computation time is almost the same as the hand
model.

10. Summary and discussion

In this paper, we have presented an approach for 3D mesh scissoring which can be used for both
automatic partitioning and manual cutting. Based on the minima rule, our scissoring approach targets
the cutting positions determined by feature extraction. The part salience theory makes automatic scis-
soring more robust by automatically rejecting less meaningful segmentation. User intervention is rarely
necessary, only when there is real ambiguity that automatic thresholding cannot figure out.

In our scissoring operator, most of the timing constraint for large meshes come from feature extraction
and centricity calculation. Feature extraction is needed only once for each mesh and can be performed
as preprocessing before the scissoring process starts. The centricity should be computed for the giver
mesh and updated for the segments resulting from scissoring. To accelerate the centricity computation,
we presented an approximation technique using a subset of vertices. For a very large mesh, however
feature extraction and centricity calculation may still incur much computational overhead. To reduce

464 Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465

the overhead, we can use a simplified mesh in our scissoring process, in a similar way to the approach
proposed in (Katz and Tal, 2003). That is, we can perform most steps of scissoring, including feature
extraction and centricity calculation, on a simplified mesh and map the resulting cuts onto the original
mesh. Only the geometric snake step is performed on the original mesh to determine the final smooth
cuts, using the cuts from a simplified mesh as the initial positions.

Acknowledgements

The bunny, horse and Igea, and feline models are courtesy of the Stanford Computer Graphics Lab-
oratory, Cyberware, and the Caltech Multi-Res Modeling Group, respectively. This work was supported
in part by the Korean Ministry of Education through the BK21 program, the Korean Ministry of Infor-
mation and Communication through the ITRC support program, and the Israeli Ministry of Science and
Education Grant Tashtiot Grant No. 01-01-01509.

References

Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M., 2003. Anisotropic polygonal remeshing. In: Proc. of SIG-
GRAPH 2003, ACM Comput. Graph., 485-493.

Andrews, S., 2000. Interactive generation of feature curves on surfaces: A minimal path approach. Master’s thesis, University
of Toronto.

Cohen, L.D., Kimmel, R., 1997. Global minimum for active contour models: A minimal path approach. Internat. J. Comput.
Vis. 24 (1), 57-78.

DeRose, T., Kass, M., Truong, T., 1998. Subdivision surfaces in character animation. In: Proc. of SIGGRAPH '98, ACM
Comput. Graph., 85-94.

Falcéo, A.X., Udupa, J.K., Samarasekera, S., Sharma, S., Hirsch, B.E., de A. Lotufo, R., 1998. User-steered image segmentatior
paradigms: Live wire and live lane. Graph. Models Image Process. 60 (4), 233-260.

Faugeras, O.D., Hébert, M., 1987. The representation, recognition, and positioning of 3-D shapes from range data. In: Kanade,
T. (Ed.), Three-Dimensional Machine Vision. Kluwer Academic, Dordrecht, pp. 301-353.

Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D., 2004. Modeling by
example. In: Proc. of SIGGRAPH 2004, ACM Comput. Graph. 23, 652—663.

Garland, M., Willmott, A., Heckbert, P.S., 2001. Hierarchical face clustering on polygonal surfaces. In: Proc. 2001 ACM
Symposium on Interactive 3D Graphics, pp. 49-58.

Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L., 2001. Topology matching for fully automatic similarity estimation of 3D
shapes. In: Proc. of SIGGRAPH 2001, ACM Comput. Graph., 203-212.

Hoffman, D., Richards, W., 1984. Parts of recognition. Cognition 18, 65—96.

Hoffman, D., Signh, M., 1997. Salience of visual parts. Cognition 63, 29-78.

Hubeli, A., Gross, M., 2001. Multiresolution feature extraction for unstructured meshes. In: Proc. |IEEE Visualization 2001,
pp. 287-294.

Inoue, K., Itoh, T., Yamada, A., Furuhata, T., Shimada, K., 2001. Face clustering of a large-scale CAD model for surface
mesh generation. In: 8th International Meshing Roundtable Special Issue: Advances in Mesh Generation. Computer-Aided
Design 33 (3), 251-261.

Kalvin, A.D., Taylor, R.H., 1996. Superfaces: Polygonal mesh simplification with bounded error. IEEE Comput. Graph.
Appl. 16 (3), 64-77.

Kass, M., Witkin, A., Terzopoulos, D., 1988. Snakes: Active contour models. Internat. J. Comput. Vis. 1 (4), 321-331.

Katz, S., Tal, A., 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. In: Proc. of SIGGRAPH 2003, ACM
Comput. Graph. 22 (3), 954-961.

Y. Lee et al. / Computer Aided Geometric Design 22 (2005) 444465 465

Lee, Y, Lee, S., 2002. Geometric snakes for triangular meshes. In: Proc. Eurographics 2002, Comput. Graph. Forum 21 (3),
229-238.

Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.-P., 2004. Intelligent mesh scissoring using 3d snakes. In: Proc. Pacific
Graphics 2004, pp. 279-287.

Lévy, B., Petitiean, S., Ray, N., Maillot, J., 2002. Least squares conformal maps for automatic texture atlas generation. In: Proc.
of SIGGRAPH, ACM Comput. Graph., 362—-371.

Li, X., Toon, T., Tan, T., Huang, Z., 2001. Decomposing polygon meshes for interactive applications. In: Proc. 2001 ACM
Symposium on Interactive 3D Graphics, pp. 35-42.

Mangan, A.P., Whitaker, R.T., 1999. Partitioning 3D surface meshes using watershed segmentation. IEEE Trans. Vis. Comput.
Graph. 5 (4), 308-321.

Milroy, M.J., Bradley, C., Vickers, G.W., 1997. Segmentation of a wrap-around model using an active contour. Computer-Aided
Design 29 (4), 299-320.

Mortensen, E.N., Barrett, W.A., 1995. Intelligent scissors for image composition. In: Proc. of SIGGRAPH '95, ACM Comput.
Graph., 191-198.

Mortensen, E.N., Barrett, W.A., 1998. Interactive segmentation with intelligent scissors. Graph. Models Image Process. 60 (5),
349-384.

Page, D.L., Koschan, A.F., Abidi, M.A., 2003a. Perception-based 3D triangle mesh segmentation using fast marching water-
sheds. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR '03), vol. Il, pp. 27-32.

Page, D.L., Abidi, M.A., Koschan, A.F., Zhang, Y., 2003b. Object representation using the minima rule and superquadrics for
under vehicle inspection. In: 1st IEEE Latin American Conference on Robotics and Automation, pp. 91-97.

Shamir, A., 2004. A formulation of boundary mesh segmentation. In: 2nd International Symposium on 3D Data Processing,
Visualization, and Transmission, pp. 82—89.

Shlafman, S., Tal, A., Katz, S., 2002. Metamorphosis of polyhedral surfaces using decomposition. In: Proc. Eurographics 2002,
Comput. Graph. Forum 21 (3), 219-228.

Sorkine, O., Cohen-Or, D., Goldenthal, R., Lischinski, D., 2002. Bounded-distortion piecewise mesh parameterization. In: Proc.
IEEE Visualization 2002, pp. 355-362.

Zuckerberger, E., Tal, A., Shlafman, S., 2002. Polyhedral surface decomposition with applications. Computer and Graphics 26
(5), 733-743.

