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Abstract: We consider the problem of experimental design when the response is modeled

by a generalized linear model (GLM) and the experimental plan can be determined sequen-

tially. Most prior research on this problem has been limited to the case of one-factor, binary

response experiments, which are encountered in dose-response studies and sensitivity testing.

We suggest a new procedure for the sequential choice of observations that improves on existing

methods in four important ways: (1) it can be applied to multi-factor experiments and is not

limited to the one-factor setting; (2) it can be used with any GLM, not just binary responses;

(3) both fully sequential and group sequential settings are treated; and (4) the experimenter is

not constrained to specify a single model and can use the prior to re�ect uncertainty as to the

link function and the form of the linear predictor. Our procedure is based on a D-optimality

criterion, and on a Bayesian analysis that exploits a discretization of the parameter space to ef-

�ciently represent the posterior distribution. In the one-factor setting, a simulation study shows

that our method is superior in e¢ ciency to commonly used procedures, such as the"Bruceton"

test (Dixon and Mood, 1948), the Langlie (1965) test or Neyer�s (1994) procedure. We also

present a comparison of results obtained with the new algorithm versus the "Bruceton" method

on an actual sensitivity test conducted recently at an industrial plant.
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1. INTRODUCTION

E¢ cient experimental designs for generalized linear models (GLM�s) depend on the unknown

coe¢ cients, so two experiments having the same model but di¤erent coe¢ cient values will

typically require di¤erent designs. Recently, Dror and Steinberg (in press) suggested a method

to construct robust D-optimal experimental designs for generalized linear models, which is

based on clustering local D-optimal designs.

This paper extends our ideas to sequential designs. These can be fully sequential plans, in

which the experimental plan is revised after each observation; or, they can be group sequential

in which the experimental plan is revised after each batch of k observations. As in Dror and

Steinberg (in press) we consider models with multivariate explanatory variables and allow the

prior distribution to describe uncertainty over possible coe¢ cient values, and also ambiguity

of the proper linear predictor - enabling the design to assist in determining the necessity of

certain interactions, or between higher and lower order models.

We limit our discussion to parametric models and to the estimation of a set of coe¢ cients

through a D-optimality criterion. Note that for multivariate models common optimality criteria

that are limited to the estimation of a single percentile (see, for example Wu, 1985) are of lesser

relevance, as usually there does not exist a single point, and sometimes not even a continuous

surface, where the probability of response is �xed.

Source code for the algorithms and examples throughout this paper is available at

http://www.math.tau.ac.il/~dms/GLM_Design.

2. PRIOR WORK AND ITS LIMITATIONS

Most work on sequential design for generalized linear models has focused on the rather simple

case of fully sequential designs for a one-factor experiment with a binary response, also known

as "sensitivity tests" or "dose-response" studies. Typical applications are experiments aimed

at learning about the sensitivity of a new explosive, as a function of the strength of a shock
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(possibly tested through dropping explosives from di¤erent heights); or, the toxicity of a drug

administered at di¤erent doses.

A common example for a univariate model with a binary response is a logistic function,

such that the expected response given a dose level x is p (x;�; �) = 1= [1 + exp f�� (x� �)g] ;

with (�; �) unknowns. Chaloner and Larntz (1989) used an example of this nature where the

uncertainty over the coe¢ cient values was described by a uniform distribution. We use a small

variation of their example where � � U [�1; 1] and � � U [6; 18]. Figure 1 presents the expected

response p (x;�; �) as a function of x for a sample of possible (�; �) values from the speci�ed

prior.
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Figure 1: A sample of possible logistic probability curves

in an example based on Chaloner and Larntz (1989).

Most existing design algorithms for GLM�s are based on a guess of the parameter values.

In the given example the centroid of the parameter space, � = 0; � = 12, is a good starting

point. The most commonly used procedure for sensitivity tests is the "Bruceton" up and down

method (Dixon and Mood, 1948). This algorithm uses a guess of the mean �; and a step size

based on a guess for the dispersion � = 1=� (to be exact, the Bruceton method is de�ned for

a probit model, and the step size should be chosen accordingly). A successor to the Bruceton

method was suggested by Langlie (1965) and is based on estimates of lower and upper limits

for �: These procedures may give reasonable results when the estimates are good, but in the
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common case where the prior estimates su¤er from non-negligible uncertainty, they waste a lot

of experimental e¤ort. Furthermore, assuming we would like to estimate both parameters, it

seems inviting to base the design on the D-optimality criterion, which minimizes the con�dence

ellipsoid for the unknowns.

Abdelbasit and Plackett (1983) discussed sequential designs for one-factor models with

a binary response and suggested beginning the sequential design by observing a full local D-

optimal design for the centroid (in the example above the local D-optimal design for the centroid

places equal weight on two points: x = �0:13), so that both unknown parameters can be

estimated from the data; after completing two observations they advised repeating the process

with the new, data-based, estimates.

The method of Abdelbasit and Plackett (1983) has several disadvantages. Assume, for

example, that we have performed the �rst observation at x = 0:13, and that we observed a

"no response". Although it is true that one observation is not su¢ cient to compute maximum

likelihood estimates (MLE) from the data alone (one observation and two parameters), the

experimenter should be aware that even a single observation may contribute much information,

which can be usefully re�ected by an immediate change in the experimental plan. A large

portion of the parameter space can be "ruled out" by this single observation, as many of the

prior models have an expected response that is very close to 1 at x = 0:13. The dashed lines

in Figure 2 represent such models, from the sample of models presented in Figure 1. Clearly,

using the second half of the local D-optimal design, x = �0:13, as suggested by Abdelbasit and

Plackett (1983), cannot be a very e¢ cient choice.
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Figure 2: After a single observation of "no response" at x = 0:13 we may already have

substantial information reducing the parameter space. Dashed lines represent models

from the sample presented in Figure 1 that are now unlikely to be the true model.

In multivariate designs there are more parameters to be estimated, and therefore a larger

delay from the beginning of data accumulation to achieving data-based maximum likelihood

estimates and putting the information obtained into use. If, for example, we would have a

�rst-order model with 3 explanatory variables and their interactions, we would need at least 8

observations before we start using the information gathered to improve the sequential design.

Furthermore, even after completing a set of observations that is equal in size to the number

of unknown parameters, we might still not be able to compute a maximum likelihood estimate.

This would be the case, for example, in the single factor experiment, if we got a non-response

at x = �0:13, too. Note that given a non-response at x = 0:13 and our prior distribution,

a non-response at x = �0:13 is very likely. Therefore, the delay between obtaining relevant

information and using it to improve the design may be even longer than described before.

Even when we can compute maximum likelihood estimates, they may su¤er from severe

bias due to the small sample. This is especially true when applying regression techniques

to generalized linear models with small samples - the estimates are often highly inaccurate.

The result will be the usage of an ine¢ cient experimental plan following a local D-optimal
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experimental design for the biased parameter vector.

Neyer (1994) addressed these issues, suggesting a D-optimality based sensitivity test. He

suggested a three part procedure, in which the �rst part is designed to "close in" on the region

of interest, the second is devoted to determining unique estimates of the parameters, and only

then, in its third and �nal part, the method uses a local D-optimal design based on the maximum

likelihood estimate for the parameters. Handling cases where the MLE�s are "wild" estimates

is done by restricting the values of the parameters at each step. The scheme of Neyer�s (1994)

procedure, then, is to minimize the time until we can get good estimates from the data, and

then use a local D-optimal design.

It seems there is potential to better utilize the information and increase the e¢ ciency by

using a D-optimality criterion beginning from the �rst observation. More important, a method

is needed that does not have the restrictions of sensitivity tests and that extends the function-

ality of the procedure from univariate cases to the treatment of multiple predictors, from the

fully sequential design to any partition of the experiment to batches of size k observations, and

from a binary response to any generalized linear model.

3. METHODOLOGY

We separate our method into two parts. The �rst concerns utilizing the experimental infor-

mation gathered, for which Bayesian tools are applied. The second concerns the process of

choosing the next observation given the current knowledge.

3.1 Parameter Space Discretization

Using a posterior distribution would enable a researcher to update the plan after each observa-

tion, and avoid highly biased estimates at early stages. However, updating a prior on the basis

of a smaller number of observations than the number of estimated parameters is a di¢ cult task,

and the resulting posterior will typically have a complex form. To overcome this di¢ culty we

suggest a Bayesian approximation that exploits a discretization of the parameter space. Figure

3 helps motivate the idea, using the example discussed earlier. The left part of the �gure is

a discrete candidate set that represents the parameter space. For each vector from this set,

(�i; �i), we can calculate the likelihood given a non-response observation at x = 0:13. The
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right part of the �gure illustrates our posterior knowledge, by presenting only the vectors with

likelihood value above a predetermined threshold (in the speci�c case, vectors with likelihood

of no response at x = 0:13 greater than 0.05).
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Figure 3: Discrete approximation to the posterior information, for the one-factor logistic model,

following a "no response" at x = 0:13:

A useful representation of the posterior is easily obtained by methods similar to those used

for the production of Figure 3. We �rst represent the prior distribution by a large sample of

discrete vectors (sayN = 10; 000) based on a random or quasi-random sample (such as Niederre-

iter, 1988) from the same distribution, and compute for each of these vectors the likelihood of the

results recorded: for a parameter vector (�i; �i) and observations y1; : : : ; yk taken at x1; : : : ; xk

the likelihood is L (�i; �i; y1 (x1) ; : : : ; yk (xk)) =
kQ
j=1

exp(�i(xj��i)yj)
1+exp(�i(xj��i))

for a logit link. Although

we use the logit link throughout this example, the method is suitable for any other link func-

tion. For the common case of the probit link, the likelihood is L (�i; �i; y1 (x1) ; : : : ; yk (xk)) =
kQ
j=1

� (�i (xj � �i))
yj (1� � (�i (xj � �i)))

1�yj . Furthermore, we would like our method to be

suitable for multivariate cases, and indeed the discrete parametrization is not limited to a spe-

ci�c number of coe¢ cients or explanatory variables; in the general case where �i; i = 1; : : : ; N

are vectors of any dimension representing a prior distribution for a coe¢ cient vector �; and as-

suming observations y1; : : : ; yk, taken at x1; : : : ;xk (with xj of any dimension) we can calculate
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the likelihood L (�i; y1 (x1) ; : : : ; yk (xk)) : Now, denoting the prior distribution by � (�), the

posterior distribution is given by f (�jy1 (x1) ; : : : ; yk (xk)) / L (�; y1 (x1) ; : : : ; yk (xk))� (�).

Rather than computing the posterior, we characterize it in terms of weighted summaries of the

prior, using the initial sample to represent the prior and the normalized likelihood as a weight

function,

wi = L (�i; y1 (x1) ; : : : ; yk (xk)) =
NP
i=1

L (�i; y1 (x1) ; : : : ; yk (xk)). Our representation is reminis-

cent of importance sampling, in that we simulate the discrete points from the prior, and then

weight by the ratio of the posterior to the prior, that is, by the likelihood.

3.2 Choosing a Location for the Next Observation

Ideally, we might consider a weighted D-optimality criterion for choosing each successive point,

maxE flog jM (�)jg where M (�) is the information matrix for �, the expectation is taken

with respect to the current posterior distribution of �, and the maximum is over possible

locations for the next design point. The criterion is the same one used for non-sequential

designs by, for example, Chaloner and Larntz (1989), Woods, Lewis, Eccleston and Russell

(2006) and Dror in Steinberg (in press). We could proceed by computing an approximate version

of the expectation using the prior and the weights, E flog jM (�)jg �
PN

i=1wi log jM (�i)j. For

instance, consider the sensitivity test example discussed earlier, with a design region x 2 [�1; 1]

and k observations, y1 (x1) ; : : : ; yk (xk). The global optimization problem for choosing the next

point is then

xk+1 = argmax
z2[�1;1]

NX
i=1

wi log jM (�i; �i; x1; : : : ; xk; z)j : (1)

whereM (�i; �i; x1; : : : ; xk; z) = F
TWF , F T =

264 1 : : : 1 1

x1 : : : xk z

375, W is a diagonal matrix

withWm;m =
exp(�i(xm��i))

(1+exp(�i(xm��i)))2
for them-th diagonal element, and wi are the weights calculated

as described before:

The global optimization for �nding xk+1 is theoretically attractive but di¢ cult to implement.

Solving the global optimization problem for any speci�c coe¢ cient vector �i is a non-trivial

problem, and global optimization over the weighted sum of a large set of such determinants is

highly complex. Simulated annealing or other heuristics can be used to search for a promising
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xk+1 candidate. But, it is common practice to be satis�ed with optimization of the information

matrix attributed to one promising coe¢ cient vector. In fact, all the methods discussed before,

including those of Abdelbasit and Plackett (1983) and Neyer (1994), utilize one guess or estimate

of the parameters at each step, which simpli�es the optimization above into:

xk+1 = argmax
z2[�1;1]

log
���M �

�̂; �̂; x1; : : : ; xk; z
���� : (2)

Using our discrete representation of the posterior distribution, a natural choice for a single

parameter vector is the weighted median taken for each of the parameters (that is the value

for each parameter, say �̂ for �, where half the weight belongs to values smaller than or equal

to �̂ and half to larger values; if �i; i = 1; : : : ; N are the N discrete possible � values in

our sample, and if wi is the weight attributed to �i then the weighted median for � is found

by sorting (�i; wi) in ascending �i order and choosing �̂ = �(k) such that
Pk

i=1w(i) � 1
2
andPN

i=k w(i) � 1
2
).

Returning to the multivariate case, a solution to this simpli�ed optimization problem,

xk+1 = argmax
z2[�1;1]p

log
���M �

�̂;x1; : : : ;xk; z
���� : (3)

is given in Dror and Steinberg (in press) who describe an algorithm for the construction of

local D-optimal designs. The algorithm is based on performing an exchange algorithm on

a transformed regression matrix, ~F = FW 1=2. This algorithm is suitable to construct and

augment local D-optimal designs for models of high dimension with any GLM response, and is

not limited to the univariate case or to a binary response. Source code for implementation of

the algorithm is available at http://www.math.tau.ac.il/~dms/GLM_Design.

The idea of using a single "best estimate" parameter vector is reasonable since, asymptoti-

cally, as the best guess becomes precise, the global search and the local D-optimal design for the

best guess become one. This method is simple and quite e¢ cient, yet a few re�nements can make

it even more e¢ cient with an emphasis on the initial experimental phase, when the parameter

estimates may still be poor. Often, the solution to the local D-optimal augmentation (3) is not

unique; there may be a few location alternatives for the next observation that are equivalent in

terms of their increment to the determinant of the information matrix for the given parameter

estimates. It can than be useful to revert to the full weighted sum criterion to break the tie.
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That is, rank all points z that maximize (3) ; in terms of
PN

i=1wi log jM (�i;x1; : : : ;xk; z)j, so

that if z1; z2 are two candidates points which are both local D-optimal augmentations for �̂;

xk+1 = argmax
z2z1;z2

NX
i=1

wi log jM (�i;x1; : : : ;xk; z)j : (4)

This idea may be used even if the one-point D-optimal augmentation of the design is unique.

In a sensitivity test, consider a two point augmentation for
�
�̂; �̂

�
; symbolized as (xL1; xL2) :

Even if using xL1 is superior to xL2 for the local parameter vector
�
�̂; �̂

�
, the di¤erence in

their donation may not be large, and xL2 may be a good candidate that will be discovered the

preferred choice after evaluating it in relation to the overall posterior distribution.

This raises the question how far forward we should augment to create di¤erent candidates

for the �nal comparison. In sensitivity experiments, a local D-optimal design consists of 2

support points (see, for example, Abdelbasit and Plackett, 1983); a three point augmentation

usually places the third point as a repetition of one of the �rst two points, or very close to it.

It therefore seems su¢ cient to use a 2-point augmentation. For the multivariate case one cycle

length of a local D-optimal design is advised, as discussed later.

In the initial stages of the experiment the prior may be widely spread and we often �nd

that neither of the local D-optimal points for �̂ are very good at optimizing (1). In those cases

the median of fxL1; xL2g is more appropriate, assisting in "slicing" the parameter space in a

manner similar to a binary search. This way, in the example discussed in the previous section,

the �rst observation will be placed correctly in the center of the design region, x = 0, as should

be foreseen given the ambiguity about the parameters, and not at one of the local D-optimal

points, x = �0:13.

Summing up the ideas, we begin by �nding a one cycle length local D-optimal augmentation

for �̂ denoted as fxL1; : : : ;xLmg using the algorithm suggested in Dror and Steinberg (in press);

and then choose xk+1 through a comparison of the candidate points fxL1; : : : ;xLm;median (xL1; : : : ;xLm)g,

evaluated over the full posterior represented by the weighted prior sample:

xk+1 = argmax
z2fxL1;:::;xLm;median(xL1;:::;xLm)g

NX
i=1

wi log jM (�i;x1; : : : ;xk; z)j : (5)

As noted earlier, the parameter vector �̂ is the weighted median over a sample from the
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prior distribution of the parameters.

3.3 Multivariate Models

Multivariate models are of great importance as often there is more than one factor a¤ecting

the expected response. In explosives sensitivity tests, for example, it could be that the height

of drop, the ambient temperature and the angle of impact all a¤ect the detonation probability.

In pharmacological experiments, one might want to test a mix of doses from more than one

substance or drug. Unlike the Bruceton (Dixon andMood, 1948), Langlie (1965) or Neyer (1994)

procedures, which treat only sequential designs for models with one explanatory variable, our

suggested method can be applied "as is" to multivariate models.

One point worth expanding on is the choice of horizon the experimenter should augment

forward to create candidate points for comparison. It was noted before that we advise a horizon

that is one cycle length of a local D-optimal design; but, a good size for a (pre-planned) local

D-optimal design is not trivial (see Dror and Steinberg, in press). To choose a cycle length

we suggest comparing the relative e¢ ciency (normalized to the number of points) of local D-

optimal designs with di¤erent size, all created for the centroid of the prior distribution using

the algorithm described in Dror and Steinberg (in press). Observing the di¤erent e¢ ciencies

can give good directions of a suitable choice.

As an example we use a crystallography experiment, based on Woods et al. (2006), in which

four explanatory variables (rate of agitation during mixing, volume of composition, temperature

and evaporation rate) a¤ect the probability that a new product is formed. The factors have

been coded so that the design space is [�1; 1]4. As in Dror and Steinberg (in press) we focus

on the prior distribution in Table 1, with all coe¢ cients mutually independent and uniformly

distributed (parameter space B3 in Table 1 of the original paper Woods et al., 2006).
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Table 1: Coe¢ cient ranges from Woods et al. (2006) crystallography experiment.

Parameter Range

�0 [�3; 3]

�1 [4; 10]

�2 [5; 11]

�3 [�6; 0]

�4 [�2:5; 3:5]

We choose one candidate parameter vector, say � = (0; 7; 8;�3; 0:5)0, construct local D-

optimal designs for experiments of length n = 5; :::; 24; normalize their determinant according

to the experimental size, and plot their relative D-e¢ ciency. Figure 4 was created this way.

It is clear from the �gure that an augmentation of 8 points forward is a good choice, since a

local D-optimal design with 8 points is as e¢ cient as larger designs (in terms of information

contributed per experimental point).
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Figure 4: Choosing a cycle-length for the crystallography experiment.
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3.4 Group Sequential Designs

Between the two extremes of �xing the entire experiment in advance, regardless of the obser-

vations accumulated, and the fully sequential approach in which we update the plan after each

observation, there is the possibility of a group sequential design. The term group sequential

refers to cases where we obtain data in groups of k > 1 observations (with k = 1 being the

fully sequential case). An example is a situation where we can update the experimental plan

from day to day, but must plan the k observations for each day in advance. Another example

is when we put a batch of experimental units together in an oven, so the speci�cations for each

member of the batch must be pre-determined.

In Dror and Steinberg (in press), we suggested using K-means clustering in order to create

a robust one-stage (predetermined) design for generalized linear models. We now extend the

ideas of that article in a way that makes e¢ cient group sequential designs possible. Previously,

for fully sequential designs, we chose one representative parameter vector from the prior distrib-

ution, using a weighted median, with weights re�ecting the results thus far. A simple extension

is to choose k vectors using a weighted K-means procedure. That is, we perform a K-means

procedure on the discrete sample representing the prior distribution, using a weighted distance

measure when calculating the centroids, with weights that are determined by the likelihoods.

Similarly, we can choose a sub-sample from the discrete sample, with points selected using

probabilities proportional to their weights, and then use a regular K-means procedure on this

sample.

After performing clustering we have k parameter vectors. Following the ideas of the former

sections, we �nd one cycle length D-optimal augmentation for each of them, and so get a

candidate set of locations from all these designs and their medians. If each local D-optimal

augmentation consists of m points, then we have (m+ 1) k candidate points for the choice of

the next k observations. To choose the best k locations out of the (m+ 1) k candidates we can

mimic an exchange algorithm procedure: choose k candidates at random, and try to improve

the weighted sum of the log determinants of the information matrices by exchanging the initial

points with alternatives from the larger (m+ 1) k set. The exchange algorithm for a single

information matrix has the bene�t of a simple updating formula. No such formula is available

for our criterion, based on the weighted sum of log determinants. However, given our relatively
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small set of candidate design points, direct computation can be used to assess exchanges. The

computational burden can be reduced further by a simpli�cation - limiting the candidate set

for each row only to the (m+ 1) candidates produced by the same local D-optimal design (for

one of the K-means clustering centroids).

3.5 Non-Binary Responses

We �nd it important to emphasize that our proposed method can be applied "as is" to models

with any response that �ts a generalized linear model, and is not limited to a binary response.

This includes, of course, the common case of Poisson count models.

3.6 Robustness

Often prior to the experiment the researcher faces uncertainty not only over the possible co-

e¢ cient values for a speci�c parametric model, but also over the model itself. There could be

di¤erent alternative for the link function. There might be several possible linear predictors,

expressing indecision as to whether the true model is of �rst or second order, or whether it

should include certain interactions. Woods et al. (2006) and Dror and Steinberg (in press)

confronted these issues for one-stage designs. Yet, for sequential designs current procedures

require the experimenter to choose one model in advance.

Our proposed method can take into account di¤erent possibilities with only minor modi�-

cations. First, create a discrete representation of a prior for each of the possible models. The

numbers of points in each prior should be in proportion to the a-priori weight given to the as-

sumption that this is the right model. Next, calculate likelihoods for all the parameter vectors

in all the models, and choose the next observation (or group of observations), as described pre-

viously, for each model separately. The result is a group of candidates, and one can once again

use an exchange-algorithm mimic to choose the next observation (or group of k observations)

so as to maximize the weighted sum of log determinants for the information matrices - over the

full prior (including the di¤erent models).
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4. EXAMPLES

We demonstrate the advantages of the new algorithm through a series of examples. First, we

demonstrate better e¢ ciency achieved in sensitivity tests, with comparative results from an

actual sensitivity test conducted recently at an industrial plant, followed by a comprehensive

comparison of techniques via a Monte-Carlo simulation. Then, for capabilities which extend

beyond the limits of the currently available algorithms, we compare results between one-stage

algorithms, as presented in Dror and Steinberg (in press) and the new method. Examples

include the crystallography experiment introduced earlier, for both fully sequential and group

sequential applications, and a Poisson count model with robustness to the choice of di¤erent

linear predictors.

4.1 Industrial Plant Experimentation

We depict a sensitivity experiment that took place in June 2006, at a military industrial plant.

It was performed twice: �rst following a standard format in use at the plant, which is based

on the "Bruceton" method of Dixon and Mood (1948); then, using our new algorithm. The

experiment�s objectives were to estimate the sensitivity curve in general, and in particular

to verify a manufacturer�s statement that the explosives will not detonate at 12V (being a

safe voltage), and will detonate ("all �re") at 25V. Quantitatively, the requirement was to

show, using probit regression, that the probability of detonation at 12V is under 5% and the

probability of detonation at 25V is above 95% (that is - the 95% probit con�dence interval for

the expected response should be below 5% at 12V and over 95% at 25V).

The experimenters began with limited prior knowledge. They could not say what voltage

would provoke a response from half the observations (the mean of the response curve), or even

if this value is within the speci�ed range of 12-25V; not much was known about the dispersion

as well, with the possibility of a very slow increase from the "no-�re" to "all-�re" zone, to a

very steep curve.

Together with the plant engineers, we formulated the following prior distribution, which

re�ects this (lack of) information. The prior takes (x� �) =� as the parametrization and a

log-normal distribution for both the mean and dispersion, with � �lognormal(log (17) ; 0:52)

and � �lognormal(log (0:7) ; 12). Figure 5 presents a sample of 150 curves given possible values
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for (�; �) sampled from the prior distribution.

Figure 5: Sensitivity experiment - a sample of possible curves from the prior distribution.

It is seen that there are both very steep curves (with a small fraction of a volt separating

the "no-�re" to "all-�re" zone) and very �at curves o¤ering the possibility that there is a non-

negligible chance of detonation at 12V AND of no-detonation at 25V. The industrial plant�s

procedure began with a "screening" phase following the "Bruceton" procedure with a rather

large step size of 1V. After 9 observations, when the experimenters felt they knew the right

region, they began a new "Bruceton" procedure with a smaller step size of 0.25V; this second

"Bruceton" continued for 31 trials, so a total of 40 runs were performed. For the new algorithm

20 trials were allocated. The locations at which the observations were taken by each method,

and their outcomes are presented in Figure 6.

16



12 14 16 18 20 22 24
0

10

20

30

40

Voltage

O
bs

er
va

tio
n 

N
um

be
r

Improved Bruceton

12 14 16 18 20 22 24
0

10

20

30

40

Voltage

O
bs

er
va

tio
n 

N
um

be
r

New Algorithm

no-response
response

Figure 6: Sensitivity experiment - record of observations�location and outcome.

Figure 7 compares the analysis of outcomes of both methods after 20 trials. The curves

in the �gure represent the 95% con�dence intervals for the expected response as a function of

voltage value, as produced by a "probit" regression.
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Figure 7: Comparison of methods after 20 observations.

It is seen that the con�dence intervals are much smaller for the new method. In fact, the
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new method has already reached the objective after 20 observations, while the "Bruceton"

plan is far from it (not reaching the objective at either 12V or 25V). In total there were 40

observations using the "Bruceton" method. Figure 8 is similar to Figure 7, after completing all

40 observations (versus the outcome of the 20 observation for the new algorithm).
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Figure 8: Comparison of methods.

Bruceton after 40 observations vs. the new method with 20 observations.

Even in the extreme comparison where the Bruceton method bene�ts from twice as many

observations (40) as the new method (20), the latter succeeds to provide better results. Ob-

serve the strip where the probit 95% con�dence interval is above 0.05 and below 0.95 for the

probability of detonation; the Bruceton method yields a strip of 15V-23.5V, compared to the

narrower strip yielded by the new algorithm: 15V-22.5V.

4.2 Monte-Carlo based comparison

A more comprehensive comparison between the two methods is available through Monte-Carlo

experimentation. We compare the Bruceton method (Dixon and Mood, 1948), Neyer�s (1994)
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procedure and our proposed algorithm.

We conducted the comparison for various possible "true" models for a sensitivity test similar

to the one performed in practice. For each "true model" we carried out 100 repetitions of

an experiment with each method. In each repetition the location for each observation was

determined according to the algorithm�s rules and the outcome of the observation was generated

at random according to the "true" model. Figure 9 presents the di¤erent "true" models that

were used for the comparison. The �gure shows that we consider cases with both true mean

smaller than 12V or higher than 25V, very steep curves and very �at curves. The bold curve

emphasizes the case where the center of the prior distribution discussed above (or the "best

guess" for the parameter values) is in fact the true model.

Figure 9: "True" models for the Monte-Carlo comparison of techniques

(bold curve represents the case where the best guess is in fact the true model).

Each of the methods requires a slightly di¤erent input from the user. For our method a

prior distribution is needed. This allows the experimenter to balance between cases where he

feels he has a good guess of the parameters prior to the experiment, and therefore would like
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to have high e¢ ciency when his guess will be reinforced by the data, versus cases in which

his best guess is of low �delity so robustness to true parameter values that are far from the

initial estimate is required. We will assume the latter, and use the same prior as before:

� �lognormal(log (17) ; 0:52) and � �lognormal(log (0:7) ; 12).

The Bruceton method (Dixon and Mood, 1948) requires an initial guess for � and a step

size, based on a probit model guess for �. We will use the center of our prior distribution as

the guess, so �̂ = 17, and the chosen step size is 1.28V, after adjusting the di¤erence of � for

the logit and probit models. Neyer�s (1994) algorithm requires guesses for a lower and upper

bound for the mean, which we will assume �min = 12; �max = 25; and a guess of the standard

deviation, for which we will use the center of the prior distribution �̂ = 0:7.

We have conducted experiments of length 16 and 48 observations. Table 2 presents the

median D-e¢ ciency (out of 100 repetitions for each true parameter vector and each method),

and Table 3 presents the 5% quantile of the D-e¢ ciencies for the same cases.

Table 2: Median D-E¢ ciency for di¤erent techniques.

16 observations 48 observations

Case # True � True � Bruceton Neyer New Bruceton Neyer New

1 17 0.07 0.002 0.40 0.31 0.002 0.74 0.63

2 35 0.07 0.0005 0.11 0.22 0.002 0.32 0.45

3 20 0.14 0.18 0.59 0.48 0.19 0.78 0.76

4 5 0.35 0.37 0.58 0.59 0.70 0.82 0.77

5 17 0.35 0.67 0.77 0.69 0.67 0.86 0.84

6 17 0.7 0.85 0.80 0.77 0.86 0.88 0.88

7 25 0.7 0.64 0.69 0.74 0.79 0.84 0.85

8 14 1.4 0.77 0.74 0.83 0.79 0.86 0.89

9 35 1.4 0.25 0.61 0.67 0.64 0.83 0.85

10 17 3.5 0.41 0.61 0.72 0.50 0.86 0.88

11 20 3.5 0.43 0.49 0.68 0.54 0.86 0.86

12 9 7 0.31 0.51 0.59 0.42 0.86 0.85

13 25 7 0.33 0.44 0.57 0.43 0.85 0.83
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Table 3: 5% quantile of D-E¢ ciencies for di¤erent techniques.

16 observations 48 observations

Case # True � True � Bruceton Neyer New Bruceton Neyer New

1 17 0.07 0.002 0.37 0.25 0.002 0.65 0.50

2 35 0.07 0.0001 0.11 0.18 0.002 0.28 0.41

3 20 0.14 0.15 0.47 0.36 0.18 0.63 0.56

4 5 0.35 0.28 0.45 0.45 0.64 0.71 0.64

5 17 0.35 0.63 0.61 0.48 0.65 0.69 0.66

6 17 0.7 0.76 0.67 0.61 0.83 0.76 0.76

7 25 0.7 0.51 0.55 0.57 0.74 0.67 0.72

8 14 1.4 0.57 0.62 0.60 0.69 0.64 0.73

9 35 1.4 0.14 0.51 0.51 0.57 0.62 0.72

10 17 3.5 0.30 0.27 0.36 0.40 0.54 0.63

11 20 3.5 0.27 0.25 0.41 0.40 0.49 0.71

12 9 7 0.15 0.16 0.23 0.30 0.51 0.61

13 25 7 0.16 0.15 0.25 0.30 0.39 0.60

Figure 10 o¤ers a graphical representation of the results in Table 2, comparing the median

D-e¢ ciencies for the three techniques in experiments with 16 observations. The lower part of

Figure 10 shows the values of the true parameters, in the same order as in Table 2; case number

1, for example, is the parameter vector in the �rst row: (�; �) = (17; 0:07) and case number

6 is the best guess, or center of the prior distribution, with (�; �) = (17; 0:7) : The upper part

is the median D-e¢ ciencies. For example, it is seen that in case number 10, (�; �) = (17; 3:5),

the median D-e¢ ciencies are 0.41, 0.61,0.72 for the Bruceton, Neyer and the new algorithm,

respectively.
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Figure 10: Comparison of median D-e¢ ciencies for 16-run sensitivity experiments.

It is clear from Tables 2,3 and Figure 10 that the Bruceton method (Dixon and Mood,

1948) is inferior in its e¢ ciency to the other techniques. When compared to Neyer�s (1994)

procedure, our proposed algorithm handles better the uncertainty as described by the prior

distribution: D-e¢ ciencies for Neyer�s (1994) algorithm are roughly equal to or slightly better

than the new algorithm for cases where the true � is smaller than its guess (or at the center

of the prior distribution), but the proposed algorithm is signi�cantly superior for the cases

where the true � is larger than its best guess. Choosing a di¤erent prior with a larger emphasis

on smaller values of � (for example by deliberately choosing a biased prior distribution for �

such as � �lognormal
�
log
�
0:7
2

�
; 12
�
) allows the proposed algorithm to be generally superior to

Neyer�s (1994) algorithm for both large and small true � values, but is less desirable as it does

not exploit the e¢ ciency for large true � values to its maximum potential.

The comparison so far assumed vague knowledge of the parameters as expressed by the prior
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distribution. If we assume that higher �delity prior information is available, say reducing the

variance value in the prior so that � �lognormal(log (17) ; 0:22) and � �lognormal(log (0:7) ; 0:752) ;

then the e¢ ciency of the design is increased. Note that this prior still has non-negligible mass

for � below 12 and above 25 and also allows various � values. As can be seen in Table 4, for

the typical case when it is possible to supply reasonable estimates for the parameters, so the

prior is not completely vague, the proposed algorithm is even more e¢ cient when compared

to Neyer�s (1994) algorithm, and all the more so if compared to older test methods such as

Bruceton (Dixon and Mood 1948).

Table 4: Median D-E¢ ciency for di¤erent techniques - adding a narrow prior.

New Algorithm

observations True � True � Bruceton Neyer Wide Prior Narrow Prior

18 0.37 0.72 0.76 0.77 0.83

16 17 0.7 0.85 0.80 0.75 0.83

3 1.75 0.71 0.71 0.76 0.71

18 0.37 0.74 0.86 0.87 0.89

48 17 0.7 0.86 0.89 0.88 0.91

3 1.75 0.74 0.86 0.89 0.85

4.3 Multivariate models

Better e¢ ciency is only one of our algorithm�s advantages, perhaps not even the key bene�t.

The following examples demonstrate how our algorithm extends functionality to multivariate

models, group sequential designs and to any generalized linear model.

Lacking alternative sequential algorithms for multivariate models we cannot provide a com-

parison of performance the way we did with univariate sensitivity tests. Dror and Steinberg (in

press) suggested a robust one-stage experiment for the crystallography experiment described

earlier. They evaluated the design versus a sample of 10,000 vectors from the prior, calculating

the local D-e¢ ciency of the design versus each of them, reporting the median and minimum

local D-e¢ ciency. We applied the sequential algorithm on the same prior, using a Monte-Carlo

evaluation as before, with a small modi�cation; each of the 10,000 iterations was performed
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with a di¤erent true coe¢ cient value, sampled randomly from the prior in Table 1. This allows

a legitimate comparison of the median local D-e¢ ciency achieved through the robust one-stage

design and the proposed sequential design. Table 5 displays the comparison

Table 5: D-E¢ ciency comparison of robust one-stage design

versus the proposed multivariate sequential procedure.

16 observations 48 observations

One stage Sequential One stage Sequential

Median D-E¢ ciency 0.42 0.64 0.42 0.83

5% quantile D-E¢ ciency 0.26* 0.46 0.31* 0.73

Minimum D-E¢ ciency 0.10 0.24 0.18 0.56

(*) 5% quantile for this case was estimated by a single robust design,

which has above average median and minimum e¢ ciency

As expected, performing the experiment sequentially considerably improves the e¢ ciency.

Note that the 5% quantile D-E¢ ciency for the sequential design is better than the median

D-E¢ ciency for robust one-stage designs.

4.4 Group Sequential Designs

We continue with the crystallography example, and present in Table 6 the addition of a group

sequential design, with each group including 16 observations.

Table 6: D-E¢ ciencies for the Group Sequential

procedure versus one stage and fully sequential.

16 observations 48 observations

One stage Group Sequential Sequential One Stage Group Sequential Sequential

Median D-E¢ ciency 0.42 0.42 0.64 0.42 0.73 0.83

5% quantile D-E¢ ciency 0.26* 0.26 0.46 0.31* 0.62 0.73

Minimum D-E¢ ciency 0.10 0.24 0.18 0.56
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We see that even for a large group of 16 observations, so that the 48 observations are

conducted in only 3 stages, the group sequential procedure�s D-E¢ ciency is closer to the fully

sequential results than to the one-stage robust design�s e¢ ciency.

For the 16-observation experiment, the group sequential design is in fact a one-stage design.

It is desired that the proposed sequential procedure would provide an e¢ ciency as close as

possible to a one-stage design if all the experiment is grouped together into a single batch.

Indeed, Table 6 shows that our group sequential algorithm succeeded to reproduce the one-

stage results obtained in Dror and Steinberg (in press).

4.5 Non-Binary Responses and Robustness

As a concluding example we will use a model with a Poisson count as response, 5 explanatory

variables, and two competing linear predictors - one with interactions and the other a standard

�rst-order model. This could represent, for example, a clinical trial where the response is the

bacterial count a speci�ed time after treatment, and the explanatory variables are doses from 5

types of drugs. We will use as a baseline an equivalent problem concerned with wave soldering

defects, as discussed and analyzed, for a one-stage design, in Dror and Steinberg (in press).

The prior, which includes two possible models (with and without interactions) is displayed in

Table 7, with the assumption of independent normal distributions for the parameters.

Table 7: Prior coe¢ cient estimates for two models for the wave soldering example.

First-order With Interactions

Term Estimate S.E. Estimate S.E.

Intercept -1.52 0.21 -2.35 0.69

x1 -4.30 0.20 -5.53 0.94

x2 -1.79 0.16 -2.99 0.82

x3 -3.39 0.24 -3.95 0.59

x4 -0.28 0.32 -0.86 0.54

x5 0.23 0.30 0.41 0.36

x1x2 -2.07 1.32

x1x3 -1.13 0.98
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Dror and Steinberg (in press) displayed a histogram of local D-E¢ ciencies for the robust

design versus 20,000 parameter vectors taken from this prior (half for a �rst-order model, and

half for the model with interactions). Figure 11 compares this histogram to a histogram of

local D-e¢ ciencies achieved by applying the sequential procedure described above to the same

problem.

0 0.2 0.4 0.6 0.8 1
D-Efficiency

One-Stage Robust Design

0 0.2 0.4 0.6 0.8 1
D-Efficiency

Sequential Design

Figure 11: Sequential versus One-Stage robust design.

Remark 1 A small portion of the runs ended with a zero local D-e¢ ciency. This may happen

when the true model contains interactions, but their e¤ects are non-signi�cant. In such a

setting the algorithm may choose a design that cannot estimate the interactions, and therefore -

although being quite e¢ cient for estimating the expected response - have zero local D-e¢ ciency

for the true model.

It is clear that the sequential design is superior to the one-stage design, with a median
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D-E¢ ciency value of 0.98 versus 0.67 for the one-stage design, and 5% quantile of 0.85 for the

sequential design versus 0.30 for the one-stage design.

5. CONCLUSIONS

An algorithm has been suggested that outperforms available procedures for sensitivity tests,

and enables simple extension to the treatment of more complex models. These include multi-

factor experiments, group sequential designs, responses for any generalized linear model, and

the possibility to consider several competing alternatives for the true model.

The disadvantages of the "one variable at a time" attitude to the design of experiments are

well known, both for its implied result of in�ation in required sample size and for its ignorance of

interaction e¤ects. The proposed procedure enables proper sequential designs for multivariate

models, avoiding this common misstep.
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