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A simple heuristic is proposed for constructing robust experimental designs for multivariate generalized
linear models. The method is based on clustering a set of local optimal designs. A method for finding
local D-optimal designs using available resources is also introduced. Clustering, with its simplicity and
minimal computation needs, is demonstrated to outperform more complex and sophisticated methods.

KEY WORDS: Binary response; Clustering; D-optimal; Design of experiments; Logit; Poisson.

1. INTRODUCTION

Efficient experimental designs for generalized linear models
(GLMs) depend on the unknown coefficients; therefore—unlike
experimental designs for linear models—two experiments hav-
ing the same model but different coefficient values will typi-
cally require different designs. For any given set of values for
the model parameters, there is an experimental design that is lo-
cally optimal. However, because there is uncertainty about the
values, one should look for an experimental design that per-
forms well all over the uncertainty space, giving higher priority
to regions of higher likelihood within that space.

Previous work on experimental designs for GLMs is focused
mainly on locally optimal designs for a simple linear effect and
one design variable (see, e.g., Abdelbasit and Plackett 1983;
Ford, Torsney, and Wu 1992; Mathew and Sinha 2001). Most
extensions (e.g., Sitter and Torsney 1995a, b) are limited to
two factors or to first-order models that do not contain inter-
actions. The limited amount of research is due in part to the
fact that finding locally optimal designs for GLMs, and even
more so for high-order multivariate models, is far from a trivial
task. Section 2 describes a fast, simple method for finding local
D-optimal designs for these complex cases.

The ability to find locally optimal designs still leaves the
serious problem of how to take into account uncertainty with
respect to model coefficients. Different attitudes toward de-
sign robustness for univariate GLMs have been expressed by
Abdelbasit and Plackett (1983), Sitter (1992), Hedayat, Yan,
and Pezzuto (1997), and Chaloner and Larntz (1989). Of
these approaches, the latter should be emphasized for sug-
gesting a Bayesian experimental design. Literature on mul-
tivariate robust designs for GLMs is scarce and includes
an unpublished manuscript by Chipman and Welch (avail-
able at http://ace.acadiau.ca/math/chipmanh/papers/chipman-
d-opt.ps) that suggests a minimax approach and an article by
Robinson and Khuri (2003) that evokes the idea of using so-
called “quantile dispersion” graphs. Khuri, Mukherjee, Sinha,
and Ghosh (2004, p. 42) surveyed design issues for GLMs and
noted that “the research on designs for generalized linear mod-
els is still very much in developmental stage. Not much work
has been accomplished either in terms of theory or in terms

of computational methods to evaluate the optimal design when
the dimension of the design space is high. The situation when
one has several covariates. . . demand[s] extensive work to eval-
uate “optimal or at least efficient designs.” Recently Woods,
Lewis, Eccleston, and Russell (2006) delivered much of the
sought-after results by proposing a method for finding multi-
variate compromise designs that allow for uncertainty in the
link function, the linear predictor, or the model parameters.

In this article we suggest a simple heuristic capable of find-
ing designs that are robust to most parameters an experimenter
might consider, including (similar to Woods et al. 2006) uncer-
tainty in the coefficient values, in the linear predictor equation,
and in the link function. Compared with Bayesian designs, such
as those of Chaloner and Larntz (1989), or the compromise de-
signs of Woods et al. (2006), the suggested procedure requires
considerably shorter computation time and is easier to imple-
ment, requiring only the ability to find locally optimal designs
and a K-means clustering procedure (MacQueen 1967). The
process allows rapid exploration of various designs, enabling
the procedure to outperform the existing alternatives.

Given a set of local D-optimal designs, the core of the method
proposed is to combine them into a set of location vectors and
use K-means clustering to derive a robust design, as motivated
by the following examples.

1.1 Example 1

Assume a logistic model with the linear predictor η = β0 +
βxx + βyy + βxyxy having uncertainty about β0 modeled as a
uniform distribution over the region [0,2] with βx = βy = 2,
βxy = .2. Figure 1 shows the local D-optimal designs for this
model, for 25 different equally spaced values of β0 from the
feasible region.

Each local D-optimal design has four support points. It can
be seen that different values of β0 result in a small change of the
location of these support points, and as a result there is a clear
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Figure 1. Proximity of 25 Local D-Optimal Designs for a Logistic
Model With Intercept Value Uncertainty.

partition of the local designs’ points to four clusters. Desiring
an efficient experimental design without knowing any further
information, it seems reasonable to place one point at the “mid-
dle” of each cluster.

1.2 Example 2

Woods et al. (2006) noted that the local D-optimal design for
the centroid of the β’s uncertainty space often may be an ef-
ficient compromise design. A preference for clustering can be
justified only if it remains an efficient method even in condi-
tions where using the best local D-optimal design fails to per-
form well.

Continuing Example 1 but assuming a larger uncertainty re-
gion for β0 causes the four clusters to overlap. Figure 2 dis-
plays local D-optimal designs for 25 different values of β0 from
[0,15] with βx = βy = 10 and βxy = .2. The filled points in the
figure show the local D-optimal design for the centroid of the
feasible region, β0 = 7.5.

Figure 2. An Illustration of the Shortcoming of the Best Local
D-Optimal Design.

It is seen that the local D-optimal design for the centroid of
the beta space has two support points on the diagonal whose
distance from each other is smaller than the range of diagonal
point shifts for other possible values of β0. Coverage of the
design space through clustering has better potential for creating
a robust design than the parameter space centroid or any other
local D-optimal design.

2. FINDING LOCAL D–OPTIMAL DESIGNS

The procedure suggested in this article assumes the ability
to easily construct local optimal designs. The assumption is far
from being trivial, because common packages such as “gosset”
(Hardin and Sloane 1993), the statistical toolbox in MATLAB
(MathWorks Inc.), JMP, or the SAS Optex procedure were not
designed to be used with GLMs.

Finding an exact local D-optimal design for GLMs requires
finding a choice of n support points that will maximize the
determinant of the information matrix. For linear models, the
information matrix is simply F′F, where F is the regression
matrix. For GLMs, the information matrix also depends on
a weight matrix and can be represented as F′WF (see, e.g.,
Atkinson and Donev 1992). The weights are given by W =
V−1(µ)(dµ/dη)2, where V is the variance function; µ is a vec-
tor with row values, µi, being the expected response for the
experimental configuration expressed by the row Fi of the re-
gression matrix; η = Fβ is the linear predictor; β is the vector
of p unknown coefficients; and the relation between µi and ηi

is expressed through a given link function. For example, for a
Poisson model with a log link, the diagonal elements of W are
wii = µi = exp(Fiβ), and for a binary response with the logit
link, wii = µi(1 − µi) = exp(Fiβ)/(1 + exp(Fiβ))2.

Thus, given the values of β , we can compute the values of
the diagonal matrix W for any candidate set of design points.
Thus, local D-optimal designs for generalized linear models can
be found by setting F̃ = F

√
W and using a row-exchange algo-

rithm, such as that of Federov (1972), to find an n point subset
of F that maximizes the determinant of the information ma-
trix F̃′F̃.

For multivariate problems, a good candidate set may be of
enormous size, causing common computer algorithms to mal-
function or preventing their implementation. To overcome this
obstacle, sequential methods may be used. Begin with a rough
grid chosen at random or from a low-discrepancy sequence.
[A short description of low-discrepancy (also known as quasi-
random) sequences is given in the App.] For this candidate set,
calculate the regression matrix and find a D-optimal design. Use
the result to create a new candidate set, with each support point
of the D-optimal design found being the center of a new random
or quasi-random sequence. To avoid large candidate sets, limit
the size of the sequence around each point so that the number of
candidate points from all sequences will be reasonably small; in
the examples presented herein, we used 50 normally distributed
points around each candidate. Create a rule for adjusting the
search radius around the points; for instance, reduce the search
radius according to the largest distance between points in the
new design compared with the previous step, but no less than
30% of the last search radius used. Create a stopping rule in
accordance with the accuracy desired.
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To give an idea of the effectiveness of the procedure just
described, it takes less than 1 second to produce a 16-point
local D-optimal design accurate to 2 decimal places for the
5-variable Poisson model containing 2 interactions used in Sec-
tion 6. Computer run times presented in this article were mea-
sured using a desktop PC with a 2.4-GHz Celeron processor.

An implementation of the algorithm and procedures for ex-
amples from the following sections are available at http://www.
math.tau.ac.il/˜dms/GLM_Design.

3. CLUSTERING VERSUS BAYESIAN DESIGNS

Chaloner and Larntz (1989) discussed construction of Bayes-
ian-optimal designs for a one-variable (two parameters) logistic
regression, where the probability of success for an observation
at x ∈ [−1,1] is p(x; θ,µ) = 1/[1 + exp{−θ(x − µ)}]. Their
criterion for Bayesian D-optimality is to maximize the average
log determinant of the normalized information matrix; the ex-
pectation is taken according to a prior distribution on the coeffi-
cients (µ, θ). Their method requires that the number of design
points be specified, and so they repeated the optimization us-
ing the simplex algorithm of Nelder and Mead (1965) starting
with 2 design points and increasing the number steadily up to
20 points. They then chose the design that optimized the crite-
rion on the smallest number of design points. They illustrated
their method with µ and θ uniformly distributed on an interval
and with three different intervals for each parameter.

Chaloner and Larntz (1989) demonstrated that as the uncer-
tainty increases, so does the minimum number of support points
required to attain the optimal value. However, in a 1987 tech-
nical report, they also showed that out of three intervals exam-
ined for µ, only for the widest interval, when it is distributed
uniformly on [−1,1], is the Bayesian design significantly more
efficient than the best local D-optimal design. A design based
on clustering yields similar results and has three support points
for the examples where the Bayesian design has three support
points. It is more interesting to evaluate the effectiveness of
a design based on clustering for the examples in which the
Bayesian design proved superior to the centroid local D-optimal
design, that is, for µ ∼ U[−1,1]. As discussed by Chaloner and
Larntz (1989), the choice of interval for θ has only a small in-
fluence on the final design and its efficiency, and we display the
results when θ ∼ U[6,8]. Their optimal Bayesian design uses
seven support points with a reported value of −4.5783 for the
average log of the information matrix determinant.

We used K-means clustering over 100 local D-optimal
designs corresponding to coefficients of θ and µ set by a
Niederreiter (1988) quasi-random sequence over the described
intervals. Similar to Chaloner and Larntz (1989), we increased
the value of K, the number of support points, from 2 to 20. Fig-
ure 3 shows the mean value of the log of the determinant matrix
when estimated using the same 100 local designs. Similar to the
reported result, the criterion seems to reach a stable value for
a design with seven support points, and that value seems to be
better than the one stated by Chaloner and Larntz.

Averaging over 100 designs may be insufficient for a precise
evaluation, and using the same coefficient values to create the
cluster and to estimate its performance may create a bias. There-
fore, we reevaluated the 7-support point design (created through

Figure 3. Mean Value of the Log of the Determinant Matrix Estimated
Over a Rough Grid. The dotted line represents the Chaloner and Larntz
(1989) reported value.

100 local D-optimal designs) using 10,000 local D-optimal de-
signs, with their coefficients again determined by a Niederreiter
sequence. The criterion value given by this more thorough eval-
uation confirmed the validity of the rough estimation. Its value
is −4.25, higher than the value reported for the Bayesian de-
sign.

One of the advances of the work of Chaloner and Larntz
(1989) over previous approaches is to create designs without
the requirement that the points be equally spaced, and with the
possibility of a different number of observations at each point.
Like their work, a design created by clustering is not restricted
to equally spaced points, but it does put equal weight on all of
the support points. For a given set of points, it is possible to
improve the design using sequential quadratic programming to
adjust the weights. For the given example, this leads to only a
minor improvement in the criterion value, to −4.23.

Even though creating a robust design using clustering was
found to be superior in this example, Bayesian designs would
be expected to be generally better. If clustering normally does
not fall much from Bayesian designs, then it has clear advan-
tages over them: simplicity of creation and the need for consid-
erably less computational resources. Unlike Bayesian design,
extending the clustering procedure to multivariate problems is
almost trivial and is considered next.

4. CLUSTERING VERSUS MULTIVARIATE
COMPROMISE DESIGNS

Woods et al. (2006) provided a method for finding exact de-
signs for experiments in which there are several explanatory
variables. They used simulated annealing to find (as in Chaloner
and Larntz 1989) a design with a given number of support
points that maximizes the average log determinant of the nor-
malized information matrix. They noted that evaluating the in-
tegral is too computationally intensive for incorporation within
a search algorithm, and thus they averaged over a partial set
chosen to represent the model space. Their method allows cre-
ation of compromise designs with uncertainty in the link func-
tion, the linear predictor, and the model parameters.
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Woods et al. (2006, sec. 5) gave an example of creating a
16-point compromise design across a parameter space. They
described a crystallography experiment aimed at modeling how
four explanatory variables (rate of agitation during mixing, vol-
ume of composition, temperature, and evaporation rate) affect
the probability that a new product is formed. They recom-
mended that when the suggested ranges for the unknowns, βi,
are not large, the local D-optimal design for the centroid of the
parameter space will be used. Otherwise, a compromise design
based on a coverage design performs better. The superiority of
the compromise design created using a coverage set is demon-
strated with a parameter space as described in Table 1, which is
based on parameter space B3 in table 1 of the original article.

A design’s performance was evaluated using the median and
minimum efficiency relative to 10,000 local D-optimal designs
created for random parameter vectors from the parameter space.
The efficiency of a design was calculated as (|MC|/|ML|)1/p,
where p is the number of unknown coefficients and MC and
ML are the information matrices for the evaluated and local
D-optimal designs. A standard 24 factorial design performed
poorly for the example with a median efficiency value of .07
and a minimum of .003.

Before creating a design using clustering, we examined the
compatibility of our assessments to those given by Woods et al.
(2006). We created 10,000 local D-optimal designs using the
procedure described in Section 2. The values of the 10,000 pa-
rameter vectors were produced by a base 2 Niederreiter quasi-
random sequence with 212 as a seed. This procedure enables
recreation of the exact parameter vectors used here and at the
same time promises more uniform coverage of the parameter
space than can be achieved by random sampling. We then used
these designs to evaluate the median and minimum efficiency
of the coverage design of Woods et al. (2006). The results were
compatible with those reported by Woods et al.: a median of
.415 (vs. .41), and a minimum of .113 (vs. .12).

The procedure of Woods et al. (2006) requires their special
algorithm and a good problem-dependent choice of numerous
tuning parameters, and is computer-intensive. The current tim-
ing for their algorithm (see www.maths.soton.ac.uk/staff/woods/
glm_design; Woods 2006) is roughly 1.5 minutes on a stronger
computer than we used, and 7 minutes on our computer. We
proceeded in an attempt to create an alternative design by clus-
tering.

First, we created local D-optimal designs for 100 parame-
ter values, continuing the Niederreiter quasi-random sequence
used so far to ensure the use of different locally optimal de-
signs for creating the composite design and assessing its ef-
ficiency. This preparation work took less than 1 minute. We
then gathered the 1,600 resulting points and applied K-means
clustering, as implemented in MATLAB (MathWorks Inc.) to

Table 1. Coefficient Ranges From the Woods
et al. (2006) Crystallography Experiment

Parameter Range

β0 [−3, 3]
β1 [4, 10]
β2 [5, 11]
β3 [−6, 0]
β4 [−2.5, 3.5]

choose 16 representative points as our design. Often optimal
design points are found on the boundary of the design region;
thus we used the sum of the absolute differences as a distance
measure, so that each cluster is represented by the component-
wise median of its points.

Each time that clustering is performed, a slightly different de-
sign emerges. This is due to the random choice of initial cluster
centroid positions. Thus we summarize the design performance
through the median (and minimum) efficiencies averaged over
50 identical clustering runs, using the notation mean [95% CI],
where “CI” denotes confidence interval.

Clustering was found to have results comparable to those
of the Woods et al. (2006) composite design, with median
efficiency of .40 [.38, .42] and minimum efficiency of .091
[.06, .12]. The time it took to create the composite design was
negligible: .25 seconds [.16, .33], in addition to the 1-minute
preparation phase for finding 100 local D-optimal designs.

Better results can be obtained by repeating the cluster-
ing process numerous times. Similar to Chaloner and Larntz
(1989) and Woods et al. (2006), we chose the cluster with
the highest average log determinant of the information ma-
trix. Averaging was done on the rough grid of 100 parameter
vectors used to create the local D-optimal designs. Indeed, re-
peated clustering improved the results; the median efficiency
grew to .423 [.416, .430], and the minimum efficiency was
.096 [.06, .13], requiring only 25 seconds to choose the design.

Furthermore, because clustering is very fast, we can easily
examine the effect of different choices for the number of sup-
port points. Figure 4 displays the result of clustering done with
different numbers of support points. For each number of sup-
port points, we used clustering only once, based on the 100 lo-
cal D-optimal designs. We approximated the efficiency using
the same locally optimal designs. Given the local designs, pro-
ducing the data for the figure took only 20 seconds.

From Figure 4, we see that the median efficiency reaches
a stable value around or slightly above the previous number
of 16 support points, but the minimum efficiency continues to
grow and stabilizes for only 30 support points or more. This

Figure 4. The Effect of Different Choices for the Number of Support
Points on the Approximated Efficiency ( median efficiency;
minimum efficiency).
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shows that a design with more support points may be advised.
In fact, Woods et al. (2006) stated that in the crystallography
experiment, 48 observations will be run, with the 16-point de-
sign replicated 3 times. Woods (2006) reported that computa-
tion time for a 24-point design is about twice as long as that
needed for their 16-point composite design, which may be why
they used replicates rather than considering the option of adding
new support points. Creating a 48-point design using the algo-
rithm of Woods et al. (2006) required more than 100 minutes
on our computer.

Given this, we chose, as before, the best design out of 100
repetitions for a 48-means clustering. As expected, the median
did not change much: .423 [.415, .432], but the minimum effi-
ciency increased to .177 [.141, .213]. The increase in the min-
imal value is of great importance, as we discuss in Section 6.
In addition, it is found that efficiency estimation based on 100
local D-optimal designs is quite accurate, so one can produce
both a compromise design and an estimate of its efficiency dis-
tribution based on a small sample of local designs that is easy
to obtain.

Producing the 48-point design that exceeds the efficiency of
the results of Woods et al. (2006), requires only an additional
72 [63,80] seconds, and, combined with the preparation phase,
takes only 2.5 minutes, compared with the 100 minutes needed
to generate a 48-point design with the procedure of Woods et al.
(2006) on our computer. The proposed method is simpler, both
conceptually and computationally. Not only is it faster and of
higher efficiency, but, due to the production of local D-optimal
design, it facilitates the possibility of evaluating the efficiency
of the design and comparing the efficiency of designs with dif-
ferent numbers of support points. Without this unique trait, an
algorithm produces a design with no measure of its effective-
ness, and the importance of using a 48-point design might not
have been recognized.

5. ROBUSTNESS FOR LINEAR PREDICTORS
AND LINK FUNCTIONS

The method of Woods et al. (2006) for finding compro-
mise designs allows uncertainty not only in the model para-
meters, but also in the link function and the choice of the
linear predictor. In section 6 of their article they give an ex-
ample with two explanatory variables in which there is un-
certainty as to whether a first-order model or a model with
the interaction term is more appropriate, and also uncertainty
about the link function: probit versus the asymmetric com-
plementary log–log (CLL). The values of the model parame-
ters were β = (3.0,1.6,4.1)′ for the first-order model and β =
(1.2,1.7,5.4,−1.7)′ when considering a model with the inter-
action term. The results given are for designs with six observa-
tions.

Woods et al. (2006) showed that for this example, all of the
four locally optimal designs perform poorly for some of the
possible characteristics, with the first-order local D-optimal de-
signs insufficient for any estimation of the interaction term.
A compromise design created for the same problem enables es-
timation of all four models with efficiency of at least .64. Ta-
ble 2 is a reproduction of table 3 of Woods et al. (2006), adding

Table 2. Efficiencies of a Design Produced by Clustering, the Woods
et al. (2006) Compromise Design, and Four Local Optimal Designs di

Reproduced From Table 3 of the Original Article

Design

Model Clustering Woods d3 d4 d5 d6

Probit No interaction .75 .77 1.00 .34 .99 .30
Interaction .81 .80 0 1.00 0 .97

CLL No interaction .64 .64 .99 .24 1.00 .11
Interaction .85 .86 0 .97 0 1.00

a column with the efficiency achieved by clustering the four lo-
cal D-optimal designs.

It is seen that the performance of the Woods et al. (2006)
compromise design and the design created by clustering the
local D-optimal designs is very similar; both achieve at least
moderate efficiency for all four models.

Besides demonstrating the heuristic qualities of clustering,
this example is useful for demonstrating limitations of its use.
Three of the local D-optimal designs included a replicate of the
point [1,−1], and so had only five support points for a six-point
design. This poses an obstacle for clustering, because although
the best design may put higher weight on this support point
than on the other design points, the output of the clustering pro-
cedure includes any single point only once, and if seeking a six-
point design, it is likely to replace the replication of the existing
point by adding a different point with inferior contribution. To
overcome this obstacle, we slightly jittered the points of the
local D-optimal designs. Indeed, clustering the jittered design
points puts two points very close to [1,−1] and is an easy way
to overcome the limitation.

6. WAVE SOLDERING EXAMPLE

Wu and Hamada (2000, chap. 13, p. 563) discussed a two-
level factorial experiment to study the number of defects in a
wave soldering process. We now consider how our approach
could be applied to such an experiment, focusing on the number
of solder-joint defects and five continuous process variables:
prebake temperature, flux density, conveyer speed, cooling
time, and solder temperature. Like Wu and Hamada (2000), we
use a Poisson model for the defect counts.

The first step in our algorithm is to define an a priori
distribution for the model parameters. Here we consider the
common situation when no previous experimental data are
available for this task. As an alternative, we suggest construct-
ing the prior distribution in collaboration with an expert from
the factory. The expert is asked to estimate the number of de-
fects for different possible settings of the five factors; his es-
timates are analyzed as if they were experimental results, and
the uncertainty modeled is presented to the expert for approval.
We consider a case in which the expert believes that a first-order
model would be sufficient, but also specifies two pairs of factors
that have possible interaction effects. Both a first-order model
and a model with two cross-product terms were constructed
from the analysis of the thought experiment. The estimations
are presented in Table 3, for factor levels coded to [−1,1].

Remark 1. Note that the standard errors (SEs) are much
larger for the model that contains interactions, even though both
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Table 3. Prior Coefficient Estimates for Two Models for the Wave
Soldering Example

First-order With interactions

Term Estimate SE Estimate SE

Intercept −1.52 .21 −2.35 .69
x1 −4.30 .20 −5.53 .94
x2 −1.79 .16 −2.99 .82
x3 −3.39 .24 −3.95 .59
x4 −.28 .32 −.86 .54
x5 .23 .30 .41 .36
x1x2 −2.07 1.32
x1x3 −1.13 .98

NOTE: SE, standard error.

models were estimated from the same data. This phenomenon
of having less precise estimates for more complex models is
common.

Remark 2. Our analysis did not take into account the cor-
relation of coefficients, but this can be easily addressed, if de-
sired, in sampling the parameter vectors used to generate local
D-optimal designs.

Efficiency was estimated using 20,000 local D-optimal de-
signs, half for the first-order model and the other half for a
model with the suspected interactions. For each model, local
D-optimal designs were found for 10,000 coefficient vectors
sampled from the normal distribution through a quasi-random
sequence.

6.1 Clustering versus a Full Factorial Design

The median efficiency of a full factorial experiment with
32 points is <.1 and, as shown in Figure 5, its distribution has
2 peaks, originating from the 2 models considered. (The full
factorial has higher efficiency for the first-order model.) The
efficiency can be greatly improved using clustering. As a prepa-
ration phase, we created a set of 200 local D-optimal designs,
100 for each model, with parameters taken from a quasi-random
sequence in accordance with the normal distribution assumed.

Figure 5. A Full Factorial Design Efficiencies Histogram for 2 Consid-
ered Models With 10,000 Representative Model Parameters Each.

Figure 6. The Effect of Different Choices for the Number of Support
Points on the Approximated Efficiency ( median efficiency;
minimum efficiency).

The next step was to choose a good number of support points.
We repeated the process used with the crystallography experi-
ment, clustering only once for each of a set of possible support
point numbers, and evaluating the efficiency only roughly over
the same set of parameter vectors.

Remark 3. For our purposes, it is sufficient to cluster only
once for any tested number of support points without any repeti-
tions, as was done in the production of Figure 6. But lack of rep-
etition causes some of the cases studied to perform very poorly,
due to a bad random choice of the initial K cluster centroids
when performing the K-means clustering procedure. Hence the
graph is not smooth, and the “dips” observed at around 15 and
30 support points are likely to be an effect of a poor clustering
solution related to the random initial choice of centroids, not
to a real problem with these design sizes. Using this graph, we
choose the desired value for K; then it is important to repeat the
clustering process numerous times, to ensure high efficiency.

Remark 4. It should be assumed that when the unknown pa-
rameters’ uncertainty is distributed normally, the true minimum
efficiency should approach 0. Thus the values of the lower curve
in Figure 6 are not representative for the minimum values. But
we argue that the lower curve is still a good indicator for the
expected change in small efficiency quantiles.

It is seen that the median efficiency is stable for any choice
of more than 30 support points. If we now choose, for exam-
ple, a design with 48 support points, then the median efficiency
(as evaluated with the comprehensive database of 20,000 local
D-optimal designs) is .65. Figure 7 displays a histogram of local
efficiencies for a 48-run design achieved by clustering.

6.2 Clustering versus Centroid Design

As noted by Woods et al. (2006), the local D-optimal design
for the centroid of the parameter space is often a sufficiently
robust design. When there is more than one model, as in our
example, there is no single centroid. Still, given a strong re-
lationship between the two examined models, one of the two
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Figure 7. Efficiencies Histogram for a 48-Point Cluster Design for
2 Considered Models With 10,000 Representative Model Parameters
Each.

centroids may be a good choice. Indeed, the local D-optimal
design for the richer model is found to perform well, as shown
by its efficiency histogram in Figure 8.

The centroid design’s median efficiency is even higher in this
case than the efficiency achieved by clustering: .69. Further-
more, being a local optimal design, the histogram is guaranteed
to reach a maximum efficiency of 1. As a result, it may seem
that a different example would better demonstrate the advan-
tages of creating designs by clustering; possible examples in-
clude experiments with more models being considered (perhaps
with a greater distinction between them) or a wider uncertainty
in the parameter space, as is often the case when the expert can-
not give one set of estimates, but considers different scenarios.

Even in this example, however, the design created by cluster-
ing has an advantage over the centroid design, hidden in the left
region of the histograms. The relative efficiency between any
two designs can be considered an equivalent sample size; if the
relative efficiency of one design is ρ, then it requires 1/ρ times
as many observations to achieve the same D-criterion value as
the design with which it was compared. As is visually obvious

Figure 8. Centroid Local D-Optimal Design Efficiencies Histogram.

Figure 9. The Importance of Having as Small a Portion as Possible
of Low Efficiencies.

(Fig. 9), an efficiency value <.2 is related to a drastic increase
in the required sample size. It is much more important for a
robust design to have as small a fraction of low efficiencies as
possible, rather than including high efficiencies.

Comparison of the efficiency histograms of the centroid and
cluster designs shows that the left tail of the cluster design is
thinner. In fact, for the cluster design, only 2% of the 20,000
models considered have efficiency <.2, compared with 4.5% of
the models for the centroid design. Hence clustering creates a
more robust design by decreasing the portion of the uncertainty
space that, if discovered to be the true setup, would make the
design seriously inefficient.

7. ALGORITHM SUMMARY

We now summarize the algorithm for creating of a robust
design through clustering:

1. Translate previous experimental results or experts’ opin-
ion into a set of possible models, with a clear statement of
the uncertainty as to needed terms and coefficient values.

2. For each model, linear predictor, link function, and/or tar-
get criterion, create a sequence of possible parameter vec-
tors according to a defined distribution, as agreed on in
the first step. Sampling the parameter space using a low-
discrepancy sequence should be preferred over a random
sample. In the examples provided, we used 100 vectors
produced by a Niederreiter (1988) low-discrepancy se-
quence.

3. Find locally optimal designs for all of the sequences cre-
ated in step 2; see Section 2 for details.

4. Group the local designs from all models into a single
matrix. Apply slight jittering on the components; we de-
creased from the absolute value of each matrix element a
uniformly distributed random variate on [0,10−4].

5. Choose a number of support points, K, and use a K-means
clustering procedure on the matrix to produce a design.
We recommend using the sum of the absolute differences
as a distance measure, so that each centroid will be the
componentwise median of the points in each cluster. In
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MATLAB, this can be done using the “kmeans” function
with the option “cityblock” for distance.

6. Repeat the process for various choices of K, to choose the
most appropriate value.

7. For the chosen K, apply clustering numerous times; we
used 100 repetitions. After each clustering attempt, calcu-
late the information matrix of the outcome for all of the
models and parameter vectors chosen in step 2. Sum the
log of the determinants of the information matrices. Use
the clustering output with the highest sum as the design.

8. CONCLUSION

Local D-optimal designs for GLMs can be easily found using
existing algorithms and computer packages with minor adjust-
ments. Creating a database of locally optimal designs in accor-
dance with an a priori formulation of uncertainty of the model
in the parameter space, the model considered, link function, and
so on can be used to find a design robust to all aspects of the de-
scribed uncertainty. The proposed heuristic is then to cluster the
resulting database. Clearly, this is a simple procedure, requir-
ing minimal computational resources or time even for complex
models.

Our algorithm benefits from a unique trait, having the abil-
ity to evaluate the design’s efficiency through the database of
locally optimal designs used in generating the robust design.
This unique trait, together with the speed of the process, allows
exploration of various designs and investigation of the effect
of choosing different numbers of support points is encouraged.
Special attention should be given to finding designs with as
small a fraction of very low efficiencies as possible, say, <.2.
It has been demonstrated that the ability to explore many alter-
native designs in a short time helps this simple procedure out-
perform more sophisticated and complex design-optimization
methods.
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APPENDIX: LOW–DISCREPANCY SEQUENCES

Here we provide background on low-discrepancy sequences
in general and particularly on Niedrreiter’s (1988) quasi-
random sequence. Source code for an implementation for
MATLAB, C++, and Fortran90 can be found at http://www.csit.
fsu.edu/˜burkardt/m_src/niederreiter2/niederreiter2.html. In ad-
dition to providing the source code, the site briefly explains the
nature of the algorithm:

“A quasirandom or low discrepancy sequence, such as the Faure, Halton, Ham-
mersley, Niederreiter or Sobol sequences, is ‘less random’ than a pseudorandom
number sequence, but more useful for such tasks as approximation of integrals
in higher dimensions, and in global optimization. This is because low discrep-
ancy sequences tend to sample space ‘more uniformly’ than random numbers.
Algorithms that use such sequences may have superior convergence.”

We used NIEDERREITER2, which, as explained in the fore-
going, is an adaptation of the INLO2 and GOLO2 routines in
ACM TOMS Algorithm 738. The original code can compute
only the “next” element of the sequence. The revised code al-
lows the user to specify the index of any desired element. The
original, true, correct version of ACM TOMS Algorithm 738 is
available in the TOMS subdirectory of the NETLIB website.

A.1 An Illustration

Figure A.1 compares 100 pseudorandom observations on
[0,1]3, produced by the command “RANDOM = rand(100,3)”
in MATLAB to a three-dimensional Niederreiter base 2 low-
discrepancy sequence with 212 used as a seed, produced with
the code suggested above. The upper row of the figure contains
the two-dimensional projections of the pseudorandom se-
quence, and the bottom row presents the corresponding pro-
jections for Niederreiter’s quasi-random sequence. Clearly, the
low-discrepancy sequence covers the space more evenly, avoid-
ing the empty gaps that are common in the pseudorandom se-
quence.

A brief overview on the mathematical foundations of low-
discrepancy sequences can be found in Wikipedia, The Free En-
cyclopedia, at http://en.wikipedia.org/w/index.php?title=Low-
discrepancy_sequence&oldid=27681750; the rest of this ap-
pendix is a part of the description in the quoted link.

A low-discrepancy sequence is a sequence with the property
that for all N, the subsequence x1, . . . , xN is almost uniformly
distributed (in a sense to be made precise), and x1, . . . , xN+1
is almost uniformly distributed as well. Low-discrepancy se-
quences are also called quasi-random or subrandom sequences
because of their use in situations similar to those when pseudo-
random or random numbers are used instead. The “quasi”-
modifier is used to denote more clearly that the numbers are
not random (and to differentiate them from pseudorandomness,
which uses different assumptions), but have useful properties
similar to randomness in certain applications, such as the quasi-
Monte Carlo method.

The notion of uniformity is made precise as the discrepancy
defined later. Roughly speaking, the discrepancy of a sequence
is low if the number of points falling into a set B is close to
the number that would be expected from the measure of B. At
least three methods of numerical integration can be phrased as
follows: Given a set x1, . . . , xN in the interval [0,1], approxi-
mate the integral of a function f as the average of the function
evaluated at these points,

∫ 1

0
f (u)du ≈ 1

N

N∑
i=1

f (xi).

If the points are chosen as xi = i/N, then this is the rectangle
rule. If the points are chosen to be randomly (or pseudoran-
domly) distributed, then this is the Monte Carlo method. If the
points are chosen as elements of a low-discrepancy sequence,
then this is the quasi-Monte Carlo method. A remarkable result,
the Koksma–Hlawka inequality, shows that the error of such a
method can be bounded by the product of two terms, one of
which depends only on f and another that is the discrepancy of
the set x1, . . . , xN .
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Figure A.1. Comparison of Two-Dimensional Projections of a Pseudorandom Sequence (top row) and Niederreiter’s Quasi-Random Sequence
(bottom row).

It is convenient to construct the set x1, . . . , xN in such a way
that if a set with N + 1 elements is constructed, then the pre-
vious N elements need not be recomputed. The rectangle rule
uses a point set that has low discrepancy, but in general the ele-
ments must be recomputed if N is increased. Elements need not
be recomputed in the Monte Carlo method if N is increased,
but the point sets do not have minimal discrepancy. Using low-
discrepancy sequences gives the quasi-Monte Carlo method the
desirable features of the other two methods.

A.2 Definition of Discrepancy

The star-discrepancy is defined as follows, using Niederre-
iter’s notation:

D∗
N(P) = sup

B∈J∗

∣∣∣∣A(B;P)

N
− λs(B)

∣∣∣∣,
where P is the set x1, . . . , xN , λs is the s-dimensional Lebesgue
measure, A(B;P) is the number of points in P that fall into
B, and J∗ is the collection of sets of the form

∏s
i=1[0,ui),

where ui is in the half-open interval [0,1). Therefore, D∗
N(P) =

‖disc‖∞, where the discrepancy function is defined by disc(y) =
A([0, y);P)/N − λs([0, y)).

A.3 Two Main Conjectures

Conjecture 1. There is a constant cs depending only on s,
such that D∗

N(x1, . . . , xN) ≥ cs(ln N)s−1/N for any finite point
set x1, . . . , xN .

Conjecture 2. There is a constant c′
s depending only on s,

such that D∗
N(x1, . . . , xN) ≥ c′

s(ln N)s/N for any infinite se-
quence x1, x2, x3, . . . .

These conjectures are equivalent; they have been proved for
s ≤ 2 by W. M. Schmidt. In higher dimensions, the correspond-
ing problem remains open. The best-known lower bounds are
due to K. F. Roth.

A.4 The Best-Known Sequences

Constructions of sequences are known (due to Faure, Halton,
Hammersley, Sobol’, Niederreiter, and Van der Corput) such
that D∗

N(x1, . . . , xN) ≤ C(ln N)s/N, where C is a certain con-
stant, depending on the sequence. After Conjecture 2, these
sequences are believed to have the best possible order of con-
vergence.

[Received February 2006. Revised June 2006.]
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