
Sequential Experimental Designs for
Generalized Linear Models

Hovav A. DROR and David M. STEINBERG

We consider the problem of experimental design when the response is modeled by a generalized linear model (GLM) and the experimental
plan can be determined sequentially. Most previous research on this problem has been limited either to one-factor, binary response experi-
ments or to augmenting the design when there are already sufficient data to compute parameter estimates. We suggest a new procedure for
the sequential choice of observations that offers five important advantages: (1) It can be applied to multifactor experiments and is not limited
to the one-factor setting; (2) it can be used with any GLM, not just binary responses; (3) both fully sequential and group sequential settings
are treated; (4) it enables efficient design from the outset of the experiment; and (5) the experimenter is not constrained to specify a single
model and can use the prior to reflect uncertainty as to the link function and the form of the linear predictor. Our procedure is based on a
D-optimality criterion and on a Bayesian analysis that exploits a discretization of the parameter space to efficiently represent the posterior
distribution. In the one-factor setting, a simulation study shows that our method is superior in efficiency to commonly used procedures, such
as the “Bruceton” test, Neyer’s procedure, or Wu’s improved Robbins–Monro method. We also present a comparison of results obtained
with the new algorithm versus the “Bruceton” method on an actual sensitivity test conducted recently at an industrial plant. Source code for
the algorithms and examples throughout the article is available at http://www.math.tau.ac.il/~dms/GLM_Design.
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1. INTRODUCTION

Efficient experimental designs for generalized linear mod-
els (GLMs) depend on the unknown coefficients, so two ex-
periments having the same model but different coefficient val-
ues typically will require different designs. Khuri, Mukher-
jee, Sinha, and Ghosh (2006) surveyed design issues for gen-
eralized linear models and note that the research is still very
much at a developmental stage, especially for multifactor de-
signs. In recent work (Dror and Steinberg 2006), we suggested
a method for constructing robust D-efficient experimental de-
signs for generalized linear models, which is based on cluster-
ing locally D-optimal designs.

In this article develop ideas for carrying out efficient sequen-
tial designs for GLMs. The idea of sequential design for such
problems is natural. An efficient design requires knowledge of
the parameters, so there should be a benefit to using all current
data to choose the next design points. Our work is similar in
spirit to that of Chaudhuri and Mykland (1993), who showed
that sequential design in general nonlinear settings, including
GLMs, could lead to fully efficient designs and asymptotically
efficient maximum likelihood estimators. Our ideas differ from
those of Chaudhuri and Mykland in our sample size focus; we
are concerned with small samples, and thus rapid progress to-
ward an efficient design, whereas Chaudhuri and Mykland em-
phasized only asymptotic properties. We provide an algorithm
for efficient design beginning with the first observation; Chaud-
huri and Mykland gave only general conditions for initial de-
signs, which could be quite large. We use a Bayesian approach
to get good small-sample designs, taking advantage of a com-
putationally efficient representation of the posterior distribution
of the coefficients.

Sequential design for binary response data has a rich history,
going back to the work of Dixon and Mood (1948) and the se-
quential approximation scheme of Robbins and Monro (1951).
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There also has been considerable recent work, including that
of Haines, Perevozskaya, and Rosenberger (2003), Ivanova and
Wang (2004), Biedermann, Dette, and Zhu (2006), and Kar-
vanen, Vartiainen, Timofeev, and Pekola (2007). We propose
a more general treatment than those authors, who focused on
single-factor experiments. As in previous work (Dror and Stein-
berg 2006), here we consider multifactor experiments. We allow
the prior distribution to describe uncertainty over possible co-
efficient values and also ambiguity of the proper linear predic-
tor, allowing the design to assist in determining the necessity of
certain interactions, or between higher- and lower-order mod-
els. Designs can be either fully sequential or group sequential,
in which the experimental plan is revised after each batch of k

observations. We limit our discussion to parametric models and
to the estimation of the model’s coefficients. We assess designs
through the D-optimality criterion, that is, the determinant of
the Fisher information matrix for the parameters.

2. PREVIOUS WORK AND ITS LIMITATIONS

Here we review existing sequential design methods for
GLMs. We begin with work on binary response data with a
single design factor, which has been studied in some depth.
Then we describe methods that can handle multifactor experi-
ments. A common feature of all of the proposals is the need to
address the fact that efficient designs depend on the parameters
that they aim to estimate.

2.1 Design for Quantal Response

There is considerable interest in the quantal response setting,
often under the name of “sensitivity tests” or “dose-response”
studies. Typical applications are experiments aimed at learn-
ing about the sensitivity of a new explosive, as a function of the
strength of a shock, or the potency or toxicity of a drug adminis-
tered at different doses. We review both “static” and sequential
designs.

The “Bruceton” up-and-down method (Dixon and Mood
1948) is still commonly used in sensitivity tests for explosives.
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This method was designed with the probit model in mind, with a
normal distribution describing the sensitivity to the input stress
of the population of explosive devices. The algorithm takes the
first observation at a guessed value of the mean stress μ. Sub-
sequent stresses are shifted up or down by a step size equal to a
guessed value of the standard deviation σ .

The logistic regression model is a standard tool in quantal
response. Abdelbasit and Plackett (1983) showed that the lo-
cally D-optimal design for the one-factor logistic model should
divide observations equally between the two x values with ex-
pected responses of approximately .18 and .82. Because these
input values will not be known before the experiment, the au-
thors also suggested a sequential approach, beginning with a
locally D-optimal design for a previous guess of the parameter
values. At each stage, the parameters are estimated by maxi-
mum likelihood and the design procedure is repeated, using the
revised estimates.

A drawback to the foregoing method is its reliance on max-
imum likelihood estimates (MLEs) of the parameter. Quite a
few initial observations may be required before the conditions
for existence of the MLEs are satisfied (Silvapulle 1981), espe-
cially if the initial parameter guesses are not good. Even when
MLEs can be computed, they may suffer from severe bias in
small samples, resulting in an inefficient choice of experimen-
tal sites.

Neyer (1994) addressed these issues, suggesting a D-optimal-
ity–based sensitivity test. He suggested a three-part procedure,
in which the first part is designed to “close in” on the region of
interest, the second part is devoted to determining unique esti-
mates of the parameters, and only in its third and final part does
the method use a local D-optimal design based on the MLEs for
the parameters. Cases in which the MLEs are “wild” estimates
are handled by restricting the values of the parameters at each
step. Thus the strategy of Neyer’s (1994) procedure is to min-
imize the time until we can get good estimates from the data,
then use a local D-optimal design.

For nonsequential experiments, Chaloner and Larntz (1989)
adopted a fully Bayesian approach, assigning proper prior
distributions to the parameters. Their design criterion was a
Bayesian extension of D-optimality, averaging the logarithm
of the determinant of the Fisher information matrix over the
prior. Using a prior distribution for the parameters leads to de-
signs that are robust against a poor initial guess and that typi-
cally include more than just two input sites. (See Chaloner and
Verdinelli 1995 for justification of the criterion.)

Beginning with Robbins and Monro (1951), much work on
sequential designs was stimulated by experiments for estimat-
ing the quantile xp associated with a particular probability, p,
of response. Although the Robbins–Monro procedure is non-
parametric, it also can be derived from a parametric model in
which the response function, after suitable transformation, is
linear near xp . Wu (1985) exploited this correspondence to de-
velop an improved version of the Robbins–Monro procedure.
At each step, Wu’s (1985) logit-MLE method uses all current
data to fit a logistic regression model. The next input is the value
of x for which the fitted logistic gives the desired probability p.
Wu added rules to ensure that step sizes between successive in-
puts were not too large. The logit-MLE method requires data
that are sufficiently rich to compute MLEs for the logistic re-
gression. To generate initial data, Wu suggested either using the

original Robbins–Monro method, which amounts to adopting a
fixed slope, or using an ad hoc design of about 10 points, sym-
metric about the guessed value for x.5. Wu (1986) extended the
idea to regression settings with other GLM responses. Sitter and
Wu (1999) looked at designs with two stages in the context of
dosing trials for pharmaceuticals. Joseph (2004) showed how to
further improve the efficiency of the Robbins–Monro scheme,
especially for estimating extreme quantiles. Joseph, Tian, and
Wu (2007) developed a Bayesian extension of Wu’s approach.
The primary extension covers uncertainty in the functional form
of the response function. The authors also provided a Bayesian
approach that can be applied when the response function is as-
sumed to be correct and is specified up to a set of parameters.
The Bayesian approach uses MAP estimates of the logistic pa-
rameters rather than MLEs, as proposed by Wu (1985).

There is an important difference between our work and the
Robbins–Monro procedure and its descendants. Our goal is to
precisely estimate the coefficients in a parametric GLM; the
Robbins–Monro procedure is nonparametric. Choosing a para-
metric setting has important implications for the design. We are
naturally led to D-optimality as a design criterion. The goal for
Robbins and Monro was to generate a sequence of inputs that
would converge to xp . Thus a Robbins–Monro sequence can
be expected to place many points close to one another, clearly
a poor design if the goal is to estimate, say, a logistic or pro-
bit regression model. Moreover, completely different designs
are needed to estimate different quantiles of the response curve,
whereas we use a single design for all quantiles. Of course, we
need to make assumptions (as to the form of the quantal re-
sponse curve); the Robbins–Monro methods enjoy a robustness
to those assumptions and converge, as Wu (1985) demonstrated,
even when based on an incorrect approximation to the response.

2.2 Design for Multifactor Experiments

Woods, Lewis, Eccleston, and Russell (2006) were the first
to seriously address the practical design of multifactor exper-
iments for GLMs. They extended the Bayesian approach of
Chaloner and Larntz (1989). In earlier work (Dror and Stein-
berg 2006), we derived similar designs but using a quicker com-
putational scheme that involved clustering the points in locally
optimal designs. Although our method does not attempt to di-
rectly optimize the Bayesian D-optimality criterion, it produces
designs that perform very well.

Chaudhuri and Mykland (1993) proposed a completely se-
quential scheme for optimal design in parametric nonlinear
problems, including GLMs. Their method involves three basic
steps: (a) Run an initial design from which the parameters can
be estimated by maximum likelihood; (b) find the next design
site as the D-optimal augmentation of the design thus far, using
the local D-optimality criterion corresponding to the current pa-
rameter estimates; and (c) obtain the next observation and up-
date the MLE. They showed that under fairly general condi-
tions, this procedure converges to the locally D-optimal design
for the true parameter values and that the MLE would be as-
ymptotically normal and efficient. Sinha and Wiens (2002) ex-
tended the ideas of Chaudhuri and Mykland. They showed how
one also might incorporate some uncertainty as to the nature of
the parametric model as well as heteroscedastic errors.
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For practical experimenters, the weak link in Chaudhuri and
Mykland’s scheme is the initial design. Little guidance is given
on how to set up the initial design or on how many runs might
be needed. The reliance of the procedure on MLEs compounds
this problem. We have already pointed out that even in the one-
factor setting, GLMs may require 10 or more observations be-
fore the MLE can be computed. In multifactor experiments,
many more observations may be needed.

3. METHODOLOGY

Our methodology uses Bayesian methods to jump start the
sequential design process and to achieve a good initial de-
sign. Following Chaloner and Larntz (1989), we begin with
a proper prior for the parameters in the model. However, full
computation of the posterior distribution and of the Bayesian
D-optimality criterion for augmenting the design is not feasi-
ble. Instead, we exploit a discrete representation of the poste-
rior and a corresponding approximation to the design criterion.
We begin by presenting our overall design strategy, followed by
our method for representing the prior and the posterior. Finally,
we discuss the selection of new design points.

To set the stage, let x = (x1, . . . , xp) denote a potential de-
sign point for the experiment. We assume that x can take on
values in a closed subset of Rp and, to be concrete, also assume
that the actual factors have been scaled so that the experimental
region is given by [−1,1]p . The response Y(x) follows an ex-
ponential family with E{Y(x)} = μ(x) and h[μ(x)] = fT (x)β ,
where h is the link function for the model and fT (x)β is the
linear predictor.

The Fisher information matrix for a design d with observa-
tions at x1, . . . ,xn is

I(β;d) =
n∑

i=1

f(xi )fT (xi )wi = FT WF, (1)

where wi = 1/{var(μi)[h′(μi)]2} is a weight associated with
the ith observation. The first term in the weight is the variance
of the ith observation, as a function of its expectation, and the
second term is related to the link function. In the final expres-
sion in (1), F is the regression matrix whose ith row is fT (xi )

and W is a diagonal matrix with the weights. Note that the in-
formation matrix depends on the parameter values through the
weights.

The local D-optimality criterion for a particular parameter
vector β is |I(β;d)|, where |A| denotes the determinant of the
matrix A. The Bayesian D-optimality criterion of Chaloner and
Larntz (1989) is

φ(d) =
∫

log
(|I(β;d)|)dπ(β), (2)

where π(β) is the prior distribution on β .
We need a proper prior distribution on the parameters, so

choice of the prior is obviously important. In the interest of ro-
bustness, we advise making the spread of the prior large. It is
much better to exaggerate the spread of the prior than to risk a
situation in which the true parameter values are at the extremes,
or even outside the support of the prior. In any event, we antici-
pate that the posterior should be dominated by the data obtained
in the experiment.

3.1 The Design Augmentation Strategy

Our strategy for adding a new site (or sites) to a given design
includes three basic steps:

1. Determine the “augmentation horizon” as the number of
observations, m, needed for a highly efficient locally D-
optimal design at the prior median.

2. Generate an m-point augmentation to the current design.
3. Select an augmentation site (or sites) from the points

found in the previous step, or their median.

The algorithm can be run in a fully sequential mode, adding
one new site at each step, or in a group-sequential mode, adding
a fixed number of sites. The number of sites added in step 3
usually will be determined by practical issues in running the
experiment and so is set by the user. We use the same approach
to find the first run(s) of an experiment, augmenting a “null”
design.

The first two steps are important in the early stages of an ex-
periment. With a small number of design points, information
matrices will be singular, and design criteria such as the de-
terminant give no useful information. Steps 1 and 2 provide a
device that lets us circumvent the singularity problem.

We provide details on each step in our algorithm later in this
section. First, we provide some ideas on reducing computation
by approximating the posterior distribution of the parameters
and the design criterion φ(d).

3.2 A Discrete Representation of the Posterior

Our setup could be used to implement a fully Bayesian ap-
proach. Based on the data at hand, compute the posterior dis-
tribution of β and use it as the basis to find the next design
point. But computing the exact posterior distribution at each
iteration of the design is not a trivial task; it requires substan-
tial computation. Moreover, it is not necessary; a much cheaper
(computationally) alternative is sufficient.

We represent the posterior using a large (say, N = 10,000)
discrete set of vectors sampled from the prior, β1, . . . ,βN .
These vectors could be a random sample or a quasi-random
sample (such as in Niederreiter 1988). At any stage of the
experiment, the likelihood L(βu) can be easily and rapidly
computed for each of these vectors. We normalize the like-
lihoods across our sample, generating weights ru = L(βu)/∑N

v=1 L(βv). We now can estimate functionals of the poste-
rior as weighted summaries of the vectors sampled from our
prior; for example, the posterior mean vector can be estimated
as

∑
ruβu. This is essentially an importance sampling scheme,

with the prior serving as the base sampling distribution and the
importance weights coming from the fact that the posterior di-
vided by the prior is proportional to the likelihood.

The same scheme can easily handle uncertainty in the form
of the linear predictor. Suppose that the experimenters believe
that a first-order logistic regression model might be appropriate
for their data but are concerned that several two-factor interac-
tions might be present. The prior distribution then can be set
out in two stages. At the first stage, assign prior probabilities
to each of the models that are entertained. At the second stage,
conditional on each model assign prior distributions to its co-
efficients. The sampling scheme proceeds as before, with the
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Figure 1. A random sample of 25 logistic probability curves from
a prior in which the LD50 has a uniform distribution on the interval
[−1,1] and the slope has a uniform prior on [6,18].

probabilities from the first stage used to dictate what fraction of
vectors are sampled from each of the prior distributions on the
coefficients.

Figures 1 and 2 illustrate our ideas for representing the pos-
terior, in the context of a simple logistic regression model
with the input factor limited to the interval [−1,1]. Follow-
ing Chaloner and Larntz (1989), we parameterize the model
in terms of the slope θ and the LD50, μ, so that p(x;μ,θ) =
1/[1 + exp{−θ(x −μ)}]. We adopt independent uniform priors
on both coefficients, with μ ∼ U[−1,1] and θ ∼ U[6,18]. Fig-
ure 1 presents the expected response p(x;μ,θ) as a function
of x for a random sample of 25 vectors from the prior. There
is great variety in the prior response curves, in accordance with
our recommendations to choose a broad prior. One choice to be-
gin the experiment is to use the locally D-optimal design for the
prior mean μ = 0 and θ = 12. That design takes half of the ob-
servations at each of x = ±.13. Now suppose that the first run
is made with x = .13 and results in Y = 0. Many of the logis-
tic curves in Figure 1 considered positive response at x = .13

as “a sure thing,” so this single observation is enough to cast
strong doubt on that part of the prior. Figure 2 shows how the
result is reflected in our representation of the posterior distrib-
ution. Panel (a) shows a quasi-random sample of 10,000 points
from the prior; in panel (b), we have simply deleted all of those
points in the prior with likelihood <.05. (Of course, we never
actually delete such points; we just downweight them.) There
are two important lessons here. First, although we clearly can-
not compute MLEs at this point, Figure 2 shows how much we
can learn from this one observation. Second, having observed a
“nonresponse” at x = .13, the wisdom of proceeding with the
next observation at x = −.13 is dubious indeed.

3.3 Approximate Design Criteria

The fully Bayesian approach for adding points to an ex-
isting design is to use φ(d), from (2), averaging at each
step with respect to the posterior distribution. As noted in
the preceding section, we can approximate this average by∑N

u=1 ru log |I(βu;d)|. Thus we have the criterion

φ1(d) =
N∑

u=1

ru log |I(βu, d)|. (3)

Optimizing this criterion is not trivial, and we would like
something that can be computed even faster. Our suggestion is
to replace the average by log |I(β;d)| at a single point, as done
by Chaudhuri and Mykland (1993). We evaluate at the posterior
median for each of the parameters, although other measures of
the center of the distribution also could be used. Again, we use
the weighted representation of the posterior to estimate the me-
dian. For example, we estimate the median of β0 by β̃0, where
half of the weight belongs to values ≤β̃0 and half to larger
values; if βu,0, u = 1, . . . ,N, are the N discrete β0 values in
our sample, and if ru is the weight attributed to βu, then β̃0 is
found by sorting (βu,0, ru) in ascending βu,0 order and choos-
ing β̃0 = β(g),0 such that

∑g

u=1 r(u) ≥ 1
2 and

∑N
u=g r(u) ≥ 1

2 .
Thus we obtain the criterion

φ2(d) = log |I(β̃, d)|. (4)

(a) (b)

Figure 2. Discrete approximation to our distribution for the parameters of a one-factor logistic model, in which μ is the LD50 and θ is
the slope. (a) A large quasi-random sample of points from the uniform prior. (b) The sample with the prior points that have very low weight
following a “no response” at x = .13 deleted.
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3.4 The Augmentation Horizon

When the number of existing design points plus the number
of augmentation sites is less than the number of parameters in
the model, the corresponding information matrices will be sin-
gular. Thus none of our criteria will provide any information
that can be used to decide which design sites will be the most
informative ones. To avoid such problems, we first determine an
augmentation horizon, m. Then, at each augmentation step, we
begin by finding an m-run augmentation. The horizon itself is
determined at the start of the experiment, as the number of ob-
servations required for a design that has high local D-efficiency
at the prior median of the parameters, β̃(0). If the prior includes
more than one linear predictor, then the horizon is determined
using the predictor with the largest number of regression func-
tions.

We now find locally D-optimal designs, maximizing φ2(d)

at the prior median for sample sizes n = p, . . . ,P , where p is
the number of terms in the linear predictor and P is about 4p.
Let d

(0)
n denote the design with n runs. These designs are found

using our earlier algorithm (Dror and Steinberg 2006), which
applies an exchange algorithm (Federov 1972) to a transformed
regression matrix, F̃ = FW1/2. This algorithm is suitable for
constructing and augmenting local D-optimal designs for mod-
els of high dimension with any GLM response.

To compare the designs, we make a standard modification to
the φ2 criterion that removes its dependence on sample size. We
regard d

(0)
n as a probability measure, with mass 1/n on each

design point. We also take the pth root of the determinant of
the information matrix, which scales its size proportional to the
number of observations. The resulting criterion is

φ3(d) = (1/p)φ2(d) − log(n), (5)

where n is the actual number of observations in d . Let d∗ denote
the design (from among d

(0)
p , . . . , d

(0)
P ) that maximizes φ3(d).

Define the efficiency of d
(0)
n as

Eff
(
d(0)
n

) = exp
{
φ3

(
d(0)
n

) − φ3(d
∗)

}
. (6)

We choose the horizon m as the smallest value of n for which
Eff(d(0)

n ) is at least 99%.
Figure 3 illustrates the idea of the augmentation horizon

in the context of a crystallography experiment presented by
Woods et al. (2006). The goal was to design a four-factor ex-
periment, with binary outcomes, to estimate a first-order logis-
tic regression model. The experimenters’ best guess for the in-
tercept was 0, and prior guesses for the four slopes were 7, 8,
−3, and .5. Using this parameter vector, locally D-optimal de-
signs with n = 5, . . . ,24 runs were generated. Figure 3 plots the
corresponding D-efficiencies and shows that m = 8 is a good
choice for the augmentation horizon.

3.5 One-Point Augmentations

Here we describe a fully sequential design approach, in
which new observation sites are chosen one at a time. The al-
gorithm depends on the augmentation horizon m found at the
start of the experiment. The exact determination also depends
on whether or not sufficient runs have been made to achieve a
nonsingular information matrix.

The algorithms is as follows:

1. Find a locally D-optimal m-run augmentation to the exist-
ing design, maximizing φ2 at the current parameter me-
dian. If the prior includes more than one linear predic-
tor, then use the linear predictor with the highest posterior
probability.

2. Generate a candidate set for the augmentation consisting
of the m points found in the previous step and their coor-
dinatewise median.

(a) (b)

Figure 3. Choosing the augmentation horizon for a four-factor logistic regression model. (a) The relative efficiency for design measures
corresponding to locally optimal designs with n = 5, . . . ,24 runs. (b) Results for n = 5, . . . ,16 runs highlighted by magnifying the relative
efficiency. Using eight or more runs gives very high efficiency, so we set the augmentation horizon to 8.
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3. If the design points run thus far provide a nonsingular in-
formation matrix, then choose the next design point as the
candidate that gives the best result for φ1 when added to
the current design.

4. If the design thus far does not provide a nonsingular in-
formation matrix, then choose the next design point from
among the candidates by comparing values of φ1 for de-
signs that consist of the points run thus far, the m-run aug-
mentation, and the candidate. Note that these designs may
include two copies of the augmentation candidate.

Step 1 uses the computationally fast approximate design cri-
terion φ2 to produce a limited set of candidate points. The bet-
ter, but more computationally intensive φ1 is used at step 3 or
4 only to evaluate this small set. In step 2 we add the median
of the points found in step 1 to our candidate set. Locally D-
optimal designs often tend to push design points away from the
center of the design region, but sometimes the center is a better
compromise choice for the design.

Step 4 provides a simple fix for early stages in the experiment
when the information matrix is singular. Note that singularity of
the information matrix is a function only of the regression ma-
trix F , so it is sufficient to check for singularity at the posterior
median.

3.6 Group-Sequential Designs

Between the two extremes of fixing the entire experiment
in advance and the fully sequential approach in which we up-
date the plan after each observation, there is the possibility of a
group-sequential design. The term “group-sequential” refers to
cases for which we obtain data in groups of k > 1 observations.
We proceed in much the same way as for one-point augmenta-
tions. However, we now want to add further assurance that we
find design points that are robust with respect to our uncertainty
about the parameters. Choosing the points by directly optimiz-
ing φ1 is slow computationally, so we again adopt the tactic
of optimizing φ2. The difference is that we now do so with
respect to k different points representing the parameter space
rather than just the posterior median. We choose these points
using a weighted K-means clustering algorithm, as in the ro-
bust procedure for nonsequential designs in our previous work
(Dror and Steinberg 2006).

The algorithm thus proceeds as follows:

1. Run K-means clustering (with K = k) on the points
representing the posterior distribution of the parameters.
Weight the points in the analysis by the normalized like-
lihoods, for determining both the clusters and the cluster
centroids. If the prior includes more than one linear pre-
dictor, then represent each one proportional to its posterior
weight, with clustering done separately.

2. For each cluster centroid, find a locally D-optimal m-run
augmentation to the existing design, maximizing φ2.

3. Generate a candidate set for the augmentation consisting
of the mk points found in the previous step and of the k

coordinatewise medians.
4. If the design points run thus far provide a nonsingular in-

formation matrix, then choose the next k design points as
the candidates that give the best result for φ1 when added
to the current design. This can be done efficiently, begin-
ning with a random choice of k candidates and proceeding
with an exchange algorithm.

5. If the design thus far does not provide a nonsingular in-
formation matrix, then choose the next k design points
from among the candidates by comparing values of φ1 for
designs that consist of the points run thus far, the m-run
augmentation at the median, and k of the candidates. The
best k candidates can again be chosen by an exchange al-
gorithm.

We have found that the computational burden can be fur-
ther reduced without harming design efficiency by an additional
simplification. When making exchanges, require that the new
point be one that came from the same centroid as the point that
it replaces.

4. APPLICATION TO A SENSITIVITY EXPERIMENT

In this section we depict an application of our sequential de-
sign algorithm to a sensitivity experiment conducted in June
2006 at an industrial plant. The experiment’s objectives were
to estimate the sensitivity curve in general, and in particular to
verify a manufacturer’s statement that the explosives will not
detonate at 12 V (being a safe voltage) and will detonate (“all
fire”) at 25 V. Quantitatively, the requirement was to show, us-
ing probit regression, that the probability of detonation at 12 V
is <5% and the probability of detonation at 25 V is >95%; that
is, the 95% probit confidence interval for the expected response
should be <5% at 12 V and >95% at 25 V.

The plant engineers agreed to use our methods, but only af-
ter first running the experiment following their standard format,
which was based on the Bruceton method of Dixon and Mood
(1948). Although the standard method was geared toward es-
timating quantiles with about 50% response probability rather
than more extreme quantiles, it was the method of choice for all
sensitivity tests in the plant.

The experimenters began with limited prior knowledge. They
could not say what voltage would provoke a response from half
of the observations or even whether this value was within the
specified range of 12–25 V; not much was known about the
dispersion as well, with the possibility of a very slow increase
from the “no-fire” zone to the “all-fire” zone to a very steep
curve.

Together with the plant engineers, we formulated the fol-
lowing prior distribution, which reflects this (lack of) informa-
tion. The prior takes (x − μ)/σ as the parametrization and a
lognormal distribution for both the mean and dispersion, with
μ ∼ lognormal(log(17), .52) and σ ∼ lognormal(log(.7),12).
Figure 4 presents a sample of 150 curves given possible values
for (μ,σ ) sampled from the prior distribution.

It can be seen that there are both very steep curves (with a
fraction of a volt separating the “no-fire” and “all-fire” zones)
and very flat curves offering the possibility that there is a non-
negligible likelihood of detonation at 12 V and of no detonation
at 25 V. The industrial plant’s procedure began with a “screen-
ing” phase following the Bruceton procedure with a rather large
step size of 1 V. After 9 observations, when the experimenters
felt they knew the region, they began a new Bruceton proce-
dure with a smaller step size of .25 V; this second Bruceton
continued for 31 trials, so a total of 40 runs was performed.
For the new algorithm, 20 trials were allocated. The locations
at which the observations were taken by each method, and their
outcomes are presented in Figure 5.
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Figure 4. Sensitivity experiment. A sample of possible curves from
the prior distribution elicited from the plant engineers.

Figure 6 compares the analysis of outcomes of both methods
after 20 trials. The curves in the figure represent the 95% confi-
dence intervals for the expected response as a function of volt-
age value, as produced by a probit regression. Figure 7 is similar
to Figure 6 but compares the analysis based on all 40 observa-
tions from the Bruceton method with that using the 20 observa-
tions from the new algorithm. Even in the extreme comparison
where the Bruceton method benefits from twice as many obser-
vations as the new method, the latter provides better results. In
the strip where the probit 95% confidence interval is >.05 and
<.95 for the probability of detonation, the Bruceton method
yields a strip of 15–23.5 V, compared with the narrower strip
15–22.5 V yielded by the new algorithm.

5. COMPARISON WITH EXISTING METHODS

Here we compare our design algorithm with other methods
that have been proposed. In one-factor experiments, two lead-
ing approaches are the method of Neyer (1994), which is also
directed toward precise estimation of the parameters in a GLM,
and the collection of Robbins–Monro type procedures.

We first present simulation results comparing our method and
Neyer’s method. We also include the Bruceton method (Dixon

Figure 6. Comparison of the plant format ( ) and our algorithm
( ) after 20 observations from each. The lines are pointwise 95%
confidence intervals for the probability of response.

and Mood 1948) in these simulations. Our experience has been
that the Bruceton method remains in widespread use, despite
Neyer’s results showing that his method is more efficient.

We also present simulations comparing our method with the
RM scheme of Wu (1985). As we noted earlier, direct compar-
ison of our method with RM schemes is problematic, because
the latter are nonparametric, and their goal is to converge to a
specified quantile. We limit our comparisons here to the RM
goal of quantile determination.

For multifactor experiments, we are not aware of any com-
peting methods for the sequential design of experiments for
GLMs. Both Chaudhuri and Mykland (1993) and Sinha and
Wiens (2002) addressed this problem, but only for augment-
ing designs that are already sufficiently rich to allow for com-
putation of MLEs. Chaudhuri and Mykland did not discuss the
choice of initial designs, and Sinha and Wiens did so only in the
context of examples, where they provided ad hoc solutions. We
present some simulation results comparing our algorithm for se-
quential designs with our earlier algorithm (Dror and Steinberg
2006) for robust nonsequential experiments.

(a) (b)

Figure 5. Sensitivity experiment; record of observations’ location and outcome. Positive responses are designated by empty triangles pointing
up; failures to respond, by solid triangles pointing down. (a) The 40 runs using the standard experimental format in the plant. (b) The 20 runs
using our design algorithm.
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Figure 7. Comparison of the Bruceton method after 40 observa-
tions ( ) our method with 20 observations ( ). The lines are
pointwise 95% confidence intervals for the probability of response.

5.1 Comparison With Neyer and Bruceton

We conducted simulations to compare our method with that
of Neyer and to the Bruceton method for a one-factor setting
like the sensitivity experiment in the previous section. Figure 8
presents the different “true” models that were used and shows
that we consider cases with both true mean <12 V or >25 V,
very steep curves, and very flat curves. The bold curve empha-
sizes the case where the true model is at the center of our prior
distribution.

Each of the methods requires a slightly different input from
the user. For our method, a prior distribution is needed. We
used the same prior as before: μ ∼ lognormal(log(17), .52)

and σ ∼ lognormal(log(.7),12). This broad prior is appropri-
ate when prior knowledge is weak so that robustness to true
parameter values is required.

The Bruceton method (Dixon and Mood 1948) requires an
initial guess for μ and a step size, based on a probit model
guess for σ . We use the center of our prior distribution, 17,

Figure 8. “True” probit models for the Monte Carlo comparison of
techniques. The bold curve represents the case where the best guess is
in fact the true model.

Table 1. Median D-efficiency for the new algorithm, Neyer’s method,
and the Bruceton method, based on 100 simulated experiments

of a one-factor sensitivity study, for 13 true probit models

True True
16 observations 48 observations

Case μ σ Bruceton Neyer New Bruceton Neyer New

1 17 .07 .002 .40 .31 .002 .74 .63
2 35 .07 .0005 .11 .22 .002 .32 .45
3 20 .14 .18 .59 .48 .19 .78 .76
4 5 .35 .37 .58 .59 .70 .82 .77
5 17 .35 .67 .77 .69 .67 .86 .84
6 17 .7 .85 .80 .77 .86 .88 .88
7 25 .7 .64 .69 .74 .79 .84 .85
8 14 1.4 .77 .74 .83 .79 .86 .89
9 35 1.4 .25 .61 .67 .64 .83 .85

10 17 3.5 .41 .61 .72 .50 .86 .88
11 20 3.5 .43 .49 .68 .54 .86 .86
12 9 7 .31 .51 .59 .42 .86 .85
13 25 7 .33 .44 .57 .43 .85 .83

as the guess for μ, and the chosen step size is 1.28 V, after
adjusting the difference of σ for the logit and probit models.
Neyer’s (1994) algorithm requires guesses for a lower bound
and an upper bound for the mean, which we take to be μmin =
12, μmax = 25, and a guess of the standard deviation, for which
we use the center of the prior distribution, .7.

We conducted experiments of length 16 and 48 observations.
For each model, sample size, and method, we carried out 100
repetitions and computed the D-efficiency of the resulting de-
sign. Tables 1 and 2 summarize the D-efficiencies by their me-
dians and 5% quantiles.

Figure 9 offers a graphical representation of the median D-
efficiencies for the three methods for experiments with 16 ob-
servations. The lower part of Figure 9 shows the values of the
true parameters, in the same order as in Table 1; for exam-
ple, case 1 is the parameter vector in the first row; (μ,σ ) =
(17, .07), and case 6 is the best guess, or center of the prior
distribution, with (μ,σ ) = (17, .7). The upper part shows the
median D-efficiencies.

Table 2. The 5% quantile of the D-efficiency for the new algorithm,
Neyer’s method, and the Bruceton method, based on 100 simulated

experiments of a one-factor sensitivity study, for 13 true probit models

True True
16 observations 48 observations

Case μ σ Bruceton Neyer New Bruceton Neyer New

1 17 .07 .002 .37 .25 .002 .65 .50
2 35 .07 .0001 .11 .18 .002 .28 .41
3 20 .14 .15 .47 .36 .18 .63 .56
4 5 .35 .28 .45 .45 .64 .71 .64
5 17 .35 .63 .61 .48 .65 .69 .66
6 17 .7 .76 .67 .61 .83 .76 .76
7 25 .7 .51 .55 .57 .74 .67 .72
8 14 1.4 .57 .62 .60 .69 .64 .73
9 35 1.4 .14 .51 .51 .57 .62 .72

10 17 3.5 .30 .27 .36 .40 .54 .63
11 20 3.5 .27 .25 .41 .40 .49 .71
12 9 7 .15 .16 .23 .30 .51 .61
13 25 7 .16 .15 .25 .30 .39 .60



296 Journal of the American Statistical Association, March 2008

Figure 9. Comparison of median D-efficiencies for 16-run sensi-
tivity experiments, for 13 true probit models ( , new algorithm;

, Neyer’s algorithm; , Bruceton). The model parameters are
plotted in the bottom panel ( , true μ; , 5∗ true σ ).

Compared with Neyer’s (1994) procedure, our algorithm
handles better the uncertainty in the parameter values. D-
efficiencies for Neyer’s (1994) algorithm are roughly equal
to or slightly better than the new algorithm when the true σ

is smaller than its guess (or at the center of the prior distri-
bution), but the proposed algorithm is significantly superior
when the true σ is larger than its best guess. Using the new
algorithm with a stochastically smaller prior for σ , such as
σ ∼ lognormal(log( .7

2 ),12)), gives results that are generally su-
perior to those of Neyer’s (1994) algorithm for both large and
small σ values. But this choice does not exploit the efficiency
for large true σ values to its maximum potential, and we do not
recommend it. Our results show that the Bruceton method is
inferior to the other techniques.

The comparison so far has assumed vague knowledge of the
parameters as expressed by the prior distribution. Often higher-
fidelity prior information is available, say reducing the vari-
ance value in the prior so that μ ∼ lognormal(log(17), .22) and
σ ∼ lognormal(log(.7), .752). Note that this prior still has non-
negligible mass for μ <12 and >25 and also allows various σ

values. Results for this prior, given in Table 3, show that the
proposed algorithm is then even more efficient compared with
Neyer’s (1994) algorithm.

Table 3. Median D-efficiency for 16- and 48-run sensitivity
experiments using a narrower prior for the new algorithm

Obser- True True
New algorithm

vations μ σ Bruceton Neyer Wide prior Narrow prior

16 18 .37 .72 .76 .77 .83
17 .7 .85 .80 .75 .83
3 1.75 .71 .71 .76 .71

48 18 .37 .74 .86 .87 .89
17 .7 .86 .89 .88 .91
3 1.75 .74 .86 .89 .85

5.2 Comparison With the Logit-MLE Method

We now consider the problem of estimating quantiles of the
response curve for binary data and compare the estimates ob-
tained with our design algorithm to those found by the im-
proved Wu logit-MLE method (Wu 1985) and the Bayesian
version of that method proposed by Joseph et al. (2007). In one
simulation, the true response curve is a linear logistic model,
so that p(x;μ,θ) = 1/[1 + exp{−θ(x − μ)}]. We set μ = 0
and θ = 5, so that values of x outside the interval [−.5, .5]
have extreme probabilities. In the second simulation, the true
response curve is a skewed logistic model, for which p(x) =
1/[1 + exp{−5x}]2. The skewed logistic model was also stud-
ied by Wu (1985) and is useful for examining robustness of the
methods when the true model does not match assumptions. For
both methods, experiments were limited to [−1,1].

We ran our design for both simulations with a linear logistic
regression model. Our prior for μ was uniform on [−1,1], and
our prior for θ was lognormal with a mean of log(5) and a stan-
dard deviation of 1.5. The priors express much uncertainty as
to the response curve. We used the same prior for the Bayesian
version of the logit-MLE (Joseph et al. 2007).

We ran Wu’s method with an upper bound of 500, in ac-
cordance with the recommendations in that article, and adjust-
ing to our slope of 5. As a starting design, we took 10 obser-
vations equally spaced between −1 and 1. If the MLE for a
linear logistic model could be computed from the initial data,
then we began Wu’s iterative scheme with the 11th observa-
tion. Otherwise, we took eight more equally spaced observa-
tions on [−1,1] before beginning the iterations. The estimate
of the quantile from an n-run design is the recommended set-
ting for the next run.

We considered estimation of x.5 and x.8 for the logit model.
For the skewed logistic, we also considered x.2. Sample sizes of
20 and of 50 were examined. Tables 4 and 5 summarize the re-
sults of 1,000 simulated experiments for the logistic and skewed
logistic response models. For both models, the best quantile
estimates were achieved by the Bayesian logit-MLE scheme,
and the worst estimates were those from the original logit-MLE
scheme. Our method gave intermediate results. Furthermore, as
noted earlier, our method estimates all of the quantiles from
a single experiment, whereas the results from the logit-MLE
method are based on separate experiments for each quantile.

Table 4. Simulation results of the new algorithm and Wu’s logit-MLE
(l-MLE) method for estimating quantiles from a logistic

response curve

Obser- Quantile
x.5 x.8

vations method Bias SD Bias SD

20 l-MLE −.001 .127 −.073 .201
Bayes-l-MLE .005 .115 .026 .141

New −.004 .128 .006 .193

50 l-MLE .002 .089 −.061 .156
Bayes-l-MLE .003 .073 .007 .086

New .009 .078 .012 .110

NOTE: SD, standard deviation.
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Table 5. Simulation results of the new algorithm and Wu’s logit-MLE
(l-MLE) method for estimating quantiles from a skewed logistic

response curve

Obser- Quantile
x.2 x.5 x.8

vations method Bias SD Bias SD Bias SD

20 l-MLE .074 .159 .013 .126 −.059 .188
Bayes-l-MLE −.015 .115 .007 .100 .020 .129

New −.018 .148 .015 .105 .014 .175

50 l-MLE .075 .135 .003 .085 −.070 .143
Bayes-l-MLE −.002 .062 .001 .055 .015 .080

New .002 .079 .022 .067 .010 .103

NOTE: SD, standard deviation.

5.3 Multifactor Experiment

Here we return to the crystallography experiment with four
factors and binary outcomes introduced by Woods et al. (2006),
who considered 16-run and 48-run designs for estimating a
first-order logistic regression model. Earlier (Dror and Stein-
berg 2006), suggested a robust one-stage experiment for the
crystallography experiment. We adopted independent uniform
priors on each of the 5 model parameters and evaluated the de-
sign using a sample of 10,000 vectors from the prior, calculat-
ing the local D-efficiency of the design versus each of them
and reporting the median and minimum local D-efficiencies.
We applied the sequential algorithm with the same prior, using
a Monte Carlo evaluation as before, with a small modification;
each of the 10,000 iterations was performed with a different
true coefficient value, sampled randomly from the prior. This
allows a legitimate comparison of the median local D-efficiency
achieved through the robust one-stage design and the proposed
sequential design. Table 6 displays the comparison.

As expected, performing the experiment sequentially consid-
erably improves the efficiency. Note that the 5% quantile D-
efficiency for the sequential design is better than the median
D-efficiency for the robust one-stage designs.

5.4 Group-Sequential Designs

We continue with the crystallography example, presenting in
Table 7 the addition of a group-sequential design, with each
group including 16 observations.

We see that even for a large group size of 16 observations,
the group-sequential procedure’s D-efficiency is closer to the
fully sequential results than to the one-stage robust design’s ef-
ficiency.

For the 16-observation experiment, the group-sequential de-
sign is in fact a one-stage design. It is desired that the proposed
sequential procedure provide an efficiency as close as possi-
ble to that of a one-stage design if all of the experiments are

Table 6. D-efficiency comparison of robust one-stage design versus
the proposed multivariate sequential procedure, for 16- and 48-run

designs, with a 4-factor logistic regression model

16 observations 48 observations

One-stage Sequential One-stage Sequential

Median D-efficiency .42 .64 .42 .83
5% quantile D-efficiency .26 .46 .31 .73

grouped together into a single batch. Indeed, Table 7 shows
that our group-sequential algorithm succeeded in reproducing
the one-stage results we obtained earlier (Dror and Steinberg
2006).

6. CONCLUSIONS

We have suggested an algorithm for efficient sequential de-
sign of experiments with GLM responses. This algorithm has a
number of valuable features. First, it is immediately applicable
to multifactor experiments, whereas most of the design algo-
rithms for GLMs have been limited to the one-factor case or to
augmenting designs. Second, it provides for efficient initial de-
signs, with a full specification of how to generate design points
from the outset of the experiment. Third, the method is robust to
uncertainty about the parameter values and even to uncertainty
about which terms are needed in the linear predictor. No other
method combines all of these advantages.

Our ideas are related to those of Chaudhuri and Mykland
(1993), who provided a sequential augmentation scheme but no
systematic approach for finding initial designs. For large sam-
ples, our posterior distribution should be highly concentrated
around the MLEs of the model parameters, and our algorithm
then will behave just like the algorithm of Chaudhuri and Myk-
land. We thus conjecture that our algorithm will have the same
asymptotic optimality properties as that of Chaudhuri and Myk-
land. But we emphasize that our focus is not on the asymptot-
ics, but rather on getting efficient designs with small samples.
Our simulation results show that we succeed in this goal for
one-factor experiments, relative to existing methods, and that
we achieve clear improvement over one-stage designs for mul-
tifactor experiments.

Our method takes advantage of prior information through an
explicitly Bayesian approach. We also exploit a computation-
ally cheap approximation to the posterior distribution through a
discrete point set. For the examples that we have examined, we
found that 10,000 points gives an effective summary of the pos-
terior. However, the number of points should increase with both
the number of parameters in the model and the projected sam-
ple size. Further research may be useful in guiding the choice
of the size of this point set.

[Received July 2006. Revised August 2007.]

Table 7. D-efficiencies for the group-sequential procedure versus one-stage and fully sequential designs, for 16- and 48-run designs,
with a 4-factor logistic regression model

16 observations 48 observations

One-stage Group-sequential Sequential One-stage Group-sequential Sequential

Median D-efficiency .42 .42 .64 .42 .73 .83
5% quantile D-efficiency .26 .26 .46 .31 .62 .73
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