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Abstract: A fast and simple method is proposed that produces approximate multivariate local D-optimal

designs of high e¢ ciency for models with binary response. The method assumes availability of a D-optimal

design for a parallel normal response linear problem that has the same linear predictor, with an assumption

of homogenous variance; the change required to transform the standard design into an e¢ cient one for a

multivariate logit or probit model is to shift any design point whose probability is very low or very high (and

is therefore non-informative) into the nearest feasible point of moderate probability.
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1. INTRODUCTION

Construction of an experimental design for a generalized linear model presents a level of complexity greater than

that required for a model with a normally distributed error term of constant variance. Finding an optimal design

for a linear model is already a numerically intensive optimization problem. However, some linear models can be

characterized and have a known trivial optimal design, and designs for more complicated models can be sought

through available software such as "gosset" (Hardin and Sloane 1993), the statistical toolbox in MATLAB (The

Mathworks, inc), JMP or the SAS Optex procedure. Extension from a linear model to a logistic one does not

retain these qualities. Trivial solutions to linear model design problems are often factorial designs, utilizing the

corners of the design region; for a logisitic response, some of these corners have probabilities that are close to

zero or one, so that the responses are almost deterministic, and are therefore non-informative. Furthermore,

optimal design for binary response depends on the unknown coe¢ cients, and hence two experiments having

the same model but di¤erent coe¢ cient values will typically have di¤erent optimal designs. Common software

packages assume all observations have homogenous variance and so do not provide a remedy for generalized

linear models.
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This paper proposes a simple method for constructing an approximate local D-optimal design for a multi-

variate binary response problem with the logit or probit link.

2. EXPERIMENTAL DESIGN FOR GENERALIZED LINEAR MODELS

Most work on Experimental Design focuses on linear models with a continuous response. A common assumption

is that the error term of the model is normally distributed and that its variance is constant over the design

region. These assumptions are not met (even asymptotically) with the popular logistic model or with the probit

model for binary response data. Standard procedure for the analysis of these models uses iteratively reweighted

least squares, which asymptotically leads to weights that enable solving the problem as a simple linear model

(McCullagh and Nelder 1989). These weights depend on the parameters of the problem and are generally

di¤erent for two binary response problems of the same structure but di¤erent true (unknown) coe¢ cients.

Frequently, Experimental Design uses optimality criteria based on Fisher�s Information Matrix. Of these,

D-optimality is the most intensively studied. For the normal response setting with y = � + " and � = F�;

D-optimality maximizes the determinant of the information matrix FTF and so minimizes the volume of the

con�dence ellipsoid for the unknown coe¢ cients �. Atkinson & Donev (1992) note that the assumptions of

normality and constancy of variance enter the optimal design through the information matrix. They indicate

that instead of FTF; other matrices are appropriate for non-normal distributions, and that once the appropriate

matrix has been de�ned the principles and practice of optimal experimental design are similar to continuous

response problems. This means that the optimal experimental design is driven from the information matrix

of the parameters FTWF ; the matrix of weights, W , depends on the unknown parameters and on the design.

This dependence creates a di¢ culty in constructing an optimal experimental design.

2.1 Local D-Optimal Designs

Because a D-optimal design depends on the coe¢ cients, its derivation require us to make some assumptions

on the values of the unknowns we want to estimate. When we use an initial estimate (rather than a Bayesian

a-priori distribution, for instance) we produce a design that is optimal only locally, for the coe¢ cient values

that were adopted. If the initial estimate is poor, the design�s performance may be far from optimal. D-optimal

designs that are based on an initial estimate for the unknown coe¢ cient values are designated as local D-optimal

designs.

2.2 Local D-Optimal Designs for a logistic model

Abdelbasit & Plackett (1983) discuss the construction of local D-optimal designs for binary response with one

explanatory variable. They show that for an unconstrained univariate problem with the model logit(p) =

�0 + �1x the local D-optimal design places half the points where the estimated probability is 0.824 and the

other half at the location with probability 0.176. Univariate binary response has been further considered by

many authors, see for example Atkinson & Donev (1992), Sitter (1992), Hedayat, Yan & Pezzuto (1997), or

Mathew & Sinha (2001).
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Although the �nal coordinates creating the optimal design are found numerically, the function to maximize

is derived through analytical procedures. Increasing the number of unknowns complicates both the analytical

route and the numerical process. This is probably the reason not much has been published on multivariate

design problems. Chipman and Welch (1996) compare D-optimal designs for Generalized Linear Models over

a constrained region to linear regression D-optimal designs, including multifactor problems. Their comparison

was based on computer generated D-optimal designs, using weighted linear models. This way they show the

general phenomenon that points in the linear model optimal design may "move in" from the edges of the design

region for the logistic model. Sitter and Torsney (1995) analyze D- and c- optimal designs for binary response

experiments with two design variables and various link functions; Smith and Ridout (2003) obtain optimal

Bayesian designs for bioassays involving two parallel dose response relationships where the main interest is in

doses of one substance; Atkinson, Demetrio & Zocchi (1995) describe a dose response experiment with two

variables - one continuous and one indicator variable, considering the special case in which the value of the

indicator variable is unknown during the process of the experiment, but is available for the posterior analysis.

Atkinson (2005) gives examples of �rst order D-optimal designs with two variables and discusses usage of

standard factorial design as an approximation, similar to the method proposed here; but - assuming one needs

to search for the approximate design over irregular design regions Atkinson concludes that "Searching over the

original design space to �nd optimal design for the generalized linear model would both be easier and lead to a

more e¢ cient design than would trying to �nd such a regression approximation".

It is noted that the treatment described so far was limited to a �rst order model with two variables. Woods,

Lewis, Eccleston and Russel (2005) o¤er a method of creating multivariate compromise designs that are robust

to uncertainty in aspects of the model, including the uncertainty in the coe¢ cient values, di¤erent choices of

a link function and various models, including interactions. As can be expected for such complex designs, their

method requires intensive computation.

We will now suggest a simple method of constructing approximate local D-optimal designs. This method is

not limited to a small number of covariates, or to �rst-order designs without interactions. It can produce ap-

proximate designs almost instantaneously, as it does not require intensive computation, and it is straightforward

to implement. There are two cornerstones for this algorithm; �rst, one needs an optimal design for an analogous

linear model (that is, the optimal design for a problem with the same formulation and a constant variance).

Second, we use computation of the probability at design points according to the speci�c initial coe¢ cient values.

3. REGION OF LINEARITY

We are considering a binary response with the logistic link. That is pi = eFi�

1+eFi�
; Fi being the i-th row of the

regression matrix F: We attempt to �nd an approximation for a local optimal design. As explained, the term

"local" implies that the design relates to particular values of the coe¢ cients.

Note that while both � and feasible points for the design space may be of any dimension, the probability

depends on their scalar product Fi�. Figure 1 displays this probability p (�;x) versus �
0x; where x is any
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possible row of the regression matrix F :
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Figure 1: The probability p (�;x) versus the product �0x; for the Logit link

We see that when 0:2 � p � 0:8 the probability p is approximately a linear function of �0x: Even in the

larger range of 0:1 � p � 0:9 it is not far from being linear.

Therefore it is tempting to assume that the local optimal design would be similar to a regular linear response

experimental design, for models in which the design region does not contain points with extreme probabilities

(very high or very low). Still, having a linear link function is not su¢ cient to accept that assumption since

the error term is not distributed with a constant variance �2. It is known that var
�b�� _ (F 0WF )

�1
; and

for any row Fi representing a single observation, var (b�i) _ F 0i (F
0WF )

�1
Fi. Luckily, for the logit link the

variance (which is clearly proportional to the reciprocal of the weights) is nearly constant within the range

suggested above, while its magnitude increases rapidly outside that region (note that we discuss the variance

of the estimated linear predictor which is di¤erent from pi (1� pi) ; the variance of the observations). This is

illustrated in Figure 2.

Figure 2: For 0:2 < p < 0:8 the variance is approximately constant, increasing rapidly outside those limits

Therefore, if our design region is limited to points with an expected probability above 0.1-0.2 and less than

4



0.8-0.9 (based on the initial parameter values), we can expect the binary response local optimal design to be

close to a normally distributed response optimal design.

4. APPROXIMATE LOCAL D-OPTIMAL DESIGN

Avoiding design points with extreme probabilities should be an e¤ective strategy for any optimality criterion.

We can further develop this understanding for some speci�c choices, such as the D-criterion. Basically, it enables

us to approximate the D-optimal design even when the design region includes points with probabilities outside

the region where 0:2 � p � 0:8.

The D-optimality criterion selects experimental points that minimize det
�
var

�b��� : As noted var �b�� _
(F 0WF )

�1 with W being the weights matrix, a diagonal matrix which for a logit link has values of wii =

pi (1� pi) = eFi�

(1+eFi�)
2 : Clearly the use of experimental points for which wii is very small would be unwise.

Outside the region where 0:2 � p � 0:8 the weights decrease very fast; observe Figure 2 again (noting that

the presented curve is 1=wii; not wii). For that reason we should expect that points with very small or very

high probabilities will not be included in a D-optimal design. As a result, an easy way to produce a

good approximation to a local D-optimal solution would be to exclude from the design region all

points with very low or high probabilities and �nd a normal response D-optimal design over the

constrained region.

As explained, "very low probabilities" are probabilities under ~0.1-0.2 and "very high" are over ~0.8-0.9.

As a rule of thumb we can cut at p < 0:15 and p > 0:85. Denoting c � ln
�

0:85
1�0:85

�
= � ln

�
0:15
1�0:15

�
= 1:7346;

we add the constraints �c1 � F� � c1; which are applied using the initial guess for �.

Finding a D-optimal design for the constrained normal response model can be done with many available

algorithms. But for many common models constructing an approximate D-optimal design can be made

even simpler, releasing the user from the need for complicated algorithms. It is well known that

if we are considering a normal response problem constrained to the region [�1; 1]m for a model consisting of

�rst-order terms and all possible interactions, then the D-optimal design is straightforward: it is a full factorial

experiment placing an equal number of points at each of the 2m corners of the region. If all these points are of

moderate probability, then this should be the local D-optimal design for a binary response as well. Otherwise

we should shift any corner point of extreme probability to the nearest point of the closer surface F� = � c1.

If the model contains up to 3 variables shifting can be done graphically by drawing the design region and

plotting the surfaces of equi-probability 0.15 and 0.85 inside it. For higher dimensions graphic tools are usually

not suitable, but the problem of �nding the nearest point to a corner on a surface is a familiar optimization

task. It is easy to use sequential quadratic programming in order to �nd it. Many commercial products can

perform the optimization process, for instance the function �fmincon�in MATLAB.

Remark 1 A familiar result from normal response theory is that the support points of a linear model optimal

design are located on the boundary of the design region. Unlike this result, optimal designs for binary response

typically contain points in the interior of the design region.
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Remark 2 For �rst-order models with no interactions, the familiar result prevails. As can be seen in Sitter &

Torsney (1995) and Atkinson (2005) it is possible to present a �rst-order binary model as an equivalent linear

model by replacing the design region with an induced region. In such cases more e¢ cient designs will result if

we add a constraint, requiring all points being placed on the boundary of the design region.

Remark 3 Possibly there will be more than one point on the boundary that will minimize the distance from

an examined corner while achieving the required probability; in such cases one needs to split up the original

point into several design points, each of which gets an equal fraction of the weight assigned to the original point

(1=2m).

Remark 4 Note that although we assume throughout this paper that the model coe¢ cients are known, in prac-

tice, most people will �nd it much easier to specify areas of low and high probabilities than coe¢ cient values.

Hence, the algorithm proposed gives the user an easy, fast and intuitive way to exploit process knowledge in

deriving approximate local D-optimal design.

Remark 5 Figures 1 and 2 presented the values appropriate for the logistic link. The probit link behaves

similarly, and the results apply equally for both link functions. The use of the approximation suggested is less

suitable for the asymmetric Complementary Log-Log link.

Some examples follow.

5. EXAMPLES

All the examples compare the approximate design to a local D-optimal design. The e¢ ciency is calculated as the

ratio
����F 0

AWAFA

��� = ���F 0

OWOFO

����1=p where p is the number of unknown coe¢ cients, andWA; FA;WO; FO are the

weights and design matrices for the approximate and optimal designs, respectfully. Optimal designs were found

by numerous methods including a variation on Wynn�s algorithm (1972), a variation on the implementation

of Federov�s (1972) Exchange Algorithm in MATLAB, and a simulated annealing algorithm implemented by

Woods, Lewis, Eccleston and Russell (2005).

5.1 Example 1

The �rst example is a simple case of a symmetrical �rst order model with two variables of identical in�uence.

The model used is: logit(p) = �0 + �xx + �yy with � = (0; 2; 2)
0
: Throughout the paper we will assume all

variables are scaled to the region [�1; 1].

This model could represent a machine that receives data signals at several di¤erent frequencies. The ampli-

tude (x and y) of the signal transmitted at each frequency may be determined independently. The integrated

e¤ect of the signal may cause the machine to be unstable and as a result to stop production. The goal of the

experiment is to model the probability of a production stoppage.

Figure 3 shows the local D-optimal design for this model. The six marked points designate the design;

dotted lines are equi-probability contours, with their probability marked as a number on them, the bold rational
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number near each design point notes its frequency of appearance (its weight) in the design, and stars mark the

approximate design constructed as described above.
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Figure 3: Local D-optimal Design and Approximate design for a �rst-order model

It is seen that the approximation is almost identical to the true local D-optimal design. Two of the original

design points ([�1; 1] and [1;�1]) have p = 0:5 and are not moved. The other two factorial design points

([�1;�1] and [1; 1]) are shifted until the required probability (0.15 / 0.85) is reached; since each of these points

has two points on the boundary with the required probability, and both are of equal distance from the corner

- these points are split in the design, and each subpoint has a design weight of 1
8 instead of the original

1
4 :

Avoiding the splitting by choosing only one equi-distant point does not harm the e¢ ciency of the design. If

�x 6= �y then no splitting is required. This is demonstrated in Figure 4 for � = (0; 1; 2)
0
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Figure 4: Local D-optimal Design and Approximate design for a �rst order model with �x 6= �y
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5.2 Example 1a

A variation of the �rst model would be to add an interaction with an assumed coe¢ cient value of zero. That

is: logit(p) = �0 + �xx + �yy + �xyxy with � = (0; 2; 2; 0)
0
: The expected response values, expressed by the

equi-probability contours, are the same for both models. But, as noted in remarks 1 and 2, once we consider the

possibility for an interaction e¤ect in the model, the optimal design is no longer constrained to the boundary

of the design region. Figure 5 shows the local D-optimal design for this model, together with the approximate

design.
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Figure 5: Approximate vs Local D-optimal Design for the same model

It is seen that, unlike the D-optimal design for a normal response or a �rst order logistic model, in our binary

model which contains an interaction, two corner points ([�1;�1] ; [1; 1]) "drifted" inside. Once the design is not

constrained to be on the boundary, the nearest point to the corner [�1;�1] ([1; 1]) with probability 15% (85%)

is found in the interior of the design space. There is no need to split points and the optimal design has only

4 points. Notice the di¤erence between this model and the �rst model discussed. Suppose we believe that the

two variables (e.g. amplitude at each frequency) are of equal importance and that an interaction is not likely,

but might be present. The last model better re�ects this by including an interaction term in the model, but

setting its coe¢ cient value to zero.

For all three models, the approximate design�s e¢ ciency is over 98%, which is to be expected as they are

almost identical to the true optimal designs. For comparison, the regular full factorial design achieves e¢ ciency

of 78% for the �rst example of a model with no interaction, 81% for the second example, and 73% in the last

example, including an interaction with an anticipated coe¢ cient value of 0.

5.3 Example 2

The same conclusions apply for more complex models as well. The next example uses an asymmetric e¤ect of

two variables, together with a strong interaction.

8



We use the same model: logit(p) = �0 + �xx+ �yy + �xyxy; this time with � = (0; 1; 2; 3)
0. This could be

the case, for example, if one frequency is more dominant than the other, and if there is a synergetic e¤ect when

both frequencies are applied.

The results are displayed in Figure 6, maintaining the same notations as before.
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Figure 6: Approximate and Local D-optimal Designs for a 2 variable model with a strong interaction e¤ect

The e¢ ciency of the approximate design was 89% this time. This is still a high value, but smaller than

before. A regular factorial design has an e¢ ciency of only 35%. Note that the upper right point of the factorial

design not only shifted inward in the local D-optimal design, but was also split into two points with 1
8 weight

- half of the original one-quarter weight of the corner point. Had we sought an approximation, not by shifting

the points directly, but instead by �nding the D-optimal design for a normal response model constrained to the

region �c1 � F� � c1; then the upper right design point would split as well, and the approximation e¢ ciency

would rise over 95%. The drawback to the latter method is the loss of simplicity. An interim method might

be to add an algorithm step, after shifting the points inward, of trying to split points when the extreme points

on the surface F� = c1 are approximately the same distance from the original corner as the point of minimum

distance. The decision whether to split points does not require running a D-optimality computer algorithm,

but may still be a complex problem. Hence, it may be preferred to use the slightly less e¢ cient design in order

to retain simplicity.

5.4 Example 3

We now further expand the complexity and give an example with three factors.

The model is extended to: logit(p) = �0 + �xx + �yy + �zz + �xyxy + �xzxz + �yzyz + �xyzxyz with the

coe¢ cients chosen to be � = (0; 2; 2; 2; 0; 0; 0; 0)
0
: Adding interactions with a coe¢ cient value of 0 ensures a

design that can examine the hypothesis of no interaction e¤ect.

Figures 7a & 7b and Table 1 compare the local D-optimal design to the approximate design. The two �gures

di¤er only in the view angle.

9



It can be seen that the points comprising the optimal design are all on or near the shaded surfaces of

probabilities 20% or 80%, with two points (the ones that would be at (�1;�1;�1) and (1; 1; 1) in a normal

response unconstrained design) approaching the centers of the shaded areas, and the rest of the points placed

on the corners of the polygons describing each shaded area.
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Figure 7a & 7b: Approximate and Local D-optimal Designs for a 3 variable model
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Table 1: Approximate and Local D-optimal Designs for a 3 variable model

Optimal Design Approximate Design

x y z weight x y z weight

-1 -0.684 1 1/16 -1 0.93 0.94 1/8

-1 0.684 1 1/16 -0.93 -0.93 0.99 1/8

-1 1 -0.684 1/16 -0.93 1 -0.94 1/8

-1 1 0.684 1/16 -0.29 -0.29 -0.29 1/8

-0.684 -1 1 1/16 0.28 0.29 0.29 1/8

-0.684 1 -1 1/16 0.93 -1 0.94 1/8

-0.344 -0.344 -0.344 1/8 0.93 0.93 0.99 1/8

0.344 0.344 0.344 1/8 1 -0.93 -0.94 1/8

0.684 -1 1 1/16

0.684 1 -1 1/16

1 -1 -0.684 1/16

1 -1 0.684 1/16

1 -0.684 -1 1/16

1 0.684 -1 1/16

Once again we see that the approximate design places its points near the optimal locations, but most original

points from the full factorial are split into two in the local D-optimal design. Even with its lack of splitting,

the e¢ ciency of the approximate design is above 95%. For comparison, the e¢ ciency of a full factorial design

is slightly over 65%.

5.5 Example 4

We now extend to an asymmetric 3 factor problem.

The model is still: logit(p) = �0 + �xx+ �yy+ �zz + �xyxy+ �xzxz+ �yzyz + �xyzxyz; but this time with

� = (1; 2; 3; 4; 5; 6; 0; 0)
0

Even though the model is quite complex, all the qualities shown before are fully preserved, and the approxi-

mate design achieved an e¢ ciency of 80% in comparison to the local optimal design. For contrast, the e¢ ciency

of a regular factorial design is only 1.5%.
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Figure 8a,b,c : Asymmetric 3 dimensions model with � = (1; 2; 3; 4; 5; 6; 0; 0)0
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Table 2: Asymmetric 3 dimensions model with � = (1; 2; 3; 4; 5; 6; 0; 0)

Optimal Design Approximate Design

x y z weight x y z weight

-1 1 -1 1/8 -1 -1 1 1/8

-0.91 -1 1 1/8 -1 1 -1 1/8

-0.75 -1 -1 1/16 -0.86 -1 -1 1/8

-0.73 1 1 1/8 -0.75 0.99 0.98 1/8

-0.63 -1 -1 1/16 -0.46 0.90 0.83 1/8

-0.50 1 1 1/8 0.92 -0.36 -0.19 1/8

1 -1 0.52 1/16 0.96 -1 0.68 1/8

1 -1 0.58 1/16 1 1 -1 1/8

1 -0.11 -0.30 1/16

1 -0.05 -0.24 1/16

1 0.91 -1 1/16

1 0.97 -1 1/16

5.6 Example 5

We continue with the same model, and a di¤erent choice of coe¢ cients, making it a bit messier: � =

(1; 2; 3; 4; 3; 1; 1; 1)
0
:

Again, while a regular factorial design has poor e¢ ciency (less than 15%) the approximate design reaches

very high e¢ ciency (over 90%) and the complexity of the model did not harm the qualities shown before:
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Figure 9a,b : Asymmetric 3 factor model with � = (1; 2; 3; 4; 3; 1; 1; 1)0
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5.7 Example 6

Last, we look at an extension of example 3. This time we include 6 variables, with all possible interactions.

Assume a value of 5 for all main e¤ect coe¢ cients, and a value of 0 for all interactions and the intercept.

This may represent an experiment to assess the e¤ectiveness as a function of di¤erent amplitude choices for

6 di¤erent frequencies, under the assumption that all frequencies are equally e¤ective, with the chance of the

system becoming unstable determined entirely by the sum of the amplitude values. Note that the experiment

is aimed at assessing 64 (!) coe¢ cient values. Figure 10 compares the approximate design to the local optimal

design, showing all possible two-dimensional projections.

Figure 10: Extension of example 3 into an experiment aimed at assessing 6 factors and 64 coe¢ cients

It is seen that once again the approximate design is visually similar to the optimal design. The approximate

design has the obvious advantage of being constructed in negligible time, compared to the highly intensive task

of �nding an optimal design when the regression matrix has 64 columns. The e¢ ciency of the approximate

design is only 55% this time. This value is lower than achieved in all previous examples, but is still relatively

high, especially considering the large number of coe¢ cients being estimated. The e¢ ciency of a regular factorial

design is 0.2%, meaning it requires more than 250 times as many observations to achieve the same D-criterion

value as the approximate design. Note that location-wise the di¤erences between the approximate and optimal

designs are almost negligible.
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6. DESIGNS BASED ON FRACTIONAL FACTORIALS

If the model includes only main e¤ects, then for normal response linear models it is su¢ cient to use a fractional

factorial design. Each resolution III fraction is as e¢ cient as the full factorial. For non-linear models this result

is not valid. Consider a 5 factor main e¤ects logistic model with � = (1; 2; 3; 4; 5; 6)0. The full factorial design

consists of 32 runs, which can be decomposed into four fractional factorial designs of resolution III with 8 runs

each. Figure 11 compares the e¢ ciency achieved by an approximate design based on the full factorial (70%,

designated as a line) to the e¢ ciency of approximate designs based on the four fractional factorials (77%, 58%,

56%, 72%), designated as bars.
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Figure 11: E¢ ciency of Approximate Designs based on a full factorial (line) and fractional factorials (bars)

The e¢ ciencies of the approximate designs based on the fractional factorials are di¤erent from each other

and from the full factorial based approximate design. Both best and worst e¢ ciencies are achieved for fractional

factorial based approximations. Often the best designs are based on the fraction with the smallest number of

points having probability of extreme value. In the last example the �rst fraction contains only 5 points that

have extreme probability, the last fraction has 6 such points, and in the middle two fractions, with the worst

e¢ ciency, all 8 points are with probabilities close to 0 or 1.

It is therefore advised, if resources permit, to compare the relative e¢ ciency of all possible approximate

designs based on fractional factorials, or at least those fractions with few points of extreme probability.

7. LIMITATIONS

Being a heuristic, the approximation algorithm may sometimes lead to ine¢ cient results. A severe example is

a 2 variable model with the coe¢ cients being � = (2; 2; 2;�4)0, as plotted in Figure 12.
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Figure 12: An ine¢ cient approximation

In this example the strong interaction creates a very �at response in the north-east part of the plot, beginning

to e¤ectively decrease near the boundary of the design region. The result is a signi�cant distance between the

optimal design point [1; 1] and its approximation parallel, which decreases the e¢ ciency to less than 50%.

The method proposed is of limited suitability to models of second or higher order. When several design

points for a normal response model are located in an extreme probability region and are close enough to each

other to be united in the approximate design, the approximation may not only be ine¢ cient, but even insu¢ cient

for the estimation of all required coe¢ cients.

8. CONCLUSION

Multivariate local D-optimal designs for logistic models with main e¤ects and interactions can be approximated

without the need for intensive computation. Extensions would be to e¢ cient approximate designs that take

account of the uncertainty in the coe¢ cient values, to other design criteria such as I-optimality, and to higher

order models.
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