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Abstract

Today’s huge irregular polygon meshes require effective
compression techniques to reduce the associated storage re-
quirements, network bandwidth and transmission times. In
this paper, we describe a new method for compressing the
geometry of an irregular triangle mesh, which is both scal-
able (encoding and decoding time is linear in the number of
mesh vertices) and progressive, enabling the decoder to gen-
erate a progression of approximations while the data is being
transmitted. The encoding approach utilized by our method
is based on the recently introduced High-Pass Quantization
technique. The decoding stage, however, uses a linear Alge-
braic Multi-Grid solver, which makes high-pass quantization
truly scalable. The speed of our solver makes it possible to
update the solution as more bits are received, resulting in a
progressive transmission scheme.

CR Descriptors: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling —surface, solid, and
object representations

1 Introduction

Irregular triangle meshes are commonly used for represent-
ing 3D objects of arbitrary topology in a wide variety of ap-
plication areas, ranging from medical and scientific visual-
ization to cultural and historical preservation. With the ad-
vent of range scanning technologies in the last decade, these
meshes are often very detailed, containing hundreds of thou-
sands and even millions of vertices. Thus, working with such
meshes requires effective compression techniques to reduce
storage requirements and transmission times. Progressive
transmission techniques are particularly desirable, since they
drastically reduce the apparent latency experienced by a user
downloading such a mesh.

In this paper we develop a method for compressing the
geometry of an irregular triangle mesh, which is both scal-
able and progressive. Specifically, we build upon the high-
pass quantization (HPQ) method for mesh encoding recently
introduced by Sorkineet al. [SCOT03]. This method en-
codes the geometric coordinates of the mesh vertices by ap-
plying a transformation based on the mesh Laplacian and
then quantizing the transformed coordinates. As demon-
strated by Sorkineet al., such an approach allows consid-
erably more aggressive quantization to be applied without
introducing significant visual errors, since the quantization

error is mostly comprised of low-frequency bands.
However, the decoding stage of the HPQ method invloves

solving a large linear least squares problem, and the solvers
used by Sorkineet al.are super-linear and thus are only prac-
tical for moderately sized meshes (under 100,000 vertices).
In this work we advocate using an Algebraic Multi-Grid
(AMG) solver, which exhibits roughly linear performance,
and thus makes the HPQ method truly scalable. In fact, this
solver is sufficiently fast to update the solution as more bits
are received, resulting in a progressive transmission scheme.

Although multigrid methods have long been recognized as
the most efficient and appropriate solvers for a wide variety
of large linear problems [TOS01], their application to prob-
lems in digital geometry processing has been limited so far.
A few exceptions [RL03; AKS04] are discussed in the next
section. In this work we chose to use the Algebraic Multi-
Grid (AMG) method, since it does not rely on the geometry
of the mesh, and thus enables us to set up the solver on the
receiving end before the geometry is available.

2 Previous Work

Mesh compression approaches must address two conceptu-
ally separate problems: connectivity encoding and geome-
try encoding. State-of-the-art connectivity encoders arevery
effective, typically requiring between 2 to 6 bits per vertex
[TG98; COLR99; GS98; KADS02]. In this work we make
use of such an encoder in order to encode and transmit the
connectivity information before geometry transmission com-
mences.

The availability of near-optimal connectivity encoders
emphasizes the need for effective geometry compression and
encoding schemes. Standard linear predictor based geome-
try encoders [TG98] result in encodings where the geometry
is, on average, at least five time larger than the connectivity.
Recent compression methods represent the mesh geometry
using special bases: Karni and Gotsman [KG00] use a spec-
tral basis, inspired by the Fourier basis; Khodakovskyet al.
[KSS00] used a wavelet basis. While the latter method is
able to achieve very good compression ratios, it requires a
semi-regular remeshing of the input mesh, which is undesir-
able in some applications.

As mentioned earlier our method is based on the HPQ
method for encoding the geometry of irregular meshes
[SCOT03]. Like Karni and Gotsman’s method, HPQ pre-
serves the original connectivity of the mesh and is based



on the spectral properties of the mesh Laplacian. However,
while Karni and Gotsman introduce errors into the high fre-
quency modes, in the HPQ method the errors are mostly con-
fined in the low frequency modes. The HPQ method is ex-
plained in more detail in the next section.

In this work, we introduce a scalable and progressive vari-
ant of HPQ by utilizing an AMG solver. Multi-grid solvers
for digital geometry processing have been previously ex-
plored by Aksoyluet al. [AKS04], who compared several
different mesh coarsification strategies for constructingmesh
hierarchies suitable for multi-level solvers. The mesh hier-
archy used in this work is similar to their fast decayingMIS
hierarchy.

Ray and Levy [RL03] utilize a cascadic multi-grid solver
for speeding up the computation of least squares conformal
maps. In this work we use a more general AMG method, and
achieve even more substantial speedups.

3 High-Pass Quantization

Let M be a triangular mesh with a set ofn vertices whose
Cartesian coordinates inR3 are denoted asvi = (xi ,yi ,zi).
Rather than quantizing these cartesian coordinates directly,
HPQ first transforms them intorelative or δ -coordinates,
which encode the difference of each vertexi from the cen-
ter of mass of its ring on mesh neighborsStar(i):

δi = (δ (x)
i ,δ (y)

i ,δ (z)
i ) = vi −

1
di

∑
k∈Star(i)

vk (1)

wheredi is the degree of vertexi. This transformation is
conveniently expressed in matrix form as

L~v = D~δ (2)

whereD is the diagonal matrixDi,i = di andL is the mesh
Laplacian matrix [Fie73]:

Li, j =







di i == j
−1 j ∈ Star(i)
0 otherwise.

The HPQ method encodes the geometry of the mesh by
quantizing theδ -coordinates, followed by standard entropy
encoding. Thus, in order to decode the geometry it is nec-
essary to solve the linear systems (2) with the quantized ver-
sion of~δ on the right-hand side. However, the Laplacian
matrix L is singular (since all mesh translations result in the
same set of relative cooordinates). To overcome this problem
and to reduce the errors introduced by quantizing~δ , Sorkine
et al. [SCOT03] anchor a small portion of the vertices to
their original Cartesian coordinates. Specifically, to anchor
thei-th vertex, Sorkineet al.append the row vectoreT

i (thei-
th row of the identity matrix) to the Laplacian matrix and the
original coordinatesvi to the right-hand side vectors. Having

anchoredk vertices in this manner, the resulting rectangular
system is solved as a least-squares problem.

In this paper, we explore a different way of handling an-
chored vertices. Instead of appending additional rows to the
Laplacian matrix, to anchor thei-th vertex we add the row
vectorαeT

i to thei-th row of the matrix, and also addαvi to
the i-th entry of the right-hand side vectors. Informally, the
i-th equation says that the corresponding vertex should sat-
isfy both the Laplacian relationship with its neighbors and
the anchoring constraint. The scaling factorα enables us to
control the weight given to the anchoring constraint. Empir-
ically, we have found values ofα = 0.2 to 0.3 to produce the
most visually pleasing solutions for all of the models we ex-
perimented with. For values ofα < 0.2 the anchoring was
not effective, while for values ofα > 0.5 the resulting solu-
tion was not sufficiently smooth. It should be noted that our
solution is not equivalent to the least-squares approach em-
ployed by Sorkineet al., as it does not guarantee that the an-
chors are optimally approximated in the least-squares sense.
However, with our approach the matrix remains square, and
our experiments indicate that the results produced by our ap-
proach are equally accurate (both visually and numerically)
to those of Sorkineet al.

3.1 Non-uniform quantization

Instead of quantizing the relative coordinates vector~δ uni-
formly using the same number of bits for each vertex, like
done by Sorkineet al., we use non-uniform quantization.
Vertices with largeδ -coordinates suggest that they are more
significant in the mesh (sharp points and corners), so we pre-
fer to encode them more accurately. Thus, in order to quan-
tize with the average rate ofp bits per coordinate, after nor-
malizing the~δ vector we usep− 1 bits to quantizate the
lower 10% of theδ -coordinates andp+1 bits to quantizate
the top 10%. The remaining (non-anchor) vertices are quan-
tized usingp bits.

4 An AMG Solver

To solve equation (2) we employ an Algebraic Multi-Grid
(AMG) approach. The idea behind multigrid methods in
general is quite simple: starting with the full problem (finest
level) the solver performs severalerror smoothingiterations,
then restricts the residual onto a coarser level, solves for it
recursively employing increasingly coarser levels, andinter-
polatesthe result to update the solution at the finest level.
Thus, in order to construct a specific multigrid solver one
needs to specify the following components:

1. Coarsening procedure for constructing the hierarchy of
levels;

2. Restriction (interpolation) operators, which are neces-
sary for switching from fine to coarse (coarse to fine)
level;



3. Error smoothing procedure to apply at each level.

Ordinary (geometric) multigrid methods take the geometry
of the problem into account when constructing the hierar-
chy of levels. In this work, we employ the more general
AMG approach, in which geometry is not taken into account
by the coarsening process. This is necessary in our setting,
since the geometry is what we are solving for! Our specific
coarsening procedure and the construction of restriction and
interpolation operators is described in the next section. As
for the smoothing procedure, we use standard Gauss-Seidel
relaxation.

4.1 Coarsening

Our coarsening procedure operates in a manner similar to the
method used by Aksoyluet al. [AKS04] for their MIS hier-
archyconstruction. The idea is to select a subset of vertices
and remove them from the mesh yielding the next coarser
level. However, when selecting the vertices to be removed
one must account for the fact that we will need an interpo-
lation operator in order to propagate the solution achievedat
the coarser level back to the finer level. Thus, the vertices
chosen for removal (F-vertices) should depend in some sim-
ple manner on the vertices chosen to remain in the coarser
level (C-vertices). In our approach we require that each F-
vertex is adjacent to (depends on) at least one C-vertex. We
look for a maximal independent set of vertices to serve as C-
vertices, and remove all of the other vertices from the mesh
to obtain the next coarser level. The value at an F-vertex is
linearly interpolated from all C-vertices adjacent to it, yield-
ing a very simple interpolation (prolongation) operator, and
the corresponding restriction operator is defined simply as
the transpose of the prolongation operator.

Starting with a mesh in which all vertices are unmarked,
we sweep over all of the vertices in the mesh. An unmarked
vertex is marked as independent (C-vertex) if none of its
neighbors are marked as independent, and marked as depen-
dent (F-vertex) otherwise. Once all vertices in the mesh have

Figure 1: An illustration of the coarsening process. In the
mesh on the left the independent vertices (C-vertices) are
marked by bold circles. The right mesh contains only these
vertices after all of the dependent vertices (F-vertices) have
been removed.

been marked, the prolongation and restriction operators are
constructed, and the F-vertices are removed. The actual re-
moval may be performed by a sequence of edge contraction:
each F-vertex is removed by contracting an edge connecting
this vertex to a C-vertex. Figure 1 illustrates the mesh coars-
ening process: the mesh on the left is the finer mesh with
the C-vertices marked as bold circles, while the mesh on the
right shows the resulting coarsened mesh.

5 Results

5.1 Scalability
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Figure 2: A comparison between AMG and QR decomposi-
tion. Running times (seconds on a Pentium 4 at 2.4GHz) are
plotted as a function of the number of vertices.

We begin with a comparison bewteen our AMG solver and
the QR-based solver used by Sorkineet al. [SCOT03]. To
perform this comparison we measured the time each method
required to decode a series of progressively more complex
tessellations of the same object (a displaced plane). The cor-
responding timings are plotted in Figure 2. The plots clearly
indicate that the AMG solver exhibits linear behvior, as pre-
dicted by theory, while the QR-based solver exhibits super-
linear time complexity which makes it unpractical for com-
plex meshes.

5.2 Progressivity

Using our method a progressive transmission scheme may be
obtained as follows. The mesh connectivity information is
encoded and transmitted first (using an state-of-the-art mesh
connectivity encoder). Next an agressively quantized ver-
sion of the geometry (e.g., 5-bits per coordinate on average)
is encoded and transmitted. Next, a vector containing an ad-
ditional bit for each coordinate is encoded and transmitted,
and so forth until the desired encoding accuracy is met.

On the receiving (decoding) end, once the connectivity is
received it is decoded and the coarsification process for con-



Quantization level 5 bits 7 bits 9 bits
Bits transmitted 5x19851 7x19851 9x19851
Time (sec) 1.36 1.81 2.26
MetroEmax 0.0214 0.02218 0.000509
MetroEmean 0.00636 0.000859 0.000107
MetroERMS 0.0076 0.000992 0.000132
EHaussdorff 0.0214 0.002222 0.000509

Table 1: Transmitted geometry, reconstruction time, and er-
rors for the progressive decoding of the Horse model. Errors
were computed using the Metro tool, reported with respect
to the bounding box diagonal.

Quantization level 5 bits 7 bits 9 bits
Bits transmitted 5x50000 7x50000 9x50000
Time (sec) 2.5 3.67 4.65
MetroEmax 0.00236 0.000242 0.000044
MetroEmean 0.000565 0.000074 0.000011
MetroERMS 0.000706 0.000088 0.000013
EHaussdorff 0.002363 0.000242 0.000044

Table 2: Transmitted geometry, reconstruction time, and er-
rors for the progressive decoding of the Venus model. Errors
were computed using the Metro tool, reported with respect
to the bounding box diagonal.

structing the multigrid hierarchy commences, since no ge-
ometry is required in this stage. Once the multigrid solver
has been set up and the aggressively quantized geometry has
been received the AMG solver is used to reconstruct the first
crude approximation of the mesh geometry. As additional
bits arrive, the AMG solver quickly updates the approxima-
tion resulting in a progression of approximation leading up
to the final desired accuracy.

The outcome of this process is demonstrated in Figure
3. The leftmost images are the result of decoding the 5-bit
quantized geometry, followed by 7-bit and 9-bit quantiza-
tions. For comparison, the original models are shown on the
right. Tables 1 and 2 reports the amount of transmitted ge-
ometry bits, the cumulative reconstruction times, and the cor-
responding errors as computed by the Metro tool [CRS96].
Another example is shown in Figure 4.

6 Conclusions

In this paper we have developed a new method for decod-
ing High-Pass Quantized geometry of irregular triangular
meshes. We have shown that by utilizing a linear AMG
solver we make high-pass quantization scalable and practical
to much more complex meshes than was preiously possible.
The fast solver was shown suitable for progressive transmis-
sion of high-pass quantized meshes.
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Figure 3: Progressive decoding of the Horse model (19,851 vertices, top row) and the Venus model (50,000 vertices, bottom
row). From left to right: decoding the first 5 bits per coordinate, 7 bits, 9 bits, and the original model (shown here for reference).
Low frequency errors make the differences difficult to perceive.

Figure 4: Blade model (882,954 vertices). From left to right: 7-bit quantization, 9-bit quantization, original mesh.


