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Chapter 1
Introduction

> Repeated Measures / Longitudinal data

> Examples
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1.1 Repeated Measures / Longitudinal Data

Repeated measures are obtained when a response
is measured repeatedly on a set of units

e Units:
> Subjects, patients, participants, ...
> Animals, plants, ...
> Clusters: families, towns, branches of a company,. ..

> ...

e Special case: Longitudinal data
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1.2 Captopril Data

e Taken from Hand, Daly, Lunn, Before After
. Patient SBP DBP SBP DBP
McConway, & Ostrowski (1994) 1 e 0
2 169 122 165 121
3 187 124 166 121
e 15 patients with hypertension 4 160 104 157 106
5 167 112 147 101
6 176 101 145 85
e The response of interest is the supine 7 185 121 168 98
3 206 124 180 105
blood pressure, before and after 0 3 1 4 103
treatment with CAPTOPRIL 10 146 102 136 98
11 174 08 151 90
12 201 119 168 98
13 198 106 179 110
14 148 107 129 103
15 154 100 131 32
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e Research question: ~
Blood pressure

220
How does treatment affect BP 7
185 |
fo)
e Remarks: =
=
> Paired observations: E
Most simple example of longitudinal 0 ol
data
> Much variability between subjects

15

Before After
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1.3 Growth Curves

e Taken from Goldstein 1979

e The height of 20 schoolgirls, with small, medium, or tall mothers, was measured
over a 4-year period:

Mothers height Children numbers

Small mothers < 155 cm 1 —6
Medium mothers [155cm; 164cm| 7— 13
Tall mothers > 164 cm 14 — 20

e Research question:

Is growth related to height of mother 7

Introduction to Longitudinal Data Analysis
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e Individual profiles:

Short mother
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e Remarks:
> Almost perfect linear relation between Age and Height
> Much variability between girls
> Little variability within girls
> Fixed number of measurements per subject

> Measurements taken at fixed time points

Introduction to Longitudinal Data Analysis
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1.4 Growth Data

e Taken from Potthoff and Roy, Biometrika (1964 )

e The distance from the center of the pituitary to the maxillary fissure was recorded
at ages 8, 10, 12, and 14, for 11 girls and 16 boys

e Research question:

Is dental growth related to gender 7
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e Individual profiles:

Girls
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30(
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e
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Distance
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e Remarks:
> Much variability between children
> Considerable variability within children
> Fixed number of measurements per subject

> Measurements taken at fixed time points

Introduction to Longitudinal Data Analysis
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1.5 Rat Data

e Research question (Dentistry, K.U.Leuven):

How does craniofacial growth depend on
testosteron production ?

e Randomized experiment in which 50 male Wistar rats are randomized to:
> Control (15 rats)
> Low dose of Decapeptyl (18 rats)
> High dose of Decapeptyl (17 rats)

Introduction to Longitudinal Data Analysis
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e Treatment starts at the age of 45 days; measurements taken every 10 days, from
day 50 on.

e The responses are distances (pixels) between well defined points on x-ray pictures
of the skull of each rat:
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e Measurements with respect to the roof, base and height of the skull. Here, we

consider only one response, reflecting the height of the skull.

e Individual profiles:
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e Complication: Dropout due to anaesthesia (56%):

# QObservations

Age (days)  Control Low High  Total
50 15 18 17 50
60 13 17 16 46
70 13 15 15 43
80 10 15 13 38
90 7 12 10 29
100 4 10 10 24
110 4 8 10 22

e Remarks:

> Much variability between rats, much less variability within rats

> Fixed number of measurements scheduled per subject, but not all
measurements available due to dropout, for known reason.

> Measurements taken at fixed time points

Introduction to Longitudinal Data Analysis
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1.6 Toenail Data

e Reference: De Backer, De Keyser, De Vroey, Lesaffre, British Journal of
Dermatology (1996).

e Toenail Dermatophyte Onychomycosis: Common toenail infection, difficult to
treat, affecting more than 2% of population.

e (Classical treatments with antifungal compounds need to be administered until the
whole nail has grown out healthy.

e New compounds have been developed which reduce treatment to 3 months

e Randomized, double-blind, parallel group, multicenter study for the comparison of
two such new compounds (A and B) for oral treatment.
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e Research question:

Are both treatments equally effective for
the treatment of TDO 7

e 2 X 189 patients randomized, 36 centers
e 48 weeks of total follow up (12 months)
e 12 weeks of treatment (3 months)

e Measurements at months 0, 1, 2, 3, 6, 9, 12.

Introduction to Longitudinal Data Analysis
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e Response considered here: Unaffected nail length (mm):

Please mark each infected nail with o "X"
Indicate the TARGET nail, which you selected ot baseline, for assessment with a circle.

DOOD

LS I

RIGHT FOOT LEFT FOOT

Please indicate on the diagram the margin of the unaffected torget nail.
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e As response is related to toe size, we restrict to patients with big toenail as target

nail = 150 and 148 subjects.

e 30 randomly selected profiles, in each group:

Treatment A

Unaffected Nail Length [mm]
o

Time (months)

Unaffected Nail Length (mm)

Treatment B

Time (months)

Introduction to Longitudinal Data Analysis

24



e Complication: Dropout (24%) # Observations

Time (months) Treatment A Treatment B Total

0 150 148 298
1 149 142 291
2 146 138 284
3 140 131 271
6 131 124 255
9 120 109 229
12 118 108 226

e Remarks:
> Much variability between subjects
> Much variability within subjects

> Fixed number of measurements scheduled per subject, but not all
measurements available due to dropout, for unknown reason.

> Measurements taken at fixed time points
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1.7 Mastitis in Dairy Cattle

e Taken from Diggle & Kenward, Applied statistics (1994)
e Mastitis : Infectious disease, typically reducing milk yields

e Research question:

Are high yielding cows more susceptible ?

e Hence, is the probability of occurrence of mastitis related to the yield that would
have been observed had mastitis not occured ?

e Hypothesis cannot be tested directly since ‘covariate is missing for all events’
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1.8 The Baltimore Longitudinal Study of Aging (BLSA)

e Reference: Shock, Greullich, Andres, Arenberg, Costa, Lakatta, & Tobin, National
Institutes of Health Publication, Washington, DC: National Institutes of Health
(1984).

e BLSA: Ongoing, multidisciplinary observational study, started in 1958, with the
study of normal human aging as primary objective

e Participants:
> volunteers, predominantly white, well educated, and financially comfortable

> return approximately every 2 years for 3 days of biomedical and psychological
examinations

> at first only males (over 1500 by now), later also females

> an average of almost 7 visits and 16 years of follow-up
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e The BLSA is a unique resource for rapidly evaluating longitudinal hypotheses:
> data from repeated clinical examinations

> a bank of frozen blood and urine samples

e Drawbacks of such observational studies:
> More complicated analyses needed (see later)

> Observed evolutions may be highly influenced by many covariates which may or
may not be recorded in the study
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1.8.1 Prostate Data

e References:
> Carter et al (1992, Cancer Research).
> Carter et al (1992, Journal of the American Medical Association).
> Morrell et al (1995, Journal of the American Statistical Association).

> Pearson et al (1994, Statistics in Medicine).

e Prostate disease is one of the most common and most costly medical problems in
the United States

e Important to look for markers which can detect the disease at an early stage

e Prostate-Specific Antigen is an enzyme produced by both normal and cancerous
prostate cells

Introduction to Longitudinal Data Analysis 30



e PSA level is related to the volume of prostate tissue.

e Problem: Patients with Benign Prostatic Hyperplasia also have an increased PSA

level

e Overlap in PSA distribution for cancer and BPH cases seriously complicates the
detection of prostate cancer.

e Research question (hypothesis based on clinical practice):

Can longitudinal PSA profiles be used to
detect prostate cancer in an early stage ?

Introduction to Longitudinal Data Analysis
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e A retrospective case-control study based on frozen serum samples:
> 16 control patients
> 20 BPH cases
> 14 local cancer cases

> 4 metastatic cancer cases

e Complication: No perfect match for age at diagnosis and years of follow-up
possible

e Hence, analyses will have to correct for these age differences between the
diagnostic groups.

Introduction to Longitudinal Data Analysis
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e Individual profiles:

Controls BFPH cases
4 4
< e
W) )
s an
+ + 2
< =
= ‘ | | ) ‘ | ‘ | |
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Years before diagnosis Years before diagnosis
L/R cancer cases Metastatic cancer cases

0 ) 10 15 20 25 30 0 5 10 15 20 25 30
Years before diagnosis

Years before diagnosis
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e Remarks:
> Much variability between subjects
> Little variability within subjects

> Highly unbalanced data
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1.8.2 Hearing Data

e References:
> Brant & Fozard, Journal of the Acoustic Society of America (1990).
> Morrell & Brant, Statistics in Medicine (1991).

e Hearing thresholds, by means of sound proof chamber and Bekesy audiometer
e 11 frequencies : 125 — 8000 Hz, both ears

e Research question:

How does hearing depend on aging ?

Introduction to Longitudinal Data Analysis
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e Data considered here:

> 500 Hz

> 6170 observations (3089 left ear, 3081 right ear) from 681 males without any

otologic disease

> followed for up to 22 years, with a maximum of 15 measurements/subject

e 30 randomly selected profiles, for each ear:

L eft ear

Right ear

S0

Sound pressure level (dB)

=20

Time [years]

20

=20

Sound pressure level (dB)

25
Time (years]
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e Remarks:

> Much variability between subjects
> Much variability within subjects

> Highly unbalanced data
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Chapter 2
Cross-sectional versus Longitudinal Data

> Introduction
> Paired verus unpaired t-test

> Cross-sectional versus longitudinal data
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2.1 Introduction

e The examples have illustrated several aspects of longitudinal data structures:
> Experimental and observational
> Balanced and unbalanced

> With or without missing data (dropout)
e Often, there is far more variability between subjects than within subjects.

e [ his is also reflected in correlation within units

Introduction to Longitudinal Data Analysis
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e For example, for the growth curves, the correlation matrix of the 5 repeated
measurements equals

1.00 0.95 0.96 0.93 0.87
0.95 1.00 0.97 0.96 0.89
0.96 0.97 1.00 0.98 0.94
0.93 0.96 0.98 1.00 0.98
0.87 0.89 0.94 0.98 1.00

e This correlation structure cannot be ignored in the analyses (Section 2.2)

e The advantage however is that longitudinal data allow to study changes within
subjects (Section 2.3).

Introduction to Longitudinal Data Analysis



2.2 Paired versus Unpaired ¢-test

2.2.1 Paired t-test

e The simplest case of longitudinal data are paired data

e \We re-consider the diastolic blood pressures from the Captopril data

e [he data can be summarized as:

ﬁ Descnptive Statiztics [capto_sta) O] x|

Continue...

-
=

falid H

DIA VOOR
15

Hean ‘ Minimum ‘ Maximum ‘ Std . Dew. ‘
1123333 33 .00000  130.0000 10.4%7219
103 . 0667 82 00000 @ 1Z25. 0000 @ 12.55540
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e There is an average decrease of more than 9 mmHG
e The classical analysis of paired data is based on comparisons within subjects:
Ai:}/;l_%27 Z:17715

e A positive AA; corresponds to a decrease of the BP, while a negative A, is
equivalent to an increase.

e Testing for treatment effect is now equivalent to testing whether the average
difference pa equals zero.
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e Statistica output:

Continue..

IHarkEd differences are =ignificant at p < 05000

Yariable

DIA HA

e Hence, the average change in BP is statistically, significantly different from zero

(p = 0.001).

-‘ Std . Dwv .
Mean Std. Dnr. Diff . Diff. t df u]
IR 112 .33 | 10.472

12 .555 15 | 9 .2667 | 3.6145 | 4.16672 14 .Qo1o
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2.2.2 Unpaired, Two-sample, ¢-test

e What if we had ignored the paired nature of the data ?

e We then could have used a two-sample (unpaired) t-test to compare the average
BP of untreated patients (controls) with treated patiens.

e We would still have found a significant difference (p = 0.0366), but the p-value
would have been more than 30x larger compared to the one obtained using the
paired t-test (p = 0.001).

e Conclusion:

15 x 2 # 30x1
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e The two-sample ¢-test does not take into account the fact that the 30
measurements are not independent observations.

e This illustrates that classical statistical models which assume independent
observations will not be valid for the analysis of longitudinal data

Introduction to Longitudinal Data Analysis

45



2.3 Cross-sectional versus Longitudinal Data

e Suppose it is of interest to study the relation between some response Y and age

e A cross-sectional study yields the following data:

Response Y

e The graph suggests a negative relation between Y and age.
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e Exactly the same observations could also have been obtained in a longitudinal
study, with 2 measurements per subject.

e First case:

Response Y
h |

Age

Are we now still inclined to conclude that there is a
negative relation between Y and Age ?
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e The graph suggests a negative cross-sectional relation but a positive longitudinal

trend.

e Second case:

Response Y

e The graph now suggests the cross-sectional as well as longitudinal trend to be

negative.

Introduction to Longitudinal Data Analysis
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e Conclusion:

Longitudinal data allow to distinguish differences between
subjects from changes within subjects

e Application: Growth curves for babies (next page)
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Chapter 3
Simple Methods

> Introduction
> Overview of frequently used methods

> Summary statistics
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3.1 Introduction

e The reason why classical statistical techniques fail in the context of longitudinal
data is that observations within subjects are correlated.

e In many cases the correlation between two repeated measurements decreases as
the time span between those measurements increases.

e A correct analysis should account for this

e The paired t-test accounts for this by considering subject-specific differences
A; =Yy — Y.

e This reduces the number of measurements to just one per subject, which implies
that classical techniques can be applied again.
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e In the case of more than 2 measurements per subject, similar simple techniques
are often applied to reduce the number of measurements for the ith subject, from
n; to 1.

e Some examples:
> Analysis at each time point separately
> Analysis of Area Under the Curve (AUC)
> Analysis of endpoints
> Analysis of increments

> Analysis of covariance
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3.2 Overview of Frequently Used Methods

3.2.1 Analysis at Each Time Point

e The data are analysed at each occasion separately.

e Advantages:

> Simple to interpret

> Uses all available data

e Disadvantages:

> Does not consider ‘overall’ differences
> Does not allow to study evolution differences

> Problem of multiple testing
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3.2.2 Analysis of Area Under the Curve
e For each subject, the area under its curve is calculated :
AUCZ = (tz'g — tﬂ) X (?J@'l -+ y¢2>/2 -+ (tz'g — tig) X (yz'g + y¢3>/2 + ...
e Afterwards, these AUC); are analyzed.

e Advantages:
> No problems of multiple testing
> Does not explicitly assume balanced data

> Compares ‘overall’ differences

e Disadvantage: Uses only partial information : AUC;
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3.2.3 Analysis of Endpoints

e In randomized studies, there are no systematic differences at baseline.

e Hence, ‘treatment’ effects can be assessed by only comparing the measurements
at the last occasion.

e Advantages:
> No problems of multiple testing

> Does not explicitly assume balanced data

e Disadvantages:
> Uses only partial information : v,

> Only valid for large data sets
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3.2.4 Analysis of Increments

e A simple method to compare evolutions between subjects, correcting for

differences at baseline, is to analyze the subject-specific changes v;,,, — yi,.

e Advantages:
> No problems of multiple testing

> Does not explicitly assume balanced data

e Disadvantage: Uses only partial information : v;,. — s
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3.2.5 Analysis of Covariance

e Another way to analyse endpoints, correcting for differences at baseline, is to use
analysis of covariance techniques, where the first measurement is included as
covariate in the model.

e Advantages:
> No problems of multiple testing

> Does not explicitly assume balanced data

e Disadvantages:
> Uses only partial information : y;, and v,

> Does not take into account the variability of v;,
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3.3 Summary Statistics

e The AUC, endpoints and increments are examples of summary statistics

e Such summary statistics summarize the vector of repeated measurements for each
subject separately.

e This leads to the following general procedure :

> Step 1 : Summarize data of each subject into one statistic, a summary
statistic

> Step 2 : Analyze the summary statistics, e.g. analysis of covariance to
compare groups after correction for important covariates

e This way, the analysis of longitudinal data is reduced to the analysis of
independent observations, for which classical statistical procedures are available.
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e However, all these methods have the disadvantage that (lots of) information is lost

e Further, they often do not allow to draw conclusions about the way the endpoint
has been reached:

Hypothetical average evolutions

15

- ==  Group A

Response
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Chapter 4
The Multivariate Regression Model

> The general multivariate model
> Model fitting with SAS
> Model reduction

> Remarks
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4.1 The General Multivariate Model

e \We re-consider the growth data:

Girls Boys

34 34

30¢ 307

N
N

Distance
N
(0)]

Distance
N
(0))]

A\
N

187 187

14 14

5 8 10 12 14 16 5 8 10 12 14 16
Age (years]) Age (years)
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e This is a completely balanced data set:
> 4 measurements for all subjects

> measurements taken at exactly the same time points

e Let Y; be the vector of n repeated measurements for the ith subject :

Y = (Vi Yo ... Vi)

e [he general multivariate model assumes that Y; satisfies a regression model

X,; : matrix of covariates
Y, = XiB + &; with (3 : vector of regression parameters

g; : vector of error components, €; ~ N(0, Y)
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e We then have the following distribution for Y; :  Y; ~ N(X;3,%)

e The mean structure X;3 is modelled as in classical linear regression and ANOVA
models

e Usually, > is just a general (n X n) covariance matrix.

However, special structures for >3 can be assumed (see later).

e Assuming independence across individuals, 3 and the parameters in X can be
estimated by maximizing

Ly = ﬁ {(27r)”/2 \ZI_% exp (—; (yi — XiB) 7 (y; — X@ﬂ))}
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e Inference is based on classical maximum likelihood theory:
> LR tests

> Asymptotic WALD tests

e More details on inference will be discussed later
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4.2 Model Fitting With SAS

4.2.1 Model Parameterization

e As an example, we fit a model with unstructured mean and unstructured
covariance matrix to the growth data (Model 1).

e Let x; be equal to 0 for a boy, and equal to 1 for a girl

e One possible parameterization of the model is

Yii = Bos(l—x;) + Bisx; +€a

Yio = Boio(l — ;) + Brioxi + €
Yis = Boao(l — i) + Briaxi + €is
Yis = Boaa(l — ) + Briawi + i
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e In matrix notation:

Y, =Xi8+ei,
with
(1—z) 0 0 0 2, 0 0 0
0 (1-z) 0 0 0z 0 0
X, =
0 0 (1-2) 0 00 z 0
0 0 0 (1—z) 0 0 0 z
and with

/B — (ﬁO,S; 60,107 50,127 60,147 61,87 51,107 61,127 51,14),
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4.2.2 SAS Program

e SAS syntax:

proc mixed data = growth method = ml;

class idnr sex age;

e Data structure:
one record per observation:

idnr age sex measure
model measure = age*sex / noint s;
repeated age / type = un subject = 1.0000 8.0000 1.0000 21.000
run 1.0000 10.000 1.0000 20.000
1.0000 12.000 1.0000 21.500
1.0000 14.000 1.0000 23.000
2.0000 8.0000 1.0000 21.000
2.0000 10.000 1.0000 21.500
26.000 12.000 0.0000 26.000
26.000 14.000 0.0000 30.000
27.000 8.0000 0.0000 22.000
27.000 10.000 0.0000 21.500
27.000 12.000 0.0000 23.500
27.000 14.000 0.0000 25.000
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e The mean is modeled in the MODEL statement, as in other SAS procedures for
linear models

e The covariance matrix is modeled in the REPEATED statement:
> option ‘type=" specifies covariance structure
> option ‘subject=idnr’ specifies the clusters in the data set

> the variable ‘age’ is used to order measurements within clusters
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4.2.3 Results

e Maximized log-likelihood value: ¢ = —208.25

e Estimates for parameters in mean structure, and implied fitted averages:

Parameter MLE (s.e.) Unstructured Means, Unstructured Covariance
Fos 22.8750 (0.5598) o

Bo.10 23.8125 (0.4921) sirls -

Bo.12 25.7188 (0.6112) . | »

Bo,14 27.4688 (0.5371) & ..

Ors 21.1818 (0.6752) 5 .

Bi,10 22.2273 (0.5935)

CIRP 23.0909 (0.7372)

P11 24.0909 (0.6478) = ; )y - - -

Age [Years]
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e Fitted covariance and correlation matrices:

5.0143 2.5156 3.6206 2.5095
. 2.5156 3.8748 2.7103 3.0714
3.6206 2.7103 5.9775 3.8248
2.5095 3.0714 3.8248 4.6164

|

1.0000 0.5707 0.6613 0.5216
0.5707 1.0000 0.5632 0.7262
0.6613 0.5632 1.0000 0.7281
0.5216 0.7262 0.7281 1.0000
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4.3 Model Reduction

e In many circumstances, one will be interested in reducing the model.

e For the growth data for example, one may be interested in finding out whether the
fitted average profiles can be well described by straight lines.

e Also, the covariance matrix contained 10 parameters, not even of interest. If this
can be reduced, one may gain efficiency for the mean structure.

e In practice, one therefore usually tries to reduce the mean and covariance
structures, yielding more parsimonious models

e This is now illustrated using the growth data
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4.3.1 Reduction of the Mean Structure

Model 2: Linear Average Trends

e Linear average trend within each group, unstructured 4 x 4 covariance matrix X
e Model 2 is given by (z; = 1 for girls):
Yii = 6o+ Borxi + Bioti (1 — ;) + Btz + €45,

e In matrix notation, this equals Y; = X3 + g;, with design matrix
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e Parameterization 3 = (ﬁo, Bo1, B1o, 611)/ :

> 3y : intercept for boys
> By + o1 : intercept for girls
> (319 : slope for boys

> (311 : slope for girls

e SAS program :

proc mixed data = growth method = ml,;

class idnr sex ageclss;

model measure = sex age*sex / s;

repeated ageclss / type = un subject = idnr;
run;

e The variable ageclss is a copy of the original variable age
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e LR test Model 2 versus Model 1:

Mean Covar par —2¢ Ref G*> df »p
1 unstr. unstr. 18 416.509
2 #slopes unstr. 14 419.477 1 2968 4 0.5632

AN AN

e Predicted trends:  girls : Y; = 17.43 + 0.4764t;  boys : Y; = 15.84 + 0.8268¢

Unstructured Means, Unstructured Covariance Two Lines, Unstructured Covariance
28 | /. 28 | /’
27 | 7 27 ] 7
. Girls o - . Girls P -
— — Bays — — Boys P @
B 25 | & 25 ]
= [
B 24 | .S 24 |
§%! %)
(o] i [mm] i
23 23
22 | 22 |
21 ] 21 |
20 ! ! ! ! ' 20
6 8 10 12 14 16 6 8 10 12 14 16
Age (Years] Age (Years)
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Model 3 : Parallel Average Profiles

e Linear average trend within each sex group, the same slope for both groups
e Unstructured 4 X 4 covariance matrix X
e Model 3 is given by:

Yii = Bo + Borxi + Bitj + €4

e In matrix notation, this equals Y; = X3 + &;, with design matrix
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e Parameterization 3 = ([, Bo1, 01)" :
> (3 : intercept for boys
> Bo + (o1 : intercept for girls

> (3; : common slope for boys and girls

e SAS program :

proc mixed data = growth method = ml;

class idnr sex ageclss;

model measure = sex age / s;

repeated ageclss / type = un subject = idnr;
run;

o LR test: Mean Covar par —0 Ref G? df p

1 unstr. unstr. 18 416.509
2 #slopes unstr. 14 419.477 1 2968 4 0.5632
3 =slopes unstr. 13 426.153 2 6.676 1 0.0098
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AN

e Predicted trends: girls : Y; = 15.37 + 0.6747¢;  boys : }A/] = 17.42 + 0.6747¢;

Unstructured Means, Unstructured Covariance Two Lines, Unstructured Covariance
28 | /. 28 | /.
27 ] 7 27 ] 7
i — Girls P “ , — Girls P -
28 — — Bays /. 28 — — Boys P 2
8 25 ]| 8 25 ]|
c c
_S 24 ] B 24 |
® ®
[am] ] (] |
23 23
22 | 22 |
21 ] 21 ]
20 ! ! ! ! ' 20
6 8 10 12 14 16 6 8 10 12 14 16
Age (Years) Age (Years)
Parallel Lines, Unstructured Covariance
28 |
o
27 ] P
] — Girls - <
= — — Boys ,/
8 25 ]|
C
o] ]
D 24
©
[mm} ]
23
22 |
21

20

Age (Years)
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4.3.2 Reduction of the Covariance Structure

e In order to reduce the number of parameters in the covariance structure, we can
now fit models with more parsimonious structures

e This often leads to more efficient inferences for the mean parameters.

e This is particularly useful when many repeated measurements are taken per
subject.

e SAS includes a large variety of covariance structures (see SAS help function)
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e Some examples:

Structure Example

of 012 013
Unstructured 01 2 5
ype o135 03 03

2
Simple % ;)2 8
type=SIMPLE 0 0 o2
Compound
S mnI:etr oitot of ol
y —CSy 0% 0% +o0 0%
type= of of 0% + 0?
Banded o2 o 0
type=UN(2) o1z 03 O3

0 0923 O'%
First-order o2 po? plo?
autoregressive pa’ o po
type=AR(1) p*c? po?  o?

Structure Example
2

Toeplitz 512 00122 giz

type=TOEP 013 o1 02
2

Toeplitz (1) UO 002 8

type=Toep(1) 0 0 o2

Heterogeneous
compound

symmetry
type=CSH

Heterogeneous
first-order

autoregressive
type=ARH(1)

Heterogeneous
Toeplitz
type=TOEPH

2
01 po109 pPoi103

2
poi102 05 ,002203
pPo103 pPO203 03

2 2
01 ,001202 P 0103
p20'10'2 09 p0'220'3
P 0103 pPO203 O3

2

01 ,010'%02 P20103

P10102 09 p10%03
P20103 pP10203 O3
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Model 4: Toeplitz Covariance Structure

e Linear average trend within each sex group

e The estimated covariance matrix (s.e.) of the unstructured covariance matrix
under Model 2 equals:

e This suggests that a possible model reduction could consist of assuming equal
variances, and banded covariances.
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e This is the so-called Toeplitz covariance matrix X2, with elements of the form
2ij = Qi :

ay) 1 9 O3
ap Oy O Qg

Qy 1 Op 07

a3 Gy ] O

e Note that this is only really meaningful when the time points at which
measurements are taken are equally spaced, as in the current example.

e SAS program :

proc mixed data = growth method = ml,;

class sex idnr ageclss;

model measure = sex age*sex / s;

repeated ageclss / type = toep subject = idnr;
run;
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e LR test Model 4 versus Model 2:

Mean  Covar par —2/

Ref G* df p

1 unstr. unstr. 18 416.509
2 # slopes unstr. 14 419.477
4 =+ slopes banded 8 424.643

1 2968 4 0.5632
2 5166 6 0.5227

e Fitted covariance and correlation matrices:

4.9439 3.0507 3.4054 2.3421
. 3.0507 4.9439 3.0507 3.4054
3.40564 3.0507 4.9439 3.0507
2.3421 3.4064 3.0507 4.9439

l

1.0000 0.6171 0.6888 0.4737
0.6171 1.0000 0.6171 0.6888
0.6888 0.6171 1.0000 0.6171
0.4737 0.6888 0.6171 1.0000
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Model 5: AR(1) Covariance Structure

e Linear average trend within each sex group

e The AR(1) covariance structure assumes exponentially decaying correltions, i.e.,
elements of X of the form X;; = o2pli=il

L p p°p
p 1L p p

PP p 1 p

P p 1

e Note that this is also only really meaningful when the time points at which
measurements are taken are equally spaced.
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e SAS program:

proc mixed data = growth method = ml,;
class sex idnr ageclss;
model measure = sex age*sex / s;

run;

repeated ageclss / type = AR(1) subject = idnr;
e LR test Model 5 versus Models 2 and 4 :
Mean  Covar par —2¢ Ref G? df p

1 unstr. unstr. 18 416.509

2 #slopes unstr. 14 419477 1 2968 4 0.5632

4 = slopes banded 8 424643 2 5166 6 0.5227

5 + slopes AR(1) 6 440.681 2 21.204 8 0.0066
4 16.038 2 0.0003
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e Fitted covariance and correlation matrices:

4.8903 2.9687 1.8021 1.0940
. 2.9687 4.8903 2.9687 1.8021
1.8021 2.9687 4.8903 2.9687
1.0940 1.8021 2.9687 4.8903

1.0000 0.6070 0.3685 0.2237
0.6070 1.0000 0.6070 0.3685
0.3685 0.6070 1.0000 0.6070
0.2237 0.3685 0.6070 1.0000
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4.4 Remarks

e The multivariate regression model is primarily suitable when measurements are
taken at a relatively small number of fixed time points

e Even if some measurements are missing, the multivariate regression model can be
applied, as long as the software allows for unequal numbers of measurements per
subject.

e In the SAS procedure MIXED, this is taken care of in the REPEATED statement

repeated ageclss / ;

from which it can be derived which outcomes have been observed, and which ones
are missing.
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e In case of large numbers of repeated measurements:

> Multivariate regression models can only be applied under very specific mean
and covariance structures, even in case of complete balance.

> For example, unstructured means and/or unstructured covariances require
estimation of very many parameters

e In case of highly unbalanced data:

> Multivariate regression models can only be applied under very specific mean
and covariance structures.

> For example, Toeplitz and AR(1) covariances are not meaningful since time
points are not equally spaced.

> For example, compound symmetric covariances are meaningful, but based on
very strong assumptions.
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Chapter 5
A Model for Longitudinal Data

> Introduction

> The 2-stage model formulation

> Examples: Rat and prostate data

> The general linear mixed-effects model
> Hierarchical versus marginal model

> Examples: Rat and prostate data

> A model for the residual covariance structure
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5.1 Introduction

e In practice: often unbalanced data:

> unequal number of measurements per subject

> measurements not taken at fixed time points
e Therefore, multivariate regression techniques are often not applicable

e Often, subject-specific longitudinal profiles can be well approximated by linear
regression functions

e This leads to a 2-stage model formulation:

> Stage 1: Linear regression model for each subject separately

> Stage 2: Explain variability in the subject-specific regression coefficients using
known covariates
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5.2 A 2-stage Model Formulation

5.2.1 Stage 1l

e Response Yj; for ith subject, measured at time ¢;;, ¢t =1,..., N, j

e Response vector Y; for ith subject: Y, = (Y1, Y,....Y)

e Stage 1 model:
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e /;is a (n; X q) matrix of known covariates
e 3. is a g-dimensional vector of subject-specific regression coefficients
@&, N(O, ZZ), often >J; = 0'2]%

e Note that the above model describes the observed variability within subjects
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5.2.2 Stage 2

e Between-subject variability can now be studied from relating the 3, to known
covariates

e Stage 2 model:

B; = K3+ b;

e /{; is a (¢ X p) matrix of known covariates

e (3 is a p-dimensional vector of unknown regression parameters

o b; ~ N(0, D)
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5.3 Example: The Rat Data

e Individual profiles:

Control
88
»
©
X
S 80
[b]
®
o
a 72T
2]
©
[am
B4 y y y y ' .
45 55 65 75 85 95 105 15
Age (days]
High dose
88
‘»
©
X
o 80f
—
©
[72)
o
o 72T
(2]
©
[am
B4

45 55 65 75 85 95 105
Age (days)

15

Response (pixels])

jos)
8}

03]
o

~
\V]
T

(92}
IS

55 &5 75 85 95 105
Age (days)

s
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e Transformation of the time scale to linearize the profiles:

Age;; — ti; = In[l + (Age;; — 45)/10)]

i

e Note that ¢ = 0 corresponds to the start of the treatment (moment of
randomization)

e Stage 1 model: Yii = Bu+ Baitij+eij, 7=1,...,n

e Matrix notation:

1 ;0
YE — Z@,@i-l—&'i with Zz' =
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e In the second stage, the subject-specific intercepts and time effects are related to
the treatment of the rats

e Stage 2 model:

Bii = Bo + by,

Boi = B1L; + BoH; + 3305 + by,

e [;, H; and C; are indicator variables:

1 if low dose 1 if high dose 1 if control
L, = H, = C;, =
0 otherwise 0 otherwise 0 otherwise
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e Parameter interpretation:
> (3y: average response at the start of the treatment (independent of treatment)

> (31, (2, and [(33: average time effect for each treatment group
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5.4 Example: The Prostate

Data

e Individual profiles:

Controls
4
N =16
T 4 = n; = 10
ﬁ 3 9.4 = t, = 168
o 56.7 = age = 80.5
+ 2
C
=
0 5 10 15 20 25 30

Years before diagnosis

L/R cancer cases

) 20 25
Years before diagnosis

BFH cases

4
< 30
N
o
+ 27
=t

O L L L L L

0 5 10 15 20 25 30

Years before diagnosis

Metastatic cancer cases

In(1 + PSA)

5 10 15 20 25
Years before diagnosis

30
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e Transformation of the response:
PSAU B }/z'j = h’l(PSAZ‘j -+ 1)
o Stage 1 model: Y;j — 612' -+ ﬁQz’tzj + ﬁ?n’tzzj + €ij, ] — 1, ey Ny

e Matrix notation:
1ty 13

_ 1t 15
Y; =2Z,8;+e; with Z;=

1t t:

mny

e In the second stage, the subject-specific intercepts and time effects are related to
the age (at diagnosis) and disease status
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e Stage 2 model:
G = BiAge; + 205 + B3B; + BaLi + B5M; + by,

Bai = BsAge; + 5:C; + Bs B + PoL; + ProM; + by,

Bsi = BuiAge; + 1205 + Bi3B; + BraL; + BisM; + bs;

e (;, B;, L; and M; are indicator variables:

1 if Control 1 if BPH case
C; = B; =

0 otherwise 0 otherwise

1 if L/R cancer case 1 if Metastatic cancer case
L, = M; =

0 otherwise 0 otherwise
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e Parameter interpretation:
> (39, (3, B4, and (35: average intercepts after correction for age
> O7, (s, B9, and 31(: average linear time effects after correction for age.

> (312, (13, P14, and (15 average quadratic time effects after correction for age.
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5.5 The General Linear Mixed-effects Model

e A 2-stage approach can be performed explicitly in the analysis

e However, this is just another example of the use of summary statistics:
> Y is summarized by 3,

> summary statistics 3, analysed in second stage

e The associated drawbacks can be avoided by combining the two stages into one

model:
Y; = Zz'IBZ' + &;
— Y, = Z@Ki,3+Z¢bi+€i = X@B-I—Zibi-l—&‘i
B = KiB+b; T
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e General linear mixed-effects model:

Y, = X,8+ Zb; + &

bZNN(O,D), €iNN(O,ZZ'),

bi,...,by,e1,...,Eyx independent

e Terminology:
> Fixed effects: 3
> Random effects: b;

> Variance components: elements in D and >
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5.6 Hierarchical versus Marginal Model

e The general linear mixed model is given by:

Y, = Xiﬂ-i— Z;b; + €;

bZNN<O,D), E,‘iNN(O,ZZ'),

bi,...,by,€1,...,eN independent

e |t can be rewritten as:

Y;|b; ~ N(X.8+ Zib;, %), b; ~ N(0,D)
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e |t is therefore also called a hierarchical model:
> A model for Y; given b;
> A model for b;

e Marginally, we have that Y; is distributed as:

Y; ~ N(X,8,ZDZ + %)

e Hence, very specific assumptions are made about the dependence of mean and
covariance onn the covariates X; and Z;:

> Implied mean : X3
> Implied covariance : V; = Z,DZ! + %,

e Note that the hierarchical model implies the marginal one, NOT vice versa
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5.7 Example: The Rat Data

e Stage 1 model: Yij = B+ Patij +eij, j=1,...,n

Bii = Bo + b,
Boi = B1L; + BoH; + 3305 + by,

e Stage 2 model:

e Combined: Yii = (Bo+bu)+ (B1Li + BoHi + B5C; + bay)tii + €

60 T blz’ + (61 + bQi)tzj + Eijs if low dose
= 1 Bo+ by + (B2 + boi)ti; + €ij, if high dose

ﬁO + blz’ + <ﬁ3 + bQi)tz'j + Eij if control.
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e Implied marginal mean structure:
> Linear average evolution in each group
> Equal average intercepts

> Different average slopes

e Implied marginal covariance structure (3; = 0*I,,.):

1
Cov(Yi(t1),Yi(t2)) = (1 tl)D , + 025{151,152}
2

= dooty to + dyo(t1 + t2) + di1 + 025{2517152}.

e Note that the model implicitly assumes that the variance function is quadratic
over time, with positive curvature dos.
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e A model which assumes that all variability in subject-specific slopes can be
ascribed to treatment differences can be obtained by omitting the random slopes
bo; from the above model:

Yii = (Bo+ bui) + (BiLi + BoHi + B3Ci)ti; + €ij

Bo + b1 + Biti; + €ij, if low dose
=\ B0+ bi; + Bati; + €5, if high dose

Bo + b1 + Bati; + €5, if control.

e This is the so-called random-intercepts model

e The same marginal mean structure is obtained as under the model with random
slopes
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e Implied marginal covariance structure (3; = 0*1I,,,.):

Cov(Yi(t1), Yilta) = (1)D(1) + 000

= di + 0'2(5{,51,152}.

e Hence, the implied covariance matrix is compound symmetry:
> constant variance dy; + o2

> constant correlation p, = dq1/(di1 + %) between any two repeated
measurements within the same rat

Introduction to Longitudinal Data Analysis 109



5.8 Example: The Prostate Data

o Stage 1 model: }/ij — ﬁli -+ ﬁ?itzj + ﬁ?)z't@zj + 82']', ] — 1, ey Ny

Bii = BiAge; + 20 + B3 B; + BaLly + Bs M; + by,
e Stage 2 model: Bai = BeAge; + 37C; + BsB; + BoL; + B1oM; + b,
Bsi = BiiAge; + 51205 + BisBi + BiaL; + Bi5M; + b,

e Combined: Yij = DiAge; + 020 + B3B; + BaLi + 05M;
+ (BsAge; + 5705 + B Bi + BoLi + BroM;) B
+ (Br1Age; + 512C; + Bi3Bi + B1aLi + Bis M) t?j
+ by + boiti; + bgit?j + €.
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e Implied marginal mean structure:

> Quadratic average evolution in each group

> Average intercept and linear as well as quadratic slopes corrected for age

differences

e Implied marginal covariance structure (3; = 01, ):
7

1
Cov(Yi(t1), Yi(t2)) = (1 th t%)D to

5

+ 025{251,152}

— dast? 15+ dos(t? to + 11 13) + doot o

—|—d13<t% + t%) + dlg(tl + tg) +dqy + 02(5{2517152}.

e The implied variance function is now a four-degree polynomial over time.
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5.9 Example: Bivariate Observations

e Balanced data, two measurements per subject (n; = 2), two models:

Model 1:
Random intercepts

_|_
heterogeneous errors

1 o? 0
Vo= (d) (1 1) +
1 0 o
d+o} d
d d+ o3

Model 2:

Uncorrelated intercepts and slopes

_|_
measurement error

1L0|[d 0 11 o2 0
_|_

11 0 dy ]| 01 0 o2

d1+0'2 dy

dy d1+d2—|—02
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e Different hierarchical models can produce the same marginal model

e Hence, a good fit of the marginal model cannot be interpreted as evidence for any
of the hierarchical models.

e A satisfactory treatment of the hierarchical model is only possible within a
Bayesian context.
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5.10 A Model for the Residual Covariance Structure

e Often, Y; is taken equal to %1,

e \We then obtain conditional independence:

Conditional on b;, the elements in Y; are independent

e In the presence of no, or little, random effects, conditional independence is often
unrealistic

e For example, the random intercepts model not only implies constant variance, it
also implicitly assumes constant correlation between any two measurements within
subjects.
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e Hence, when there is no evidence for (additional) random effects, or if they would
have no substantive meaning, the correlation structure in the data can be
accounted for in an appropriate model for X;

e Frequently used model: Y, = XiB + Zib; + €nyi + €
l

€

e 3 stochastic components:
> b;: between-subject variability
> €)i: measurement error

> €4 serial correlation component
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® £,; represents the belief that part of an individual's observed profile is a response
to time-varying stochastic processes operating within that individual.

e This results in a correlation between serial measurements, which is usually a
decreasing function of the time separation between these measurements.

e The correlation matrix H; of €,; is assumed to have (j, k) element of the form
hijt = g(|t;j — tix|) for some decreasing function g(-) with ¢g(0) =1

e Frequently used functions g(-):
> Exponential serial correlation: g(u) = exp(—ou)

> Gaussian serial correlation: g(u) = exp(—¢u?)
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e Graphically, for ¢ = 1:

Exponential : glu] = exp(-u) Gaussian : glu) = exp(-u®)

e Extreme cases:
> ¢ = +00: components in €,; independent

> @ = 0: components in €,; perfectly correlated
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e In general, the smaller ¢, the stronger is the serial correlation.

e Resulting final linear mixed model:

YE — XZ/B + Zzbz + €)yi + € (2)i

b; ~ N(0,D)
Ewi ~ N(0,0%I,.)  independent
€wi ~ N(0,7°H,)
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e Graphical representation of all 4 components in the model:

Stochastic components in general linear mixed model

Subject i

Average evolution

Hesponse

Subject i>

Time
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Chapter 6
Exploratory Data Analysis

> Introduction

> Mean structure

> Variance function

> Correlation structure

> Individual profiles
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6.1 Introduction

e A linear mixed model makes assumptions about:
> mean structure: (non-)linear, covariates,. ..
> variance function: constant, quadratic, ...
> correlation structure: constant, serial, ...

> subject-specific profiles: linear, quadratic, ...

e In practice, linear mixed models are often obtained from a two-stage model
formulation

e However, this may or may not imply a valid marginal model
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e As an example, reconsider the growth curves:

Short mother Medium mother
160 160
— 150 . 150
& =
O O
“— 140 — 140
P SE)
e e
D 130 D 130
[(b] O
T T
120 120 L
no'g 7 = s 10 Mo'g 7 s s 10
Age (years) Age [years]
Tall mother
160
—, 150
=
O
“— 140
i)
e
O 130
®
T
120
0 g 7 8 s 10

Age (years)
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e The individual profiles support a random-intercepts model

e However, the estimated covariance matrix suggests non-constant variance

function:

e Data exploration is therefore extremely helpful as additional tool in the selection

of appropriate models

6.11 6.88 826 7.44 7.18
6.88 8.53 9.78 9.01 &.70
8.26 9.78 12.04 10.99 10.96
7.44 9.01 10.99 10.42 10.56
7.18 8.70 10.96 10.56 11.24
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6.2 Exploring the Mean Structure

e For balanced data, averages can be calculated for each occasion separately, and
standard errors for the means can be added

e Example: rat data:

> SAS program:

filename figl ’d:\path\file.eps’;
goptions reset=all ftext=swiss device=psepsf gsfname=figl gsfmode=replace
rotate=landscape;

proc gplot data=test;

plot y*age / haxis=axisl vaxis=axis2;

symbol c=red i=stdlmjt w=2 mode=include;

axisl label=(h=2 ’Age (days)’) value=(h=1.5) order=(40 to 120 by 10) minor=none;

axis2 label=(h=2 A=90 ’Response (pixels)’) value=(h=1.5) order=(70 to 85 by 5)
minor=none;

title h=3 ’Average evolution, with standard errors of means’;

run;quit;
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> SAS output:

Average evolution, with standard errors of means

85.
B 80
)
X
ko>
()
[72]
C
o)
Q
7]
o)
oC 751
7()-I T T T T T T T T
40 50 60 70 80 0 100 110 120

Age (days)

> Conclusion: non-linear average trend, increasing standard errors due to dropout
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e For unbalanced data:
> Discretize the time scale and use simple averaging within intervals

> Smoothing techniques to estimate the average evolution nonparametrically

e Example: prostate data:

> SAS program for loess smoothing:

proc loess data=test; filename figl ’d:\path\file.eps’;
ods output scoreresults=out; goptions reset=all ftext=swiss device=psepsf
model lnpsa=time; gsfname=figl gsfmode=replace rotate=landscape;
score data=test; proc gplot data=out;
run; plot lnpsax*time=1 p_lnpsaxtime=2
/ overlay haxis=axisl vaxis=axis?2;
proc sort data=out; symboll c=red v=dot h=0.2 mode=include;
by time; symbol2 c=black i=join w=2 mode=include;
run; axisl label=(h=2 ’Years before diagnosis’)

value=(h=1.5) order=(0 to 30 by 5) minor=none;
axis2 label=(h=2 A=90 ’1n(PSA+1)’) value=(h=1.5)
order=(0 to 4 by 1) minor=none;
title h=3 ’Loess smoothing’;
run;quit;
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> SAS output:

Loess smoothing

4_

3_
=
+
& 21
& ~l
£

0 5 10 15 20 25 30

Years before diagnosis
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e If (important) covariates or factors are known, similar plots can be constructed for
subgroups with different values for these covariates or factors.

e Example for the rat data:

Average evolution, with standard errors of means

85

80

Response (pixels)

751

70 A T T T T T T T T T
40 50 60 70 80 90 100 110 120

Age (days)
Treatment: — Control High dose -~ Low dose
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e Example for the prostate data:

In(1 + PSA)

In(1 + PSA)

Caontrols
T g
0 5 1b 15. 2‘[] 2‘5 30
Years before diagnosis
/R cancer cases
30

Years before diaghosis

In(1 + PSA)

In(1 + PSA)

BPH cases

Years before diaghosis

0 5 1b 115 20 25 30
Years before diagnosis
Metastatic cancer cases
0 5 10 1]5 20 25 30
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6.3 Exploring the Variance Function

e The variance function equals

e Hence, an estimate for 0(¢) can be obtained from applying any of the techniques

described for exploring the mean structure to squared residuals TZ-QJ-
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e Example for the rat data (averages with standard deviations):

Average evolution, with standard deviations

80

751

Response (pixels)

70

40 50 60 70 80 2 100 110 120
Age (days)
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e Example for the prostate data (based on group-specific smoothing of averages):

Smoothed variance function

0.4

Squared residual

30

Years before diagnosis
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6.4 Exploring the Correlation Structure

6.4.1 Scatterplot and Correlation Matrix

e For balanced longitudinal data, the correlation structure can be studied through
the correlation matrix, or a scatterplot matrix

1.00 0.63 0.71 0.60

_ _ 0.63 1.00 0.63 0.76
e Correlation matrix for the growth data:

0.71 0.63 1.00 0.80

0.60 0.76 0.80 1.00

e Graphically, pairwise scatterplots can be used for exploring the correlation between
any two repeated measurements
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e Scatterplot matrix for the growth data:

Scatterplot matrix

.

vl

[ %F
21 I

yl2

%

yld

7
>
71 B
E%ZZ%%
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6.4.2 Semi-variogram

e For unbalanced data, the same approach can be used, after discretizing the time
scale.

e An alternative method, in case the variance function suggests constant variance is
the semi-variogram

e Re-consider the general linear mixed model:

YE — XZ/B + Zzbz + €)yi + € 2)i

b; ~ N(0,D)
Ewi ~ N(0,0%I,.)  independent
Ewi ~ N(0,7°H,)
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e Based on a mean function exploration, residuals r;; = y;; — (t;;) can be obtained
® These residuals are assumed to follow the model: T = Zibi + €1yi + €y

e The semi-variogram assumes constant variance, which implies that the only

/
random effects in the model will at most be intercepts, i.e., Z; = ( 11 --- 1) .

e We will denote the variance of the random intercepts by 1/

e [ he covariance matrix is then of the form

Vi = Var(Y;) = Var(r;) = v°Z,Z] + 02]7%. + T%H,

e The residuals r;; have constant variance V2 + 02+ 77
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e The correlation between any two residuals 7;; and r;;; from the same subject ¢ is
given by

v+ 77 gt — ti])
v: + o2 + 72

plti; — ti]) =

e One can show that, for j £ £,

E(rij—ra)’ = 0® + 70 (1= g(|tij — tul))

O | —

e The function v(u) is called the semi-variogram, and it only depends on the time
points ¢;; through the time lags w;;, = |ti; — tix|.

e Decreasing serial correlation functions g(-) yield increasing semi-variograms v(u),
with v(0) = 0%, which converge to 0 + 7% as u grows to infinity.
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e Semi-variograms for exponential and Gaussian serial correlation functions g(-),
02=0.7 1=13 and v’ =1, ¢ =1

Exponential : glu) = exp(-u] Gaussian : glu) = exp(-u®)

5 3 7} 5
u u
4.0 ‘ ‘ ‘ ‘ 40
35 1 35
30 T T T 30~ T o
— —
325 I V2 Sos [ L2

> >
20 T T T T T T e—— - 1 2.0 7 T T T - |
15 /_i— L ° L
1.0 1 1.0 |

05 Iga 1 0.5 IUZ ]
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e Obviously, an estimate of v(u) can be used to explore the relative importance of
the stochastic components b;, €,;, and €,);, as well as the nature of the serial
correlation function g(-).

e An estimate of v(u) is obtained from smoothing the scatter plot of the
% ni(n; — 1)/2 half-squared differences v;;. = (r;; — ri1)*/2 between pairs of
i=1

residuals within subjects versus the corresponding time lags w;;x = |ti; — tir|.

e One can also show that, for i & k: %E[Tij — =0t + 124+ 02

e Hence, the total variability in the data (assumed constant) can be estimated by

1 n; ny
) 2 ~2 2
o+ T +V" = > > > Ty — TR,
2N* i#k j=11=1 (73 i)

where N* is the number of terms in the sum.
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e Example: prostate data

> We now consider the control group only:

Controls

n(1 + PSA)

O 5 10 15 20 25 30
Years before diagnosis

> Assuming constant variability, the variogram can be constructed to explore the
3 stochastic components.

Introduction to Longitudinal Data Analysis 140



> SAS program for loess smoothing:

/* Calculation of residuals, linear average trend */
proc glm data=prostate;

model lnpsa=time;

output out=out r=residual;

run;

/* Calculation of the variogram */
proc variogram data=out outpair=out;
coordinates xc=time yc=id;

compute robust novariogram;

var residual;

run;

data variogram;set out;

if yl=y2;vario=(v1-v2)*%*2/2; run;
data variance;set out;

if yi<y2; vario=(v1-v2)*%*2/2; run;

/* Calculation of the total variance (=0.148) x/
proc means data=variance mean;

var vario;

run;
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/* Loess smoothing of the variogram */
proc loess data=variogram;

ods output scoreresults=out;

model vario=distance;

score data=variogram;

run;

proc sort data=out;by distance;run;

filename figl ’d:\path\file.eps’;
goptions reset=all ftext=swiss device=psepsf gsfname=figl
gsfmode=replace rotate=landscape;
proc gplot data=out;
plot vario*distance=1 p_vario*distance=2
/ overlay haxis=axisl vaxis=axis2 vref=0.148 lvref=3;
symboll c=red v=dot h=0.2 mode=include;
symbol2 c=black i=join w=2 mode=include;
axisl label=(h=2 ’Time lag’) value=(h=1.5)
order=(0 to 20 by 5) minor=none;
axis2 label=(h=2 A=90 ’v(u)’) value=(h=1.5)
order=(0 to 0.4 by 0.1) minor=none;
title h=3 ’Semi-variogram’;
run;quit;

Introduction to Longitudinal Data Analysis 142



> SAS output:

> The total variability is estimated to be 0.148

> Random intercepts represent most of the variability, while there is very little

v(u)

0.4

0.3 1

0.2

0.1

0.0

Semi—variogram

10
Time lag

evidence for the presence of serial correlation.

15

20
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6.5 Exploring the Individual Profiles

6.5.1 Introduction

e As discussed before, linear mixed models are often obtained from a two-stage
model formulation

e This is based on a good approximation of the subject-specific profiles by linear
regression models

e This requires methods for the exploration of longitudinal profiles
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6.5.2 Graphical Exploration

e An natural way to explore longitudinal profiles is by plotting them

e Example: Prostate data:

> SAS program:

proc sort data=prostate;
by id time;
run,

filename figl ’d:\path\file.eps’;
goptions reset=all ftext=swiss device=psepsf gsfname=figl
gsfmode=replace rotate=landscape i=join;

proc gplot data=test;

plot lnpsa*time=id / haxis=axisl vaxis=axis2 nolegend;

axisl label=(h=2 ’Years before diagnosis’) value=(h=1.5)
order=(0 to 30 by 5) minor=none;

axis2 label=(h=2 A=90 ’1n(PSA+1)’) value=(h=1.5)
order=(0 to 4 by 1) minor=none;

title h=3 ’Individual profiles’;

run;quit;
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> SAS output: Individual profiles

IN(PSA +1)
N

Years before diagnosis

e In case of large data sets:
> Randomly select some profiles

> Order subjects according to a specific profile characteristic (mean,
variability,. .. ) and plot profiles for some profiles
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6.5.3 Exploring Subject-specific Regression Model

e Some ad hoc statistical procedures for checking the linear regression models
Y, = Zi3, + &

used in the first stage of the model formulation.

e Extensions of classical linear regression techniques:
> Coefficient R? of multiple determination

> Formal test for the need of a model extension
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Coefficients of Multiple Determination

. _ 2 _ SSTO - SSE
e In linear regression: R* = SSTO
e Subject-specific coefficients: R; = SSTO,

e Histogram of R? or scatterplot of R? versus n;

e Overall R?:
(SSTO; — SSE))

fl SSTO,

N
2 _ 1=l

meta

(4

e SAS macro available
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Test for Model Extension

e Test for the need to extend the linear regression model Y = X3 + £ with
additional covariates in X*:

1 _ (SSE(R) — SSE(F))/p'
SSE(F)/(N —p —p)

e Overall test for the need to extend the stage 1 model:

{ 3 (SSEZ-(R)—SSEZ-(F))}/{ 3 p*}

Ia {i:n;>p+p*} {izn;>p+p*}

:{ 3 SSEZ-(F)}/{ 3 (ni—p—p*)}

{izn;>p+p*} {izn;>p+p*}

e Null-distribution is I with <.~ p* and Sy > )iy (0 — p — p*) degrees of
freedom

e SAS macro available
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Example: Prostate Data

e Scatterplots of R? under linear and quadratic model:

Linear model Quadratic model
1.0 e 1 1.0 8 8 c 8 o e ]
f T N S Y
e Y . __ N
N p8f fTeT s e i N o8l ® g ]
an L - o 2 e . an o e 8 g o ]
4-» A © b e =
C 06 ¢ ° . 1 C 06 * % . 1
@ o 0 H
O i . 1 O i o e € |
t 047 e i * ﬂ; 047 . i
b ) e e @
O i 7 B o ]
()] | h | Q . ® e i
0.2 e 0.2 .
L | - i . ]
ol e 8 g . ot e ]
4 B 8 10 12 14 4 B 8 10 12 14
Number n; aof measurements Number n; of measurements
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e Linear model:

> R? = 0.8188

> [-test linear vs. quadratic: F5430; = 6.2181 (p < 0.0001)

e Quadratic model:

> R2_=0.9143

> F-test quadratic vs. cubic: Fyy047 = 1.2310 (p = 0.1484)
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Chapter 7
Estimation of the Marginal Model

> Introduction

> Maximum likelihood estimation

> Restricted maximum likelihood estimation
> Fitting linear mixed models in SAS

> Negative variance components
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7.1 Introduction

e Recall that the general linear mixed model equals
Y, = X8+ Zb; + e

b; ~ N(0,D) |
independent
e; ~ N(0,%;)

e The implied marginal model equals  Y; ~ N(X;3,7Z,DZ] + %)

e Note that inferences based on the marginal model do not explicitly assume the
presence of random effects representing the natural heterogeneity between subjects
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e Notation:
> (3: vector of fixed effects (as before)
> a: vector of all variance components in D and X,

>0 = (3, a’)’: vector of all parameters in marginal model

e Marginal likelihood function:

Lu(8) = 1L {(2m) 2 Vit exp (= (% = X8 Vi (@) (¥ - X9 |

1=1

e If a were known, MLE of 3 equals

o~

N -1y
Bla) = (gl Xz'/VVin') > XiWiyi,

where W; equals V.71,
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e In most cases, ¢ is not known, and needs to be replaced by an estimate &

e Two frequently used estimation methods for a:
> Maximum likelihood

> Restricted maximum likelihood
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7.2 Maximum Likelihood Estimation (ML)

® (v, obtained from maximizing

Lu(a, B(a))

with respect to
e The resulting estimate B(ex,,) for 3 will be denoted by 3,,

e a,, and (3,, can also be obtained from maximizing L, (f) with respect to 8, i.e.,
with respect to @ and 3 simultaneously.
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7.3 Restricted Maximum Likelihood Estimation (REML)

7.3.1 Variance Estimation in Normal Populations

e Consider a sample of IV observations Y;, ..., Y, from N(u,o?)

e For known 1, MLE of o2 equals: =>(Y; — pu)*/N

(4

e 52 is unbiased for o*

e When s is not known, MLE of 02 equals: &> =3 (Y; — Y)?/N

e Note that 52 is biased for 02: E (52) = o
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e The bias expression tells us how to derive an unbiased estimate:

e Apparently, having to estimate 1 introduces bias in MLE of o
e How to estimate o, without estimating L first 7

e The model for all data simultaneously:

S2 = XY, — V(N - 1)

Y,
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e We transform Y such that y vanishes from the likelihood:

Yi - Y,
Y, =Y,
U = ; =AY ~ N(0,0°A'A)
Yo=Yy,
Yy, =Yy
e MLE of 02, based on U, equals: S* = N1_1§(YZ — 7)2

e A defines a set of N — 1 linearly independent ‘error contrasts’

e S is called the REML estimate of o2, and S? is independent of A
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7.3.2 Estimation of Residual Variance in Linear Regression Model

e Consider a sample of NV observations Y/, ..., Y, from a linear regression model:
Y,
Y=|: |~ NXB,o*l
Yy
e MLE of o?:

5 = (Y — XB)(Y — XB)/N,

e Note that 2 is biased for o2
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e The bias expression tells us how to derive an unbiased estimate:

MSE = (Y — XB)(Y — XB)/(N —p),
e The MSE can also be obtained from transforming the data orthogonal to X:
U=AY ~ N(0,0°A'A)
e The MLE of o2, based on U, now equals the mean squared error, MSE

e The MSE is again called the REML estimate of o
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7.3.3 REML for the Linear Mixed Model

e We first combine all models

into one model

in which

Yy

Y ~ N(XB.V)
X,

X = , V(ia)
X,

e Again, the data are transformed orthogonal to X:

U=AY ~ N0,AV(a)A)
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e The MLE of a, based on U is called the REML estimate, and is denoted by cvgey,
e The resulting estimate B(@ew) for 3 will be denoted by 3.,

® Ol and 3., can also be obtained from maximizing

1

Leen (0) = .éXz(VVi(a)Xi 2LML(9)

with respect to 6, i.e., with respect to @ and 3 simultaneously.

® Licn (a, B(a)) is the likelihood of the error contrasts U, and is often called the
REML likelihood function.

e Note that Ly, (€) is NOT the likelihood for our original data Y
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7.4 Fitting Linear Mixed Models in SAS

e Reconsider the model for the prostate data:
1H<PSA¢]‘ + 1)
= PiAge; + 5205 + B3B; + BaLi + B5M;
+ (BsAge; + 3:C; + B3 Bi + BoLi + BroM;) ti;
+ (Bi1Age; + 012C; + Bi3Bi + BuaLi + s M) ¢,
+ by + boiti; + bty + &5

e Factor group defined by :

> control : group =1
> BPH : group = 2
> local cancer : group = 3

> metastatic cancer : group =4
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e We will assume X, = 021,

1
e t1me and timeclss are time, expressed in decades before diagnosis

® age is age at the time of diagnosis
e [npsa =In(PSA+1)

e SAS program:

proc mixed data=prostate method=reml;

class id group timeclss;

model lnpsa = group age group*time age*time group*time2 age*time2 / noint solution;
random intercept time time2 / type=un subject=id g gcorr v vcorr;

repeated timeclss / type=simple subject=id r rcorr;

run;
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e PROC MIXED statement:
> calls procedure MIXED

> specifies data-set (records correspond to occasions)

> estimation method: ML, REML (default), ...
e CLASS statement: definition of the factors in the model

e MODEL statement:
> response variable
> fixed effects

> options similar to SAS regression procedures
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e RANDOM statement:
> definition of random effects (including intercepts !)
> identification of the ‘subjects’ : independence accross subjects
> type of random-effects covariance matrix D
> options ‘g’ and ‘gcorr’ to print out [ and corresponding correlation matrix

> options ‘v’ and ‘vcorr’ to print out V; and corresponding correlation matrix

e REPEATED statement :
> ordering of measurements within subjects
> the effect(s) specified must be of the factor-type
> identification of the ‘subjects’ : independence accross subjects
> type of residual covariance matrix X;

> options ‘r' and ‘rcorr’ to print out X; and corresponding correlation matrix
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e Some frequently used covariance structures available in RANDOM and
REPEATED statements:

Structure Example Structure Example
2 2
Unstructured 001 ?7122 ?3) Toeplitz (;7 (;122 ?3)
_ 12 03 023 _ 12 12
type=UN 15 oy a§ type=TOEP 015 o1 O
2 2
Simple % ;)2 8 Toeplitz (1) % 002 8
type=SIMPLE 0 0 o2 type=Toep(1) 0 0 o2
Compound ) ) ) ) Heterogeneous )
symmetry 01;20 02202 g§ compound 91 poLT2 PO1O3
type=CS b Ly o ' o symmetry po1g2 - 03 PO
y o1 o o;+o pO103 poa03 O3
type=CSH
Banded 5 Heterogeneous ) )
type=UN(2) o1 ou 0 first-order 91 pOLo2 P 0103
ype= 012 05 093 . po10y 05 poeos
0 o o autoregressive 00105 pose 52
103 p0203 3
type=ARH(1)
First-order o2 po? plo? Heterogeneous 07 P10y 0103
autoregressive po? o?  po? Toeplitz PL1O10y 03 p10203
type=AR(1) p*c® po® o type=TOEPH p20103 P10203 O3
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e When serial correlation is to be fitted, it should be specified in the REPEATED
statement, and the option ‘local’ can then be added to also include measurement

error, if required.

e Some frequently used serial correlation structures available in RANDOM and

REPEATED statements:

Structure Example
1 d12 di3
Power | iy ,01 zd%
type=SP(POW)(list) s s
Exponential 1 exp(—dia/p) exp(—diz/p)
type=SP(EXP)(list) o* | exp(~diz/p) 1 exp(—das/p)
exp(—diz/p) exp(—das/p) 1
Gaussian , : 12/ . exp(—d3,/p*) expg_dz‘g?pz;
_ , o | exp(—diy/p 1 exp(—dss/p
type=SP(GAU)(list) exp(—dZ,/p?)  exp(—d2s/p?) 1
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e ML and REML estimates for fixed effects:

Effect Parameter MLE (s.e.) REMLE (s.e.)
Age effect 2 0.026 (0.013)  0.027 (0.014)
Intercepts:
Control Bo —1.077 (0.919) —1.098 (0.976)
BPH By —0.493 (1.026) —0.523 (1.090)
L/R cancer By 0.314 (0.997)  0.296 (1.059)
Met. cancer Bs 1.574 (1.022)  1.549 (1.086)
Age xtime effect Bs —0.010 (0.020) —0.011 (0.021)
Time effects:
Control By 0.511 (1.359)  0.568 (1.473)
BPH Gy 0.313 (1.511)  0.396 (1.638)
L/R cancer Bo —1.072 (1.469) —1.036 (1.593)
Met. cancer B1o —1.657 (1.499) —1.605 (1.626)
Agextime? effect  Bu 0.002 (0.008)  0.002 (0.009)
Time? effects:
Control Gia —0.106 (0.549) —0.130 (0.610)
BPH Gy —0.119 (0.604) —0.158 (0.672)
L/R cancer B 0.350 (0.590)  0.342 (0.656)
Met. cancer P15 0.411 (0.598)  0.395 (0.666)
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e ML and REML estimates for variance components:

Effect Parameter MLE (s.e.) REMLE (s.e.)
Covariance of b;:
var(by;) di1 0.398 (0.083) 0.452 (0.098)
var(bo;) do9 0.768 (0.187) 0.915 (0.230)
var(bs;) ds3 0.103 (0.032) 0.131 (0.041)
COV(bh‘, bgl) d12 = d21 —0.443 (0113) —0.518 (0136)
COV(bQ,’, bg,) d23 = d32 —0.273 (0076) —0.336 (0095)
cov(bs;, b1;) diz3 = d31 0.133 (0.043) 0.163 (0.053)
Residual variance:
var(e;;) o’ 0.028 (0.002) 0.028 (0.002)

Log-likelihood

—1.788

—31.235
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e Fitted average profiles at median age at diagnosis:

Average profiles

In(1 + PSA)

O | | | | |
0 5 10 15 20 25 30

Years before diagnosis
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7.5 Negative Variance Components

e Reconsider the model for the rat data:
Yii = (Bo+ b1i) + (B1Li + BoHi 4 B3C; + boy)tij + €4

e REML estimates obtained from SAS procedure MIXED:

Effect Parameter REMLE (s.e.)
Intercept Bo 63.606 (0.325)
Time effects:

Low dose 103} 7.503 (0.228)

High dose Ba 6.877 (0.231)

Control 03 7.319 (0.285)
Covariance of b;:

var(by;) diq 3.369 (1.123)

var(bgi) d22 0.000 ( )

COV(bM7 bgl) d12 = d21 0.090 (0 81)
Residual variance:

var(elj) O'2 1.445 (0 145)
REML log-likelihood —466.173
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e This suggests that the REML likelihood could be further increased by allowing
negative estimates for dy

e In SAS, this can be done by adding the option ‘nobound’ to the PROC MIXED
statement.

e Results: Parameter restrictions for o
dii2070220 diiEB,O'2EB

Effect Parameter REMLE (s.e.) REMLE (s.e.)
Intercept B 68.606 (0.325) 68.618 (0.313)
Time effects:

Low dose b1 7.503 (0.228) 7.475 (0.198)

High dose 5 6.877 (0.231) 6.890 (0.198)

Control B3 7.319 (0.285) 7.284 (0.254)
Covariance of b;:

var(by;) diq 3.369 (1.123) 2.921 (1.019)

cov(by;, by;) dis = dn 0.090 (0.381) 0.462 (0.357)
Residual variance:

var(e;;) o’ 1.445 (0.145) 1.522 (0.165)
REML log-likelihood —466.173 —465.193
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e Note that the REML log-likelihood value has been further increased and a
negative estimate for dyy is obtained.

e Brown & Prescott (1999, p. 237) :

Negative variance components

The usual action when a negative variance component estimate is obtained for
a random coefficient would be to refit the model with the random coeflicient
removed, However, the user should be warned that not all packages will produce
a negative variance component estimate, For example, in PROC MIXED we have
found that non-convergence or a message stating that the G matrix is not positive
semi-definite are usually indications of a negative variance component. (A matrix,
A, is positive semi-definite if x’Ax is a non-negative number for all vectors, x.)
The recommended action is then to remove the random coefficients one by
cne in decreasing order of complexity until all variance components become

positive.
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e Meaning of negative variance component ?
> Fitted variance function:
|1
Var(Yi(t)) = ( 1 t) D| | + &
t
= dyt® + 2diot +dyy +6° = —0.287t" + 0.9241 + 4.443

> The suggested negative curvature in the variance function is supported by the

sample variance function:
Variance function

5.4

50

48

Variance

4.2 1

38|

3.4

0.3 | 0.9 | 15 | 2.1
t = In(1 + (Age-45)/10)]
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e This again shows that the hierarchical and marginal models are not equivalent:

> The marginal model allows negative variance components, as long as the
marginal covariances V; = Z;DZ! + 02]7%. are positive definite

> The hierarchical interpretation of the model does not allow negative variance
components
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Chapter 8
Inference for the Marginal Model

> |Inference for fixed effects:

* Wald test

x {-test and F'-test
* Robust inference
*x LR test

> Inference for variance components:

* Wald test
* LR test

> Information criteria
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8.1 Inference for the Fixed Effects

e Estimate for (3:

—

N —1 N
Bla) = (221 XZ-/VVz'Xz') P> X Wiy

with a replaced by its ML or REML estimate

e Conditional on «, 3(«x) is multivariate normal with mean 3 and covariance

1

—

N -1/ y N N
Var(8) = | ¥ X[W.X, (-21 X;W@var(Y;)Wz-X@) (,21 X;WZ-XZ-)
—1

= _%1 XWX,

e In practice one again replaces a by its ML or REML estimate
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8.1.1 Approximate Wald Test

e For any known matrix L, consider testing

Hy: LB = 0, versus Hy: LB # 0

e \Wald test statistic:

N —1 -
G=p8L {L(zlx;vil(a)xi) L’] L3

e Asymptotic null distribution of G is x* with rank(L) degrees of freedom
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8.1.2 Approximate t-test and ['-test
e Wald test based on

—1
Var(B) = (3, XWi(ex)]

e Variability introduced from replacing o by some estimate is not taken into
account in Wald tests

e Therefore, Wald tests will only provide valid inferences in sufficiently large samples

e In practice, this is often resolved by replacing the x* distribution by an appropriate
F-distribution (are the normal by a t).

e For any known matrix L, consider testing

Hy: LB = 0, versus Hy: LB # 0
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e [ test statistic:

N —1 -1 .
BL|L(s xv X)) | 18

Fo—
rank(L)

e Approximate null-distribution of F'is F’ with numerator degrees of freedom equal
to rank(L)

e Denominator degrees of freedom to be estimated from the data:
> Containment method
> Satterthwaite approximation
> Kenward and Roger approximation

> ...
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e In the context of longitudinal data, all methods typically lead to large numbers of
degrees of freedom, and therefore also to very similar p-values.

e For univariate hypotheses (rank(L) = 1) the F'-test reduces to a t-test
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8.1.3 Example: The Prostate Data

e Linear hypotheses of the form
Hy: LB = 0, versus Hy: LB # 0
can be tested in SAS using a CONTRAST statement

e As an example, reconsider the model for the prostate data:
In(PSA;; + 1) = BiAge; + 5:C; + B3B; + BaLli + BsM,;
+ (BsAge; + 3:C; + BsBi + BoL; + BioM;) t;
+ (Bu1Age; + 512Ci + B13Bi + Bl + PisM;) t;;
+ blz’ + bgﬂfij + bgitgj + Eij-

e \We now test whether the local cancer cases evolve different from the metastatic
cancer cases.
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e The null-hypothesis is specified by

By = 05
Hy ¢ By = B
B4 = Pis,

e This is equivalent with testing

0001 -10000 00000 O
0000 00001-10000 O
0000 00000 00001 -1

which is of the form L3 =0
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e Related statements in SAS:

model lnpsa = group age group*time age*time
group*time2 agextime?2
/ noint ddfm=satterth;

contrast ’L/R can = Met can’ group 0 0 1 -1,
group*time 0 0 1 -1,
group*time2 0 0 1 -1 / chisq;

e Remarks:

> The Satterthwaite approximation is used for the denominator degrees of
freedom

> The option ‘chisq’ in CONTRAST statement is needed in order also to obtain
a Wald test
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e Additional table in the output :

CONTRAST Statement Results
Source NDF DDF ChiSq F Pr > ChiSq Pr > F

L/R can = Met can 3 24.4 17.57 5.86 0.0005 0.0037

e Several CONTRAST statements can now be used to reduce the model, in a
stepwise procedure

e This leads to the following simplifications :
> no Interaction age X time2
> no interaction age X time
> quadratic time effect the same for both cancer groups
> the quadratic time effect is not significant for the non-cancer groups

> the linear time effect is not significant for the controls
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e Simultaneous testing of all these hypotheses is testing the null hypothesis

B =0  (no age by time interaction)
B7 =0  (no linear time effect for controls)
H, - Bi1 =0 (no age x time? interaction)
P12 =0  (no quadratic time effect for controls)
P13 =0  (no quadratic time effect for BPH)
P14 = P15 (equal quadratic time effect for both cancer groups).

e This hypothesis is of the form

00000100000000 O
00000010000000 O
00000000001000 O
00000000000100 O
00000000000010 O
00000000000001 —1
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e The hypothesis can be tested with the following statements:

model lnpsa = group age group*time agex*time group*time2 agextime2
/ noint ddfm=satterth;

contrast ’Final model’ agextime 1,
group*xtime 1 0 0 O,
age*xtime2 1,
group*time2 1 0 0 O,
group*time2 0 1 0 O,
group*time2 0 O 1 -1 / chisq;

e This results in the following table in the output (Satterthwaite approximation):
CONTRAST Statement Results
Source NDF DDF ChiSq  F Pr > ChiSq Pr > F

Final model 6 46.7 3.39 0.56 0.7587 0.7561
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e The simplified model is now given by:

In(PSA;; + 1) = BiAge; + 320 + B3B; + B1Li + B5M;
+ (BsB; + BoLi + BroM;) ti;
+ ﬁ14 (Li -+ MZ') t?j
+ blz’ + bgitij -+ bgﬂfgj -+ 52']',

e SAS procedure MIXED also allows using an ESTIMATE statement to estimate
and test linear combinations of the elements of 3

e Using similar arguments as for the approximate Wald-test, ¢-test, and F'-test,
approximate confidence intervals can be obtained for such linear combinations,
also implemented in the ESTIMATE statement.

e Specification of L remains the same as for the CONTRAST statement, but L can
now only contain one row.
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8.1.4 Robust Inference
e Estimate for 3:
N —1 N
Bla) = (£ XIWiX,) £ XY,

with o replaced by its ML or REML estimate

e Conditional on «, 3 has mean

EB(a)| = (%1 X.’WZ-XZ-)1 %1 X{W,E(Y;)

provided that E(Y;) = X;3

e Hence, in order for B to be unbiased, it is sufficient that the mean of the response
is correctly specified.
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e Conditional on «, 3 has covariance

N —1 /N N -1
Var(B) = (.z XfWZ-XZ-) (_zl XZ-’WZ-Var(Y;)WZ-XZ-) (.zl XZ-’WZ-XZ-)

e Note that this assumes that the covariance matrix Var(Y;) is correctly modelled as
Vi=7Z;DZ! + %,

e [his covariance estimate is therefore often called the ‘naive’ estimate.

o~

e The so-called ‘robust’ estimate for Var(3), which does not assume the covariance
matrix to be correctly specified is obtained from replacing Var(Y;) by
Y; — X.8||Y; — X8| rather than V,
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e The only condition for {Yz — XZ-B} [Yz — XZ-B]/ to be unbiased for Var(Y;) is that
the mean is again correctly specified.

e [ he so-obtained estimate is called the ‘robust’ variance estimate, also called the
sandwich estimate:

_ N o LN N o, -1
Var(B) = (leZ-WZ-XZ-) ('Zl XZ-WZ-Var(Y;)WZ-XZ-) (_ZlXZ-WZ-XZ-)

l l l
BREAD MEAT BREAD

e Based on this sandwich estimate, robust versions of the Wald test as well as of
the approximate t-test and F'-test can be obtained.
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e Note that this suggests that as long as interest is only in inferences for the mean
structure, little effort should be spent in modeling the covariance structure,
provided that the data set is sufficiently large

e Extreme point of view: OLS with robust standard errors

e Appropriate covariance modeling may still be of interest:
> for the interpretation of random variation in data
> for gaining efficiency

> in presence of missing data, robust inference only valid under very severe
assumptions about the underlying missingness process (see later)
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8.1.5 Example: Prostate Data

e \We reconsider the reduced model for the prostate data:
1H(PSA¢]' + 1)
= [1Age; + 520 + OB3B; + BaLi + B5M;
+ (BsB; + BoLi + BroM;) ti;
%‘[%4(lﬁ-+lwﬁ)t%
+ blz’ + bgﬂfij + bgitgj + €ij,

e Robust inferences for the fixed effects can be obtained from adding the option
‘empirical’ to the PROC MIXED statement:

proc mixed data=prostate method=reml empirical;

Introduction to Longitudinal Data Analysis 195



e Comparison of naive and robust standard errors (only fixed effects !):

Effect Parameter Estimate (s.e.() s.e.(?))
Age effect 1 0.016 (0.006;0.006)
Intercepts:
Control Ba —0.564 (0.428;0.404)
BPH By 0.275 (0.488;0.486)
L/R cancer By 1.099 (0.486;0.499)
Met. cancer B 2.284 (0.531;0.507)
Time effects:
BPH By —0.410 (0.068;0.067)
L/R cancer By —1.870 (0.233;0.360)
Met. cancer B1o —2.303 (0.262;0.391)
Time? effects:
Cancer B4 = Bis 0.510 (0.088;0.128)

e For some parameters, the robust standard error is smaller than the naive,
model-based one. For other parameters, the opposite is true.

s.e.M: Naive, s.e.(?): Robust
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8.1.6 Example: Growth Data

e Comparison of naive and robust standard errors under Model 1 (unstructured
mean as well as covariance), for the orthodontic growth data:

34

30

n
[v]

T

Distance

22

e How could the covariance structure be improved ?

Girls

6

8 10 12 14
Age [(years)

Distance

34

30

n
[u]

22

Boys

8 10 12 14
Age (years)

Parameter MLE  (naive s.e.) (robust s.e.)
Do, 22.8750 (0.5598)  (0.5938)
Bo,10 23.8125 (0.4921)  (0.5170)
Bo.12 25.7188  (0.6112) (0.6419)
Bo.14 27.4688 (0.5371)  (0.5048)
Bis 21.1818 (0.6752)  (0.6108)
Bi,10 22.2273  (0.5935) (0.5468)
B2 23.0909 (0.7372)  (0.6797)
CIRY! 24.0909 (0.6478)  (0.7007)
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e We fit a model with a separate covariance structure for each group (Model 0)

e SAS program:

proc mixed data=test method=ml ;

class idnr sex age;

model measure = age*sex / noint s;

repeated age / type=un subject=idnr r rcorr group=sex;
run;

e LR test for Model 1 versus Model 0 : p = 0.0082
e The fixed-effects estimates remain unchanged.

e [ he naive standard errors under Model 0 are exactly the same as the sandwich
estimated standard errors under Model 1.
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8.1.7 Likelihood Ratio Test

e Comparison of nested models with different mean structures, but equal covariance
structure

e Null hypothesis of interest equals Hj : 3 € ©,,, for some subspace O, of the
parameter space O, of the fixed effects 3.

e Notation:

> Ly ML likelihood function
> gML,O: MLE under H

> 0,,.: MLE under general model
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e [est statistic:

—2In\, = —2In {LML(HML’O)]

LML<9ML>

e Asymptotic null distribution: x? with d.f. equal to the difference in dimension of

O, and O,,.
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8.1.8 Example: Prostate Data

e We reconsider the reduced model:
In(PSA;; +1)
= (B1Age; + 52C; + B3B8 + BaLi + BsM; + (B Bi + BoLi + BroM;) t;
+ B (Li + My) t5, 4 by + boitiyy + bsits; + €3,

e Testing for the need of age correction, i.e., Hy: 3, =0

e Results under ML estimation:

ML estimation

Under ﬁl € R LI\/IL = —3.575
Under Hy: 51 =0 Ly, = —6.876

—21In Ay 6.602
degrees of freedom 1
p-value 0.010
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e Results under REML estimation:

REML estimation

Under 61 € R LREI\/IL = —20.165
Under HO : 61 =0 LREML = —19.003

—2In Ay —2.324
degrees of freedom —

p-value —

Negative LR test statistic !

Introduction to Longitudinal Data Analysis

202



8.1.9 LR Test for Fixed Effects Under REML

e How can the negative LR test statistic be explained ?

e Under REML, the response Y is transformed into error contrasts U = A’Y", for
some matrix A with A’X = 0.

e Afterwards, ML estimation is performed based on the error contrasts

e The reported likelihood value, Ly (0) is the likelihood at maximum for the error
contrasts U

e Models with different mean structures lead to different sets of error contrasts

e Hence, the corresponding REML likelihoods are based on different observations,
which makes them no longer comparable

Introduction to Longitudinal Data Analysis 203



e Conclusion:

L R tests for the mean structure are not valid under REML
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8.2 Inference for the Variance Components

e Inference for the mean structure is usually of primary interest.

e However, inferences for the covariance structure is of interest as well:
> interpretation of the random variation in the data
> overparameterized covariance structures lead to inefficient inferences for mean

> too restrictive models invalidate inferences for the mean structure
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8.2.1 Approximate Wald Test

e Asymptotically, ML and REML estimates of a are normally distributed with
correct mean and inverse Fisher information matrix as covariance

e Hence approximate s.e.’'s and Wald tests can easily be obtained
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8.2.2 Example: Prostate Data

e We reconsider the reduced model:
hl(PSAZ] -+ 1)
= [1Age; + 320 + B3B; + BaLi + BsM; + (B3 Bi + BoL; + BroM;) ti;
+ 614 (Lz + Mz) t?j + blz’ + bgﬂfij -+ bgitgj + €Z'j,

e Standard errors and approximate Wald tests for variance components can be
obtained in PROC MIXED from adding the option ‘covtest’ to the PROC MIXED
statement:

proc mixed data=prostate method=reml covtest;
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e Related output:

Cov Parm

UN(1,1)
UN(2,1)
UN(2,2)
UN(3,1)
UN(3,2)
UN(3,3)
timeclss

Covariance Parameter Estimates

Subject

XRAY
XRAY
XRAY
XRAY
XRAY
XRAY
XRAY

Estimate

0.4432
-0.4903
0.8416
0.1480
-0.3000
0.1142
0.02837

Standard
Error

0.09349
0.1239
0.2033

0.04702

0.08195

0.03454

0.002276

Value

4.74
-3.96
4.14
3.15
-3.66
3.31
12.47

AN O O O AN A A

Pr Z

.0001
.0001
.0001
.0017
.0003
.0005
.0001

e The reported p-values often do not test meaningful hypotheses

e The reported p-values are often wrong
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8.2.3 Caution with Wald Tests for Variance Components

Marginal versus Hierarchical Model

e One of the Wald tests for the variance components in the reduced model for the
prostate data was

Standard Z
Cov Parm Subject Estimate Error Value Pr Z
UN(3,3) XRAY 0.1142 0.03454 3.31 0.0005

e This presents a Wald test for Hy : d33 =0

e However, under the hierarchical model interpretation, this null-hypothesis is not of
any interest, as ds3 and d;3 should also equal zero whenever ds3 = 0.

e Hence, the test is meaningful under the marginal model only, i.e., when no
underlying random effects structure is believed to describe the data.
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Boundary Problems

e The quality of the normal approximation for the ML or REML estimates strongly

depends on the true value &

e Poor normal approximation if « is relatively close to the boundary of the

parameter space

e If v is a boundary value, the normal approximation completely fails

e One of the Wald tests for the variance components in the reduced model for the

prostate data was

Standard Z
Cov Parm Subject Estimate Error Value
UN(3,3) XRAY 0.1142 0.03454 3.31

e This presents a Wald test for Hy : d33 =0

Pr Z

0.0005
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e Under the hierarchical model interpretation, ds3 = 0 is a boundary value, implying
the the calculation of the above p-value is based on an incorrect null-distribution
for the Wald test statistic.

e Indeed, how could ever, under Hy, ds3 be normally distributed with mean 0, if dss
is estimated under the restriction ds3 > 0 ?

e Hence, the test is only correct, when the null-hypothesis is not a boundary value
(e.g., H() . d33 — 01)

e Note that, even under the hierarchical model interpretation, a classical Wald test
is valid for testing H : dy3 = 0.
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8.2.4 Likelihood Ratio Test

e Comparison of nested models with equal mean structures, but different covariance
structure

e Null hypothesis of interest equals Hj : o € O,,, for some subspace ©,, of the
parameter space O, of the variance components .

e Notation:

> L. ML likelihood function
> 9ML,0: MLE under H,

> @,,: MLE under general model

LML(éML,())]

e Test statistic: —2InAy = —2In { L (0,

Introduction to Longitudinal Data Analysis 212



e Asymptotic null distribution: y? with d.f. equal to the difference in dimension of

O, and O,,.

e Note that, as long as models are compared with the same mean structure, a valid
LR test can be obtained under REML as well.

e Indeed, both models can be fitted using the same error contrasts, making the
likelihoods comparable.

e Note that, if H is a boundary value, the classical y? approximation may not be
valid.

e For some very specific null-hypotheses on the boundary, the correct asymptotic
null-distribution has been derived
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8.2.5 Marginal Testing for the Need of Random Effects

e Under a hierarchical model interpretation, the asymptotic null-distribution for the
LR test statistic for testing significance of all variance components related to one
or multiple random effects, can be derived.

e Example: for the prostate model, testing whether the variance components
associated to the quadratic random time effect are equal to zero, is equivalent to
testing

Hy : di3 = do3 = d3z3 =0

e Note that, under the hierarchical interpretation of the model, H is on the
boundary of the parameter space
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Case 1: No Random Effects versus one Random Effect

e Hypothesis of interest:

Hy: D=0 wversus Hy:D=dy

for some non-negative scalar dy;

e Asymptotic null-distribution equals —21In Ay — x37.;, the mixture of x3 and x?
with equal weights 0.5:

1.0

0.8

0.6

0.4(

0.2

ON

O becccccccccccccccca

>

0.0

|
—

=2Hﬁ][>\N]
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e Under Hy, —21In A\, equals 0 in 50% of the cases

e Intuitive explanation:
> consider the extended parameter space IR for di;
> under Hy, dq; will be negative in 50% of the cases
> under the restriction di; > 0, these cases lead to d;; = 0

> hence, Ly (@) = L (@) in 50% of the cases

Case A Case B

e Graphically (7% = dy1):

Log=likelihood 1(72)
Log-likelihood 1(72)
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Case 2: One versus two Random Effects

e Hypothesis of interest:

for di1 > 0, versus H 4 that D is (2 x 2) positive semidefinite

e Asymptotic null-distribution: —21In Ay — 7., the mixture of x% and x3 with

equal weights 0.5:

0.8

0.6

041

0.2

0.0

dyy 0
Hy-D=| |

0 0

=2Hﬁ][>\N]
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Case 3: ¢ versus ¢ + 1 Random Effects

e Hypothesis of interest: D 0
H() D = ,
0 0
for D11 (g X q) positive definite, versus H 4 that D is ((¢ + 1) X (¢ + 1)) positive
semidefinite.

e Asymptotic null-distribution: —2In Ay — XZ;QH, the mixture of Xz and XZH
with equal weights 0.5.

0.6

.47

0.2(

0.0

=2|HE%N]

Introduction to Longitudinal Data Analysis 218



Case 4: ¢ versus ¢ + £ Random Effects

e Hypothesis of interest:

Dy 0
Hy - D=| " |,
0 0

for D11 (q X q) positive definite, versus H4 that D is ((¢ + k) x (¢ + k)) positive
semidefinite.

e Simulations needed to derive asymptotic null distribution
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Conclusions

e Correcting for the boundary problem reduces p-values

e Thus, ignoring the boundary problem too often leads to over-simplified covariance
structures

e Hence, ignoring the boundary problem may invalidate inferences, even for the
mean structure
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8.2.6 Example: Rat Data

e \We reconsider the model with random intercepts and slopes for the rat data:

Yii = (Bo+bui) + (61Li + BoHi + B5C; + bay)ti; + €45
in which t;; equals In[1 + (Age;; — 45)/10)]

e The marginal model assumes linear average trends with common intercept for the
3 groups, and covariance structure:

1
Cov(Y;(t1),Yi(t2)) = (1 tl)D , + 025{751,@}
2

= dooty 1o + Cllg(tl + tg) +dy1 + 0'25{151@}.
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Variance function

e Exploring the variance function yields: 4

50

4.6

Variance

4.2

3.8F

3.4

0.3 ‘ 0.9 ‘ 5 ‘ 2.1
t = In(1 + (Age—-45)/10]

e This suggested earlier that the above random-effects model might not be valid, as
it does not allow negative curvature in the variance function

e It is therefore of interest to test whether the random slopes by; may be left out of
the model.

e |nterpretation:
> On hierarchical level: all rats receiving the same treatment have the same slope

> On marginal level: constant variance, constant correlation
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e Null-hypothesis to be tested: Hy : dio = dyy =0

e REML estimates under hierarchical and marginal interpretation, as well as under

H()I

Parameter restrictions for o

dii2070220 diiER,U2ER Under Hy,
Effect Parameter =~ REMLE (s.e.) = REMLE (s.e.) = REMLE (s.e.)
Intercept By 68.606 (0.325) 68.618 (0.313) 68.607 (0.331)

Time effects:

Low dose I3} 7.503 (0.228)  7.475 (0.198)

High dose (o 6.877 (0.231) 6.890 (0.198)

Control 165 7.319 (0.285)  7.284 (0.254)
Covariance of b;:

var(by;) diy 3.369 (1.123)  2.921 (1.019)

var(bo;) doo 0.000 (— ) —0.287 (0.169)

cov(by;, ba;) dio = doy 0.090 (0.381) 0.462 (0.357)
Residual variance:

var(e;;) o? 1.445 (0.145)  1.522 (0.165)

7.507 (0.225)
6.871 (0.228)
7.507 (0.225)

3.565 (0.808)
— (—)
— (—)

1.445 (0.145)

REML log-likelihood

—466.173

—465.193

—466.202
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Test Under Marginal Interpretation

e Unrestricted parameter space for «, no boundary problem

e Wald test:

> Test statistic:
—1

VAaF(CEQ) CBV(CEQ, 67;2) CEQ

(o d)| 0 T ’
COV(de, d22) Var(dgg) d22
—1
0.127 —0.038 0.462
= <0.462 —0.287) = 2.930,
—0.038  0.029 —0.287
> p-value:

P(x3 >2.936 | Hy) = 0.2304
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o LR test:

> Test statistic:

—21In Ay = —2(—466.202 + 465.193) = 2.018

> p-value:

P(x5 > 2.018 | Hy) = 0.3646
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Test Under Hierarchical Interpretation

e Restricted parameter space for a (positive semi-definite 1)), boundary problem !

e LR test statistic:
—2In Ay = —2(—466.202 + 466.173) = 0.058

e p-value:

P(x1, > 0.058 | Hy)
— 0.5 P(x?>0.058 | Hy) + 0.5 P(x3>0.058 | Hy) = 0.8906

e Note that the naive p-value, obtained from ignoring the boundary problem is
indeed larger:

P(x3 > 0.058 | Hy) = 0.9714
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Reduced Model

e Under both model interpretations, H( was accepted, leading to the reduced model:

Yii = (Bo+bu) + (B1Li + BoH; + B3Ci)ti; + €45

e Marginal interpretation:

> linear average trends with common intercept for the 3 groups

> constant variance estimated to be
di + 7% = 3.565 + 1.445 = 5.010

> constant (intraclass) correlation

—

_ dll

= — — 0.712
PP+ a2

e The hierarchical interpretation, possible since d;; = 3.565 > 0, is that

heterogeneity between rats is restricted to differences in starting values, not slopes.
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8.3 Information Criteria

8.3.1 Definition of Information Criteria

e LR tests can only be used to compare nested models

e How to compare non-nested models ?

e The general idea behind the LR test for comparing model A to a more extensive
model B is to select model A if the increase in likelihood under model B is small
compared to increase in complexity

e A similar argument can be used to compare non-nested models A and B
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e One then selects the model with the largest (log-)likelihood provided it is not
(too) complex

e The model is selected with the highest penalized log-likelihood ¢ — F(#8) for
some function F(-) of the number #86 of parameters in the model.

e Different functions F(-) lead to different criteria:

Criterion Definition of F(-)*

Akaike (AIC) F(#6) = #6

Schwarz (SBC) F(#0) = (#6 Inn*)/2
Hannan and Quinn (HQIC)  F(#6) = #6 In(lnn*)
Bozdogan (CAIC) F(#60) =#6 (Inn*+1)/2

* n* =n=x),n; under ML

*: n* =n — p under REML
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e Information criteria are no formal testing procedures !

e For the comparison of models with different mean structures, information criteria
should be based on ML rather than REML, as otherwise the likelihood values
would be based on different sets of error contrasts, and therefore would no longer
be comparable.
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8.3.2 Example: Rat Data

e Consider the random-intercepts model for the rat data:
Yii = (Bo+bu) + (B1Li + BoHi + B3Ci)ti; + €45
in which t;; equals In[1 + (Age;; — 45)/10)]

e We now want to compare this model with a model which assumes common
average slope for the 3 treatments.

e Information criteria can be obtained in SAS from adding the option ‘ic’ to the
PROC MIXED statement:

proc mixed data=rats method=ml ic;
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e Summary of results:

Mean structure o #0 AIC SBC

Separate average slopes —464.326 6 —470.326 —480.914
Common average slope —466.622 4 —470.622 —477.681

e Selected models:
> AIC: model with separate slopes

> SBC: model with common slopes

e Based on Wald test, the average slopes are found not to be significantly different
from each other (p = 0.0987)
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Chapter 9
Inference for the Random Effects

> Empirical Bayes inference

> Best linear unbiased prediction

> Example: Prostate data

> Shrinkage

> Example: Random-intercepts model
> Example: Prostate data

> Normality assumption for random effects
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9.1 Empirical Bayes Inference

e Random effects b; reflect how the evolution for the ith subject deviates from the
expected evolution X;3.

e Estimation of the b; helpful for detecting outlying profiles

e This is only meaningful under the hierarchical model interpretation:

lfz‘bz ~ N(XZ,B + Z;b;, Zz) b; ~ N(O, D)
e Since the b; are random, it is most natural to use Bayesian methods

e Terminology: prior distribution N (0, D) for b;
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e Posterior density:

f(bilyi) = f(bi|Y; = vy;) f(yilbi) f(bi)

= [ f(yilbs) f(by) db;

o< f(yilbi) f(bi)

1
x exp {—2 (b; — DZWily; — X.8)) A~ (b — DZ/Wi(y; — Xiﬂ))}
for some positive definite matrix A,;.

e Posterior distribution:

bi | yi ~ N(DZ;Wi(y; — X;B),\)
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e Posterior mean as estimate for b;:

b;(0) = Eb; | Y;=vy;] = [ b; f(bi|yi) db; = DZWi(a)(y; — XiB)

—

e b;(0) is normally distributed with covariance matrix
N —1
v (5:6)) = DZi{ W, - wix, £, xwix) - xiwi] z.p

e Note that inference for b; should account for the variability in b;

e Therefore, inference for b; is usually based on

- —

var(b;(0) — b;) = D — var(b;(0))
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e \Wald tests can be derived

e Parameters in @ are replaced by their ML or REML estimates, obtained from
fitting the marginal model.

o b; = b;(0) is called the Empirical Bayes estimate of b;.

e Approximate ¢- and F'-tests to account for the variability introduced by replacing
0 by 0, similar to tests for fixed effects.
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9.2 Best Linear Unbiased Prediction (BLUP)

e Often, parameters of interest are linear combinations of fixed effects in 3 and
random effects in b;

e For example, a subject-specific slope is the sum of the average slope for subjects
with the same covariate values, and the subject-specific random slope for that
subject.

e In general, suppose u = \;8 + A\yb; is of interest

o Conditionally on ax, @ = ;3 + A\;b; is BLUP:
> linear in the observations Y;
> unbiased for u

> minimum variance among all unbiased linear estimators
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9.3 Example: Prostate Data

e We reconsider the reduced model:
hl(PSAZ] -+ 1)
= PiAge; + 520 + B3 B; + BuLli + Bs M + (BsBi + BoLi + BroM;) ti
+ Bua (Li + M)t + by + botij + baits; + &

e In SAS the estimates can be obtained from adding the option ‘solution’ to the
random statement:

random intercept time time2
/ type=un subject=id solution;

ods listing exclude solutionr;
ods output solutionr=out;
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e The ODS statements are used to write the EB estimates into a SAS output data
set, and to prevent SAS from printing them in the output window.

e In practice, histograms and scatterplots of certain components of b; are used to
detect model deviations or subjects with ‘exceptional’ evolutions over time
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e Strong negative correlations in agreement with correlation matrix corresponding to

fitted D:
1.000 —0.803  0.658

Dcorr = | —0.803  1.000 —0.968
0.658 —0.968  1.000

e Histograms and scatterplots show outliers

e Subjects #22, #28, #39, and #45, have highest four slopes for time? and
smallest four slopes for time, i.e., with the strongest (quadratic) growth.

e Subjects #22, #28 and #39 have been further examined and have been shown to
be metastatic cancer cases which were misclassified as local cancer cases.

e Subject #45 is the metastatic cancer case with the strongest growth
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9.4 Shrinkage Estimators b;

e Consider the prediction of the evolution of the ith subject:

—

Y, = X,8 + Zb,

= X,8 + ZDZV (y; — X;3)

= (I, - ZDZV;") XiB + Z;DZV 'y
= NV ' XiB + (L, — SV Yy,

e Hence, Y; is a weighted mean of the population-averaged profile X;3 and the
observed data y;, with weights Zz-Vz-_l and I, — ZZ-Vi_l respectively.
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e Note that X;3 gets much weight if the residual variability is ‘large’ in comparison
to the total variability.

e This phenomenon is usually called shrinkage :

The observed data are shrunk towards the prior average profile X;3.

e This is also reflected in the fact that for any linear combination A'b; of random
effects,

var(A'b;) < var(N'by).
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9.5 Example: Random-intercepts Model

e Consider the random-intercepts model, without serial correlation:
> Z; = 14, vector of ones
> D = ag, scalar

> Zz’ = O'QIW

e The EB estimate for the random intercept b; then equals

o~

b = 01,/ (67101, + %L, (yi — X,8)

9 9
O-b Ub

= 1 ]n 1 1n . — X
g2 " o2 4o T (Yi B)

TLZ'O'g 1 n

_ el
0-2_|_n20.b ,),LZ]Zl(y] 1 IB)
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e Remarks:
> b; is weighted average of 0 (prior mean) and the average residual for subject i
> less shrinkage the larger n;

> less shrinkage the smaller o relative to o
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9.6 Example: Prostate Data

e Comparison of predicted, average, and observed profiles for the subjects #15 and
#28, obtained under the reduced model:

Subject #15 Subject #28

In(PSA+1)
IN(PSA+1)

0 S ﬂj 1% 2‘0 2‘5 30 0 0 E 1@ 1% 20
Years before diagnosis Years before diagnosis
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e lllustration of the shrinkage effect :

0.403 —0.440

0.131

Var(b;) = | —0.440 0.729 —0.253

0.131 —0.253

0.092

0.443 —0.490

0.148

—0.490 0.842 —0.300

0.148 —0.300

0.114
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9.7 The Normality Assumption for Random Effects

e In practice, histograms of EB estimates are often used to check the normality
assumption for the random effects

e However, since

b = DZWi(y; — X, )
. —1
var(b;) = DZ! {m — WX, (-21 X{WZ-XZ-) X;m} Z.D

one should at least first standardize the EB estimates

e Further, due to the shrinkage property the EB estimates do not fully reflect the
heterogeneity in the data.
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e Small simulation example:
> 1000 profiles with 5 measurements, balanced

> 1000 random intercepts sampled from

1 |
—N(—2,1)+=N(2,1
2 ( 7)—|_2 (7)

> 2 = 02]7%., o? = 30

> Data analysed assuming normality for the intercepts
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> Histogram of sampled intercepts and empirical Bayes estimates:

True random intercepts

Empirical Bayes estimates

> Clearly, severe shrinkage forces the estimates b; to satisfy the normality

assumption
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e Conclusion:

EB estimates obtained under normality
cannot be used to check normality

e This suggests that the only possibility to check the normality assumption is to fit
a more general model, with the classical linear mixed model as special case, and to

compare both models

using LR methods
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9.8 The Heterogeneity Model

e One possible extension of the linear mixed model is to assume a finite mixture as
random-effects distribution:

9 9 9
bi ~ X piN(pj, D), with ¥ p;=1and 3 pjp; =0
J= J= J=

e Interpretation:
> Population consists of g subpopulations
> Each subpopulation contains fraction p; of total population

> In each subpopulation, a linear mixed model holds

e The classical model is a special case: g =1
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e Very flexible class of parametric models for random-effects distribution:

wi=—2, us=2, ct=1, p=0.7
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e Fitting of the model is based on the EM algorithm
e SAS macro available
e EB estimates can be calculated under the heterogeneity model

e Small simulation example:
> 1000 profiles with 5 measurements, balanced

> 1000 random intercepts sampled from

1 |
—N(—2,1)+=N(2,1
2 ( 7)—|—2 (7)

> 2 = 02]7%., o? = 30

> Data analysed under heterogeneity model
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> Histogram of sampled intercepts and empirical Bayes estimates:

True random intercepts

Empirical Bayes estimates

> The correct random-effects distribution is (much) better reflected, than before
under the assumption of normality
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Chapter 10
General Guidelines for Model Building

> Introduction
> General strategy

> Example: The prostate data
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10.1 Introduction

e Marginal linear mixed model:
Y; ~ N(X;8, Z:DZ! + o°I,, + 7° H;)

e Fitting a linear mixed model requires specification of a mean structure, as well as
covariance structure

e Mean structure: e Covariance structure:
> Covariates > Random effects
> Time effects > Serial correlation

> Interactions
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e Both components affect each other: R

] )

Mean structure X;3 Covariance structure V

\ J

Estimation of @
Covariance matrix for 6
t-tests and F-tests

\_| Confidence intervals | /

Efficiency

Prediction
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e When most variability is due to between-subject variability, the two-stage
approach will often lead to acceptable marginal models

e In the presence of a lot within-subject variability, the two-stage approach is less
straightforward

e Also, a two-stage approach may imply unrealistic marginal models
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e For example, reconsider the growth curves:

> Individual profiles:

Short mother Medium mother
160 160

a
o

Height (cm)

N
o

120

10
Age (years] Age (years]

Tall mother

10

5 7 8 5 10
Age (years]

> A random-intercepts model seems reasonable
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> However, the covariance matrix equals

e The aim of this chapter is to discuss some general guidelines for model building.

6.11 6.88 8.26 7.44 7.18
6.88 8.53 9.78 9.01 &.70
8.26 9.78 12.04 10.99 10.96
744 9.01 10.99 10.42 10.56
7.18 8.70 10.96 10.56 11.24
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10.2 General Strategy

Y;; — XZ,B + Zz'bi + &

1. Preliminary mean structure X;3

2. Preliminary random-effects structure Z;b;

3. Residual covariance structure XJ;

4. Reduction of the random-effects structure Z;b;

5. Reduction of the mean structure X,;3
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10.3 Preliminary Mean Structure

10.3.1 Strategy

e Remove all systematic trends from the data, by calculating OLS residual profiles :

r, = Y; — XiBOLS ~ Zzbz + &;

e For balanced designs with few covariates :

Saturated mean structure
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e For balanced designs with many covariates, or for highly unbalanced data sets :

The most elaborate model one is prepared
to consider for the mean structure

e Selection of preliminary mean structures will be based on exploratory tools for the
mean.

e Note that the calculation of 3. ignores the longitudinal structure, and can be
obtained in any regression module

e Provided the preliminary mean structure is ‘sufficiently richt’, consistency of 3,,.
follows from the theory on robust inference for the fixed effects.
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10.3.2 Example: Prostate Data

e Smoothed average trend within each group:

In(1 + PSA)

In(1 + PSA)

Controls

0 5 10 15 20 25

30
Years before diagnosis
L/R cancer cases

30

Years before diagnhosis

In(1 + PSA)

IN(1 + PSA)

BPH cases

Years before diaghosis

0 5 10 ’llé 20 25 30
Years before diaghosis
Metastatic cancer cases
0 5 'lb 115 2‘0 2‘5 30
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e Quadratic function over time, within each diagnostic group

e Correction for age, via the inclusion of age, age x time and age x time®.

e Note that this yields the same model as the model originally obtained from a
two-stage approach, containing 15 fixed effects
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10.4 Preliminary Random-effects Structure

10.4.1 Stragegy

r; =~ Z;b; +¢;

e Explore the residual profiles

e Any structure left, may indicate the presence of subject-specific regression
coefficients

e Try to describe the each residual profile with a (relatively) simple model.
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e Do not include covariates in Z; which are not included in X,;. Otherwise, it is not
justified to assume E/(b;) = 0.

e Use ‘well-formulated’ models: Do not include higher-order terms unless all
lower-order terms are included as well.

e Compare implied variance and covariance functions with results from exploratory
tools for covariance structure
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10.4.2 Example: Prostate Data

e OLS residual profiles and smoothed average of squared OLS residuals:

OLS residual profiles Smoothed variance function

0.4

Residual

Squared residual

- * .
*a* . - . - .
. Sha wwe :' R ot e, 3
. . . e e o gut . ., . .
-2 L L L L _g".:' St st ot e e e B eala .8 o Sey ¢e K

0 5 10 15 20 25 30
Years before diagnaosis

Years before diagnhosis

e \We assume a quadratic function for each residual profile

e This results in a model with random intercepts, and random slopes for the linear
as well as quadratic time effect.
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e Variance function: (1 ¢ t2> D | ¢t | + o2

e Comparison of smoothed average of squared OLS residuals and fitted variance
function:

Variance function

Variance

0.0

Years before diagnosis
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e Possible explanation for observed differences:

> Small t: some subjects have extremely large responses close to diagnosis. This
may have inflated the fitted variance

> Large t: few observations available: only 24 out of 463 measurements taken
earlier than 20 years prior to diagnosis.
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10.5 Residual Covariance Structure

10.5.1 Strategy

r, = Z;b; + €;

e Which covariance matrix >; for €; ?
e In many applications, random effects explain most of the variability

e Therefore, in the presence of random effects other than intercepts, often
> = 02]7% Is assumed

e However, many other covariance structures can be specified as well
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e A special class of parametric models for X, is obtained from splitting €; into a
measurement error component €,; and a serial correlation component & ,y;:

YE — XZ/B + Zzbz —+ € 1)s —+ € (2)i

b; ~ N(0,D)
Ewi ~ N(0,0%I,.)  independent
€wi ~ N(0,7°H,)

e Only the correlation matrix H; then still needs to be specified

e [, is assumed to have (j, k) element of the form h;;; = g(|t;j — tir|) for some
decreasing function ¢(-) with g(0) =1
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e Frequently used functions g(-):
> Exponential serial correlation: g(u) = exp(—aou)

> Gaussian serial correlation: g(u) = exp(—¢u?)

e Graphical representation (¢ = 1):

Exponential : glu] = exp(-u) Gaussian : glu) = exp(-u®)
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e When only random intercepts are included, the semi-variogram can be used to
explore the presence and the nature of serial correlation

e When other random effects are present as well, an extension of the variogram is
needed.

e Also, a variety of serial correlation functions can be fitted and compared.
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10.5.2 Example: Prostate Data

e Based on the preliminary mean and random-effects structures, several serial
correlation functions can be fitted.

e For example, a model with Gaussian serial correlation can be fitted in SAS using
the following program:

proc mixed data=prostate method=reml;

class id group timeclss;

model lnpsa = group age group*time age*time group*time2 age*time2 / noint solution;
random intercept time time2 / type=un subject=id g gcorr v vcorr;

repeated timeclss / type=sp(gau) (time) local subject=id r rcorr;
run;

e REPEATED statement:
> the serial correlation model is specified in the ‘type’ option

> ‘local’ is added to include measurement error
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e Summary of model fits:

Residual covariance structure REML log-likelihood
Measurement error —31.235
Measurement error + Gaussian —24.787
Measurement error 4+ exponential —24.266

e The presence of serial correlation is clearly detected

e However, there seems to be little information in the data to distinguish between
different serial correlation structures

e Practical experience suggests that including serial correlation, if present, is far
more important than correctly specifying the serial correlation function.

Introduction to Longitudinal Data Analysis 278



e Variance function: (1 t t2> D|+]| + 02+ 72

e Comparison of smoothed average of squared OLS residuals and fitted variance
function:

Variance function

Variance

0.0

Years before diagnosis
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e Inclusion of serial correlation leads to different estimates for the variance
components in D

e [ herefore, the fitted variance function differs from the one obtained before
without serial correlation

e [ he deviation for small values of ¢ remains, but the functions coincide better for
large .
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10.6 Reduction of Preliminary Random-effects Structure

e Once an appropriate residual covariance model is obtained, one can try to reduce
the number of random effects in the preliminary random-effects structure

e This is done based on inferential tools for variance components
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10.7 Reduction of Preliminary Mean Structure

e Once an appropriate covariance model is obtained, one can try to reduce the
number of covariates in the preliminary mean structure

e [his is done based on inferential tools for fixed effects

e In case there is still some doubt about the validity of the marginal covariance
structure, robust inference can be used to still obtain correct inferences.
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10.8 Example: Prostate Data

o Fixed effects estimates from the final model, under Gaussian serial correlation, and
without serial correlation:

Serial corr.  No serial corr.
Effect Parameter Estimate (s.e.) Estimate (s.e.)
Age effect By 0.015 (0.006)  0.016 (0.006)
Intercepts:
Control Bo —0.496 (0.411) —0.564 (0.428)
BPH By 0.320 (0.470)  0.275 (0.488)
L/R cancer By 1.216 (0.469) 1.099 (0.486)
Met. cancer Bs 2.353 (0.518) 2.284 (0.531)
Time effects:
BPH Bs  —0.376 (0.070) —0.410 (0.068)
L/R cancer Bo —1.877 (0.210) —1.870 (0.233)
Met. cancer Bro —2.274 (0.244) —2.303 (0.262)
Time? effects:
Cancer e = P15 0.484 (0.073) 0.510 (0.088)

Introduction to Longitudinal Data Analysis 283



e Variance components estimates from the final model, under Gaussian serial

correlation, and without serial correlation:

Serial corr. No serial corr.

Effect Parameter  Estimate (s.e.)  Estimate (s.e.)
Covariance of b;:

var(by;) diy 0.393 (0.093)  0.443 (0.093)

var(by;) doo 0.550 (0.187)  0.842 (0.203)

var(bs;) ds3 0.056 (0.028)  0.114 (0.035)

cov(byi, ba) dip = dyy  —0.382 (0.114) —0.490 (0.124)

cov(bay, bs;) dys = dg»  —0.170 (0.070) —0.300 (0.082)

cov(bs;, bus) dis =dy  0.098 (0.039)  0.148 (0.047)
Measurement error variance:

var(e;) o2 0.023 (0.002)  0.028 (0.002)
Gaussian serial correlation:

var(& ;) 2 0.029 (0.018) — (—)

Rate of exponential decrease  1/y/¢ 0.599 (0.192) — (—)

REML log-likelihood

—13.704

—20.165
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e Many standard errors are smaller under the model which includes the Gaussian
serial correlation component

e Hence, adding the serial correlation leads to more efficient inferences for most
parameters in the marginal model.
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10.9 Random-effects Structure versus Residual Covariance
Structure

e The marginal covariance structue equals
Vi = Z;DZ; + %

e Hence, the residual covariance >; models all variation not yet been accounted for
by random effects

e In practice, one therefore often observes strong competition between these two
sources of stochastic variation

e This is also reflected in substantial correlations between the variance components
estimates
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e As an example, consider the final model for the prostate data, with Gaussian serial

correlation

e Estimated correlation matrix for variance components estimates:

Corr (CE, CEQ, 672\2, 671\3, 672\3, Ci?:?), ?2, 1/\/57 52)

1.00 -0.87 0.62 0.70 —-049 0.39|-0.18 —0.10 —0.00
—-087 1.00 -0.85 —-0.94 0.75 —0.63| 0.21  0.08 —0.03
062 —-0.8 1.00 0.88 —0.97 091|-046 —-0.29 0.02
0.70 -0.94 088 1.00 —0.82 0.72|-0.22 —0.06 0.05
= -049 0.75 =097 -0.82 1.00 —0.97| 0.51 0.33 —0.02
039 -0.63 091 072 -097 1.00|-0.57 —0.38 0.01

-0.18 021 —-046 —-0.22 051 —-0.57| 1.00 0.81 0.04
-0.10 0.08 —-0.29 -0.06 0.33 —-0.38| 081 1.00 0.32
-0.00 -0.03 0.02 0.056 —-0.02 0.01{ 0.04 032 1.00
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e Relatively large correlations between 72 and the estimates of some of the
parameters in D

e Small correlations between 62 and the other estimates, except for 1//¢.

e Indeed, the serial correlation component vanishes for ¢ becoming infinitely large.
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Chapter 11
Power Analyses under Linear Mixed Models

> F' test for fixed effects
> Calculation in SAS

> Examples
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11.1 F' Statistics for Fixed Effects

e Consider a general linear hypothesis

Hy: LB = 0, versus Hy: LB # 0

e [ test statistic:
N —1 -1 -
B'L [L ('Zl X{X/;‘l(a)Xz-) L’} L3

Fo—
rank(L)

e Approximate null-distribution of F'is F’ with numerator degrees of freedom equal
to rank(L)
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e Denominator degrees of freedom to be estimated from the data:
> Containment method
> Satterthwaite approximation
> Kenward and Roger approximation

> ...

e In general (not necessarily under Hy), F' is approximately F' distributed with the
same numbers of degrees of freedom, but with non-centrality parameter

N —1 -l
6= B [L (£ XV (@)X L’] LB
which equals O under H,,.

e This can be used to calculate powers under a variety of models, and under a
variety of alternative hypotheses
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o Note that ¢ is equal to rank(L) x F, and with 3 replaced by 3

e The SAS procedure MIXED can therefore be used for the calculation of ¢ and the
related numbers of degrees of freedom.
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11.2 Calculation in SAS

e Construct a data set of the same dimension and with the same covariates and
factor values as the design for which power is to be calculated

e Use as responses y; the average values X;3 under the alternative model

e The fixed effects estimate will then be equal to

N -1y
Bla) = 3 XWi@)X,) 3 XWi(a)y,
N —l N
= (ile{m(@Xz) P XWila)XiB = B

e Hence, the F-statistic reported by SAS will equal ¢/rank(L)
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e This calculated F' value, and the associated numbers of degrees of freedom can be
saved and used afterwards for calculation of the power.

e Note that this requires keeping the variance components in « fixed, equal to the
assumed population values.

e Steps in calculations:
> Use PROC MIXED to calculate ¢, and degrees of freedom v, and v,
> Calculate critical value F:
P(F,, 1,0 > F.) = level of significance

> Calculate power:
power = P(F,, ,,s > F.)

e The SAS functions ‘finv’ and ‘probf’ are used to calculated F. and the power
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11.3 Example 1

e Re-consider the random-intercepts model previously discussed for the rat data:
Yii = (Bo+bu)+ (B1Li + BoH; + B3Ci)tij + €ij

in which ¢;; equals In[1 + (Age;; — 45)/10)]

e This model is fitted in SAS as follows:

proc mixed data = test;

class treat rat;

model y = treat*t / solution ddfm=kr;

random intercept / subject=rat;

contrast ’Equal slopes’ treat*t 1 -1 0, treat*t 1 0 -1;

run;
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e The CONTRAST statement is added to test equality of the average slopes.

e Suppose a new experiment is to be designed, to test the above hypothesis, when

the true parameter values are given by:

Effect Parameter True value
Intercept B 68
Time effects:

Low dose 1 7

High dose (32 7.5

Control 03 6.5
Covariance of b;:

var(by;) diq 3.6
Residual variance:

var(e;;) o’ 1.4
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e The power of a design with 10 rats per treatment group is calculated as follows:

> Construction of data set with expected averages as response values:

data power;
do treat=1 to 3;
do rat=1 to 10;
do age=50 to 110 by 10;
t=log(1+(age-45)/10);
if treat=1 then y=638 + 7.5%t;
if treat=2 then y=63 + 7.0%*t;
if treat=3 then y=68 + 6.5x%t;
output,
end;
end;
end ;
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> Fit model, keeping the variance components equal to their true values:

proc mixed data = power noprofile;

class treat rat;

model y = treat*t ;

random intercept / subject=rat(treat);

parms (3.6) (1.4) / noiter;

contrast ’Equal slopes’ treat*t 1 -1 0,
treatxt 1 0 -1;

ods output contrasts=c;

run;

> PARMS statement to specify starting values for the variance components.

> The ‘noiter’ and ‘noprofile’ options request that no iterations be performed and
that inferences are based on the specified values.

> ODS statement needed to save F', 11 and 1.
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> Calculation of ¢, F|. and power:

data power;

set c;

alpha=0.05;

ncparm=numdf*fvalue;
fc=finv(l-alpha,numdf,dendf,0);
power=1-probf (fc,numdf ,dendf ,ncparm) ;
run;

proc print;run;

e Output:
Num Den
Label DF DF FValue ProbF alpha ncparm fc power
Equal slopes 2 177 4.73 0.0100 0.05 9.46367 3.04701 0.78515
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e Hence, there is a power of 78.5% to detect the prespecified differences at the 5%

level of significance.

e Increasing the number of rats yields the following powers:

Group size Power
10 78.5%
11 82.5%
12 85.9%
13 88.7%
14 91.0%
15 92.9%
20 97.9%
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11.4 Example 2

e \We continue the previous random-intercepts model and study the effect of varying
the variance components values

diy
3.2 3.6 4.0
1.0 | 89.3% 885% |87.9%
o 14| 798% |785%  77.4%
1.8 | [71.9%| 70.3%  68.9%

e Results (10 rats per group):

e Conclusions:

> The power decreases as the total variance increases

> Keeping the total variance constant, the power increases as the intraclass
correlation p; = dy;/(d1; + 0?) increases
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11.5 Example 3

11.5.1 Introduction

e Experiment for the comparison of two treatments A and B
e A total of N general practitioners (GP's) involved

e Each GP treats n subjects

e Y, is the response for subject j treated by GP ¢

e The analysis should account for the variability between GP's
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e We use the following random-intercepts model, where the random intercepts
reflect random GP effects:
By + by +¢€; if treatment A

Y =
B9 4 by; + €i; if treatment B

e Assumed true parameter values:

Effect Parameter True value

Fixed effects:

Average treatment A 3 1
Average treatment B 39 2
Variance components:
var(by;) diq ?
var(gi;) o’ ?
di; + o’
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e Hence, the individual variance components are unknown. Only the total variability
is known to equal 4.

e Power analyses will be performed for several values for the intraclass correlation
pr = di/(di +0?)
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11.5.2 Case 1: Treatments Assigned to GP’s

e \We now consider the situation in which the treatments will be randomly assigned
to GP’s, and all subjects with the same GP will be treated identically.

e Powers for 2 x 25 = 50 GP's, each treating 10 subjects (o = 0.05):

01 Power
0.25 86%
0.50 65%
0.75 50%

e The power decreases as the intraclass correlation increases
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11.5.3 Case 2: Treatments Assigned to Subjects

e \We now consider the situation in which the treatments will be randomly assigned
to subjects within GP’s, with the same number n /2 of subjects assigned to both

treatments

e Powers for 2 x 5 = 10 subjects within 10 GP's (o = 0.05):

01 Power
0.25 81%
0.50 94%
0.75 100%

e The power increases as the intraclass correlation increases

e Note also that Case 2 requires many less observations than Case 1
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11.5.4 Conclusion

Within-‘subject’ correlation

increases power for inferences on within-‘subject’ effects,

but decreases power for inferences on between-‘subject’ effects
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Part Il

Marginal Models for Non-Gaussian Longitudinal Data
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Chapter 12
The Toenail Data

e Toenail Dermatophyte Onychomycosis: Common toenail infection, difficult to
treat, affecting more than 2% of population.

e (Classical treatments with antifungal compounds need to be administered until the
whole nail has grown out healthy.

e New compounds have been developed which reduce treatment to 3 months

e Randomized, double-blind, parallel group, multicenter study for the comparison of
two such new compounds (A and B) for oral treatment.
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e Research question:

Severity relative to treatment of TDO 7?7

e 2 X 189 patients randomized, 36 centers
e 48 weeks of total follow up (12 months)
e 12 weeks of treatment (3 months)

e measurements at months 0, 1, 2, 3, 6, 9, 12.
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e Frequencies at each visit (both treatments):

Toenall data

a0

30|

% severe |nfections

101

Treatment A
- == Treatment B

BN

| | | | | | | | |

@) 9 12
Time (months)
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Chapter 13
The Analgesic Trial

e single-arm trial with 530 patients recruited (491 selected for analysis)
e analgesic treatment for pain caused by chronic nonmalignant disease
e treatment was to be administered for 12 months

e we will focus on Global Satisfaction Assessment (GSA)

e GSA scale goes from 1=very good to 5=very bad

e GSA was rated by each subject 4 times during the trial, at months 3, 6, 9, and 12.
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e Research questions:

> Evolution over time

> Relation with baseline covariates: age, sex, duration of the pain, type of pain,
disease progression, Pain Control Assessment (PCA), ...

> Investigation of dropout

e Frequencies:

GSA  Month 3 Month 6 Month 9 Month 12
1 55 14.3% 38 12.6% 40 17.6% 30 13.5%
2 112 29.1% 84 27.8% 67 29.5% 66 29.6%
3 151 39.2% 115 38.1% 76 33.5% 97 43.5%
4 52 13.5% 51 16.9% 33 145% 27 12.1%
5 15 39% 14 46% 11 49% 3 1.4%

Tot 385 302 227 223

Introduction to Longitudinal Data Analysis

313



e Missingness:

Measurement occasion

Month 3 Month 6 Month 9 Month 12 Number %

Completers

O ) o) o) 163 41.2
Dropouts

O ) o) M 51 12.91

O o) M M 51 12.91

O M M M 63 15.95

Non-monotone missingness

O o) M o) 30 7.59

O M @) @) 7 1.77

O M ) M 2 0.51

O M M 0] 18 4.56

M o) o) o) 2 0.51

M 0) 0) M 1 0.25

M o) M o) 1 0.25

M o) M M 3 0.76
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Chapter 14
The National Toxicology Program (NTP) Data

Developmental Toxicity Studies

e Research Triangle Institute

e The effect in mice of 3 chemicals:
> DEHP: di(2-ethyhexyl)-phtalate
> EG: ethylene glycol
> DYME: diethylene glycol dimethyl ether
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e Implanted fetuses:
> death /resorbed

> viable:
* weight

* malformations: visceral,

skeletal, external

e Data structure:

dam
--implant (m;) - -

V|ab|e non- V|ab|e

/\ /\

malf. (z;)weight death resorption
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Litter

# Dams, > 1 Size Malformations
Exposure Dose Impl. Viab. Live (mean) Ext. Visc. Skel.
EG 0 25 25 297 119 00 00 03
750 24 24 276 115 1.1 00 87
1500 23 22 229 104 1.7 09 36.7
3000 23 23 226 9.8 7.1 40 558
DEHP 0 30 30 330 132 00 15 1.2
44 26 26 288 11.1 10 04 04
91 26 26 277 107 54 72 43
191 24 17 137 8.1 175 153 18.3
292 25 9 50 56 54.0 50.0 48.0
DYME 0 21 21 282 134 00 00 0.0
625 20 20 225 113 00 00 0.0
125 24 24 290 121 1.0 00 1.0
250 23 23 201 113 27 0.1 20.0
500 22 22 141 6.1 66.0 199 79.4
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Chapter 15
Generalized Linear Models

> The model
> Maximum likelihood estimation

> Examples

> McCullagh and Nelder (1989)
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15.1 The Generalized Linear Model

e Suppose a sample Y7, ..., Yy of independent observations is available

e All Y; have densities f(y;|0;, ) which belong to the exponential family:
f(l6:, ¢) = exp {¢™ [y — ¥(0;)] + c(y, 9)}

e 0; the natural parameter
e Linear predictor: 6, = x;'8
e 0 is the scale parameter (overdispersion parameter)

e 7/)(.) is a function to be discussed next
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15.2 Mean and Variance

e We start from the following general propterty:

[ fyl0, ¢)dy
— [exp{¢ [y — w(0)] + cly, 9)} dy = 1

e Taking first and second-order derivatives with respect to 6 yields

91 f(ylo,¢) dy = 0

P f(yl6,¢) dy = 0
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Var(Y) = ¢y (0)
e Note that, in general, the mean 1 and the variance are related:

Var(Y) = ¢ [ "} (p)] = ¢v(p)
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e The function v(u) is called the variance function.
e The function wl_l which expresses # as function of 1 is called the link function.

e 1/ is the inverse link function
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15.3 Examples

15.3.1 The Normal Model

e Model:
Y ~ N(p,0°)
e Density function:
1 1 ,
Tlo,.é) = Qexp{—g(y—u) }
o o
B 1 112 In(2wo?)  y?
- eXp{a?(y“_z) " ( 2 202
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e Exponential family:

>0 =
> ¢ = 02
> (0) = 62 /2
n{ 27 2
Dc<y7¢):1(22¢)_%

e Mean and variance function:
> =40
>v(p) =1

e Note that, under this normal model, the mean and variance are not related:

e The link function is here the identity function: 6 = p
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15.3.2 The Bernoulli Model

e Model:
Y ~ Bernoulli(7)

e Density function:

f(ylo,¢) = 7(1—m)"

= exp{yln7+ (1 —y)In(1 —7)}

T

= exp{yln(l ) +1n(1—7r)}

— T
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e Exponential family:
> 60 =In (")
> ¢ =1
> (0) =In(1 — ) = In(1 + exp(d))
> c(y, ¢) =0

e Mean and variance function:

_expf __
D'u_l-kexp@_ﬂ-

> v(p) = uf$$2ﬂ =m(l —m)

e Note that, under this model, the mean and variance are related:

ov(p) = p(l—p)

e The link function here is the logit link: 6 = In (ﬁ)
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15.3.3 The Poisson Model

e Model:
Y ~ Poisson(\)

e Density function:

fWlo, ¢) =

= exp{yIn A — X —Iny!}
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e Exponential family:
>0 =1InA\

>¢=1
> () =X =expl

> c(y, ¢) = —Iny!

e Mean and variance function:
>y =expld =M\
>v(p) =expl = A

e Note that, under this model, the mean and variance are related:

pu(p) = p

e The link function is here the log link: § = 1n i
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15.4 Generalized Linear Models (GLM)

e Suppose a sample Y7, ..., Yy of independent observations is available
e All Y; have densities f(y;|0;, ) which belong to the exponential family

e In GLM'’s, it is believed that the differences between the 6, can be explained
through a linear function of known covariates:

e x; is a vector of p known covariates

e (3 is the corresponding vector of unknown regression parameters, to be estimated
from the data.
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15.5 Maximum Likelihood Estimation

e Log-likelihood:

U(B,¢) = %[%9@'—@9(9@)] + Xy, ¢)

1
1) i

e First order derivative with respect to 3:

1 /
08 o 253 yi — V(0]
e The score equations for 3 to be solved:
00; . B
S(B) = §% yi — (0] = 0
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e Since p; = '(0;) and v; = v(u;) = ¥"(0;), we have that

e g P, OB
s =% op = " ap

e T he score equations now become

o _
S(8) = géf[; ot (g — i) = 0

e Note that the estimation of 3 depends on the density only through the means ;
and the variance functions v; = v(1;).

Introduction to Longitudinal Data Analysis 331



e The score equations need to be solved numerically:
> iterative (re-)weighted least squares
> Newton-Raphson

> Fisher scoring

e Inference for 3 is based on classical maximum likelihood theory:
> asymptotic Wald tests
> likelihood ratio tests

> score tests
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e In some cases, ¢ is a known constant, in other examples, estimation of ¢ may be

required to estimate the standard errors of the elements in 3

e Estimation can be based on Var(Y;) = ¢uv;:

¢ = N > (yi — )’ [oi(f)

e For example, under the normal model, this would yield:

1 _
2 1 AN2
g = Z(yl — Ly /8) )
N — p
the mean squared error used in linear regression models to estimate the residual
variance.
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15.6 lllustration: The Analgesic Trial

e Early dropout (did the subject drop out after the first or the second visit) ?

e Binary response

e PROC GENMOD can fit GLMs in general
e PROC LOGISTIC can fit models for binary (and ordered) responses

e SAS code for logit link:

proc genmod data=earlydrp;
model earlydrp = pca0 weight psychiat physfct / dist=b;
run;

proc logistic data=earlydrp descending;
model earlydrp = pca0 weight psychiat physfct;
run;
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e SAS code for probit link:

proc genmod data=earlydrp;

model earlydrp = pca0 weight psychiat physfct / dist=b link=probit;

run;

proc logistic data=earlydrp descending;

model earlydrp = pca0 weight psychiat physfct / link=probit;

run;

e Selected output:

Analysis Of Parameter Estimates

Standard
Parameter DF Estimate Error
Intercept 1 -1.0673 0.7328
PCAO 1 0.3981 0.1343
WEIGHT 1 -0.0211 0.0072
PSYCHIAT 1 0.7169 0.2871
PHYSFCT 1 0.0121 0.0050
Scale 0 1.0000 0.0000

Wald 95Y%
Confidence Limits

-2.5037 0.3690
0.1349 0.6614
-0.0353 -0.0070
0.1541 1.2796
0.0024 0.0219
1.0000 1.0000

NOTE: The scale parameter was held fixed.

Pr > ChiSq

0.1453
0.0030
0.0034
0.0125
0.0145
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Chapter 16
Parametric Modeling Families

> Continuous outcomes
> Longitudinal generalized linear models

> Notation
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16.1 Continuous Outcomes

e Marginal Models:
E(Yj|@;) = @,
e Random-Effects Models:
E(Yij|bi, i) = ;8 + 2;;b;
e Transition Models:

E(Yj|Yij-1, ... . Y, xy) = 2,8 + aYj j
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16.2 Longitudinal Generalized Linear Models

e Normal case: easy transfer between models
e Also non-normal data can be measured repeatedly (over time)

e Lack of key distribution such as the normal [—>]
> A lot of modeling options
> Introduction of non-linearity

> No easy transfer between model families

Cross-

sectional  longitudinal
normal outcome linear model LMM
non-normal outcome GLM ?

Introduction to Longitudinal Data Analysis 338



16.3 Notation

e Let the outcomes for subject ¢ = 1,..., N be denoted as (Yj1,..., Y, ).

e Group into a vector Y ;:

> Binary data: each component is either 0 or 1.
> (Binary data: each component is either 1 or 2.)
> (Binary data: each component is either —1 or +1.)

> (Categorical data: Y;; € {1,...,c}.)
e The corresponding covariate vector is x;;.

e It is convenient to use (binary 0/1 data):

E(Yy)=Pr(Y;=1)=py; and = E(Y;Yy)=Pr(Y; =1,Yy;=1)
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Chapter 17
Conditional Models

> A log-linear model

> Quadratic version of the model

> Linear version of the model

> Clustered-data versions of the model

> Transition models
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17.1 A Log-linear Model

e Cox (1972)

e Joint distribution of Y'; in terms of a multivariate exponential family:

f<y2'7 92) = €XD ( > 92]?/2; + X szljgyzjlyzn .+ Qil...nyil e Yin — A<92))

J1<J2

— (6 )eXp ( > 62]3/2] =+ jlzjz 92]1j2y2j1y2j2 .1 Hil...nyil I yin)

e A(0,) [equivalently, ¢(0;)] is the normalizing constant

@ O, is the canonical parameter, consisting of first, second, up to nth order
components.
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¢ Interpretation of Parameters:

> The parameters have a conditional interpretation:

9 1 Pr(Y;; = 1|Yi, = 0,k # j)
ig — 11 :
/ Pr(Y;; = 0|Yir = 0;k # j)

> = the first order parameters (main effects) are interpreted as conditional

logits.
> Similarly,
9 | Pr(Yij =1,Yi = 1|Yie = 0;k, 5 # )Pr(Y;; = 0, Yy, = 0Yi = 0; k, j # {)
I Pr(Yi; =1,Yy = 0|Yie = 0;k, j # £)Pr(Yi; =0, Yy = 1|V = 0; k, j # ()

> These are conditional log odds ratios.
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e Advantages:

> The parameter vector is not constrained. All values of 8 € IR yield
nonnegative probabilities.

> Calculation of the joint probabilities is fairly straightforward:
x ignore the normalizing constant
* evaluate the density for all possible sequences y
+ sum all terms to yield ¢(0)™!

e Drawbacks:

> Due to above conditional interpretation, the models are less useful for
regression.

The dependence of E(Y];) on covariates involves all parameters, not only the main effects.

> The interpretation of the parameters depends on the length n; of a sequence.

These drawbacks make marginal models or models that combine marginal and
conditional features better suited.
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17.2 Quadratic and Linear Versions

e Cox (1972) and others suggest that often the higher order interactions can be

neglected. This claim is supported by empirical evidence.

e The quadratic exponential model:

f(yz'a 9@) — eXp (jgl ez'jyij + > (9z'j1j2yz'j1yz'j2 — A<6i))

J1<J2

= ¢(0;) exp (‘Z O:yij + ¥ eijljzyijlyijz) '
Jj=1 J1<J2

e The linear exponential model:
f(Y;,0i) = exp (]21 0ijyij — A(Hz'))

then this model reflects the assumption of independence.

e The linear model equals logistic regression.
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17.3 A Version for Clustered Binary Data

e NTP data: Yj; is malformation indicator for fetus j in litter i

e Code YVjjas —1or1l

e d; is dose level at which litter 7 is exposed

e Simplification: 0i; = 0; = PBo + Bad, and Oii iy, = Ba

e Using

we obtain
n;

f(zi|0;, B.) = (z ) exp {0izi + Bazi(ni — z;) — A(0;)}

(4
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17.4 Transition Models

e Molenberghs and Verbeke (2005, Section 11.5)

e Outcome Yj; or error term ¢;; is a function of history h;; = (Yj1,....Yi ;1)

e Order of transition model: # of previous outcomes in regression

e Stationary model: functional form of dependence independent of occurrence time

e A stationary first-order autoregressive model for continuous data is:
Yii = B +ea

Yij = z;B+aY ;1 +e
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e Assume
en ~ N(0,0%) and gij ~ N(0,0%(1 — a?))

then
.l .
cov(Yij, Yiy) = ol =15

—> a marginal multivariate normal model with AR(1) variance-covariance matrix.

e For non-Gaussian outcomes, first write
Yij = g + €
and then
pi; = E(Yilhi;)
Qv(pi;) = var(Y;lhi;)
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e Example of a linear predictor:

77@']'(,“%) — m;]IB + /i<h’ij7 B, Oz)
e 1 is a function of the history.

e This model is easy to fit since it leads to independent GLM contributions:

f(yila e 7ymi) — f(yz'l) ' f(yi2|yz'1> : f(yz':a\yﬂ, yzz) : f(yz'n@'|yz'17 Ce 7yz',n¢—1)

= f(yin) 'jﬁQf(yzﬂhz‘j) = f(Yi1, - Yiq) - j%lf(yzﬂhij)

J

e This product yields n, — ¢ independent univariate GLM contributions.

e A separate model may need to be considered for the first ¢ measurements.
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e A logistic-regression type example:

logit| P(Yi; = 1|z, Yij-1 = vij—1, B, a)] = 332313 + QY 1.
e The marginal means and variances do not follow easily, except in the normal case.

e Recursive formulas are:
pij = p(O)[1 = 1] + pg; (D pi 1

vij = [p5;(1) — (00 i g—1 + 05 (0)[1 — gy ja] + 055 (1) pi g1
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17.4.1 Analysis of the Toenail Data

e Formulate a transition model (Model I):
Y;; ~ Bernoulli(;;)
Fij

S MZ]

logit (1 ) = o + 511 + Bati; + B3T3t + a1y j—1

e To account for unequal spacing (Model Il):

> «v; describes the transition effect for the later measurements
> (v, IS the ‘excess’ during the first quarter

> hence: autoregressive effect at months 1, 2, and 3 is a1 + aq,

e Alternatively: dependence on two prior occasions:

logit ( Hij
L — pug

) = Do + O1 15 + Patij + B3 Litij + onyi j—1 + QoY j—2
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e Fitted models:

First order

Effect Par. | | Second order
Intercept Gy -3.14(0.27) -3.77 (0.34)  -3.28 (0.34)
T G, 0.00(0.31) -0.08(0.32)  0.13 (0.39)
) Gy -0.09 (0.04) 0.03 (0.05) -0.05 (0.04)
Tt G, -0.08 (0.06) -0.06 (0.06) -0.09 (0.07)
Dep.onY; ;1 «a; 4.48(0.22) 359(0.29) 4.01(0.39)
Dep.on Y, ;-1 ai, 1.56 (0.35)

Dep.on Y, ;o v 0.25 (0.38)
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e Two separate models, depending on the level of the previous outcome:

logit (1 itz‘fu ) = (Boo + 51T + Baotij + BsoTitij) Iy, ; =0
i
+(Bo1 + BuTy + Patiy + BaTitij) Iy, =
e Fitted model:
Yij-1=0 Yijo1=1

Effect Par. Estimate (s.e.) Par. Estimate (s.e.)

Intercept  Byo -3.92 (0.56) B 1.56 (1.26)

L Gy -0.06 (0.09) By -0.20 (0.06)

Tt B30 0.07 (0.10) S 0.04 (0.07)
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17.4.2 Transition Model in SAS

e Prepare models so that the previous outcome can be used as a covariate (using
the same code as used to fit a model for dropout — see Part V)

hdropout (data=test,id=idnum,time=time,response=onyresp,out=test2);

data test2a;
set test2;
prevl=prev;
drop prev;
run;

hdropout (data=test2a,id=idnum,time=time,response=prevl,out=test3);

data test3a;
set test3;
prev2=prev,;
drop prev;
run;

Introduction to Longitudinal Data Analysis 353



e The result for the first subject is

Obs idnum time  treatn onyresp prevl prev2

1 1 0 1 1 .

2 1 1 1 1 1

3 1 2 1 1 1 1
4 1 3 1 0 1 1
5 1 6 1 0 0 1
6 1 9 1 0 0 0
7 1 12 1 0 0 0

e Code to fit a transition model:

proc genmod data=test3a descending;
model onyresp = treatn time treatn*time prevl / dist=binomial;
run,
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e When both predecessors are used, one merely adds ‘prev2’ to MODEL statement:

model onyresp = prevl treatn*prevl time*prevl treatn*timexprevl
/ noint dist=binomial;

e To fit Model Il, an additional variable ‘prevla’ needs to be created:

data test3b;

set test3a;
prevla=prevl;

if time>3 then previla=0;
run;

which is then added to the logistic regression, next to ‘prevl.’
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Chapter 18
Full Marginal Models

> Introduction

> Link functions

> Associations

> Bahadur model

> Multivariate Probit model

> Example: POPS data
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18.1 Introduction

e Choices to make:

> Description of mean profiles (univariate parameters) and of association
(bivariate and higher order parameters)

> Degree of modeling:
x joint distribution fully specified = likelihood procedures
x only a limited number of moments = e.g., generalized estimating equations

e Minimally, one specifies:
> 1,() = {mi(pir), - - - Nin(in) }
> E(Y;) =, and n:(p;) = X0
>var(Y;) = ¢v(u;) where v(.) is a known variance function

> corr(Y;) = R(«)
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18.2 Univariate Link Functions

e The marginal logit link:

Nij = (i) — In(1 — pi5) = logit(fu;).

e The probit link:
iy = O (i)

e The complementary log-log link
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18.3 Pairwise Association

e Success probability approach. (Ekholm 1991)
Logit link for two-way probabilities

Mijk = (pije) — (L — i) = logit(pijr),
e Marginal correlation coefficient. (Bahadur model)

Moijk — Hij ik
V(1 = pig) pin (1 — paige)

Pijk

Nijk = (14 pijr) — In(1 — pyj) (Fisher's z transform)
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e Marginal odds ratio. (Dale model)

() (U = g — e+ )
¢zgk —
(kik — prijn) (Hij — Hijk)
Pr(Y,, = 1, Yy = DPr(Y, = 0, Yy = 0
Pr(Yy = 0, Vi = LPH(Y;; = L, Yy — 0)

Nijk = (i) (log odds ratio)
e Higher order association defined similarly

e Calculations can become combersome
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18.4 The Bahadur Model

e Univariate: E(Y;;) = P(Y;; = 1) = m;.
e Bivariate: E(Y;;Y,) = P(Y,; =1.Yie =1) = .
e Correlation structure:

Tijk — TijTik

i (1 — i) mi(1 — )| /2

Corr(Yyj, Yir) = pije =

e This yields expression for pairwise probabilities:

Tijk = TijTik + Pijk|mii (1 — mij)min(1 — i),

e Similarly for the full joint distribution f(y).
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o et
Yij — mij

=)

_ Yy T Ty
Jmig(1 = i)’

Eij and  ¢;;

and

pijk = Eleijeir),

Pijkt = E<€z'j€z'k5i€>a

pi2.n. = E(ein€ia.. . €in,)-
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e A general expression:

fy:) = fily)c(y,),

with

and

c(y;) = 1+ ¥ pijkeijeir + X pijke€ij€i€ic + - ..+ Pi12. n.€i1€i2 - . . Ein,-
j<k J<k<t
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18.5 The Multivariate Probit Model

e E.g., 4 x 3 categorical out-
come arises from underlying
bivariate normal

e Covariate effects = shift of
cut off points

e Correlation = polychoric cor-
relation: allowed to depend on
covariates
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18.6 The POPS Data

e Project On Preterm and Small for Gestational Age Infants

e 1530 Dutch children (1983)

e Collected data:

Perinatal information:

> Bilirubin value
> Neonatal seizures

> Congenital malformations

Ability scores at the age of 2:

> Are the child’'s movements natural ?
> Can the child pile three bricks ?

> Can the child put a ball in a boxed
when asked to ?
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18.7 Application to POPS Data

Bahad Probit Dale-Norm Dale-Logist
First Ability Score
Intercept 3.67(0.49) 2.01(0.26) 2.03(0.27) 3.68(0.52)
Neonatal seiz. -1.94(0.42) -1.12(0.26) -1.16(0.26) -2.06(0.44)
Congenital malf. -1.21(0.31) -0.61(0.18) -0.62(0.18) -1.17(0.33)
100x Bilirubin -0.69(0.25) -0.32(0.14) -0.32(0.14) -0.64(0.27)
Second Ability Score
Intercept 4.03(0.51) 2.19(0.27) 2.21(0.27) 4.01(0.54)
Neonatal seiz. -2.26(0.43) -1.27(0.26) -1.29(0.26) -2.28(0.44)
Congenital malf. -1.08(0.32) -0.56(0.19) -0.59(0.19) -1.11(0.34)
100x Bilirubin -0.85(0.26) -0.42(0.14) -0.41(0.14) -0.80(0.27)
Third Ability Score
Intercept 3.32(0.50) 1.84(0.27) 1.91(0.27) 3.49(0.54)
Neonatal seiz. -1.55(0.44)  -0.88(0.27) -0.93(0.27) -1.70(0.46)
Congenital malf. ~ -0.96(0.32)  -0.47(0.19)  -0.49(0.19) -0.96(0.35)
100x Bilirubin -0.44(0.26) -0.21(0.14) -0.24(0.14) -0.49(0.28)
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Bahad Probit Dale-Norm Dale-Logist
Association parameters
p p (8 (0
(1,2): pora 0.27(0.05) 0.73(0.05) 17.37(5.19) 17.35(5.19)
(1,2): z(p) or In 0.55(0.11) 1.85(0.23) 2.85(0.30) 2.85(0.30)
(1,3): pore 0.39(0.05) 0.81(0.04) 30.64(9.78) 30.61(9.78)
(1,3): z(p) or Iny 0.83(0.12) 2.27(0.25) 3.42(0.32) 3.42(0.32)
(2,3): poro 0.23(0.05) 0.72(0.05) 17.70(5.47) 17.65(5.47)
(2,3): z(p) or Iny 0.47(0.10) 1.83(0.23) 2.87(0.31) 2.87(0.31)
(1,2,3): pora — — 0.91(0.69) 0.92(0.69)
(1,2,3): z(p) or Inep — — -0.09(0.76) -0.09(0.76)
Log-likelihood -598.44 -570.69 -567.11 -567.09

Introduction to Longitudinal Data Analysis

367



Chapter 19
Generalized Estimating Equations

> General idea

> Asymptotic properties

> Working correlation

> Special case and application

> SAS code and output
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19.1 General Idea

e Univariate GLM, score function of the form (scalar Y;):

S(B) =

7

N Opi 4
21 9)6; Y

(y; — i) =0 with v; = Var(Y;)

i — N B
SB) = ox 7 %1 (yij — pij) = S DilVile)] (y;— ;) = O
t ] a,8 1=1
where
> D; is an n; X p matrix with (¢, j)th elements 98

>y, and u; are n;-vectors with elements y;; and 145

> Is V; n; X n; diagonal or more complex?
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e I, = Var(Y;) is more complex since it involves a set of nuisance parameters «,
determining the covariance structure of Y';:

Vi(B, @) = ¢A*(B)Ri()A*(B)

in which

fonpa(@) .0
A(B) =

0 o iy (i, (B))

and R;(c) is the correlation matrix of Y;, parameterized by a.

e Same form as for full likelihood procedure, but we restrict specification to the first
moment only

e Liang and Zeger (1986)
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19.2 Large Sample Properties

As N — oo A
VN(B —B) ~ N(0. ;)
where N
h= 3 DVi(e)] D

e (Unrealistic) Conditions:

> o is known

> the parametric form for V;(a) is known
e This is the naive=purely model based variance estimator

e Solution: working correlation matrix
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19.3 Unknown Covariance Structure

Keep the score equations

S(8) = % [DJ V(@) (y; ~ m) = 0
BUT

e suppose V;(.) is not the true variance of Y'; but only a plausible guess, a so-called
working correlation matrix

e specify correlations and not covariances, because the variances follow from the
mean structure

e the score equations are solved as before
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e The asymptotic normality results change to

VN({B - B) ~ N(0,I,;'L1;")

I = ¥ DiVi(e)] D,
I = 3 DVi{e)] Var(¥ )[V(a)] ' Dy

e This is the robust=empirically corrected= sandwich variance estimator
> [ is the bread

> [ is the filling (ham or cheese)

e Correct guess = likelihood variance
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e The estimators 3 are consistent even if the working correlation matrix is incorrect

e An estimate is found by replacing the unknown variance matrix Var(Y’;) by
(Yi— )Y — )"

e Even if this estimator is bad for Var(Y;) it leads to a good estimate of I,
provided that:

> replication in the data is sufficiently large
> same model for p; is fitted to groups of subjects

> observation times do not vary too much between subjects
e A bad choice of working correlation matrix can affect the efficiency of B

e Care needed with incomplete data (see Part V)
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19.4 The Working Correlation Matrix

Vi = Vi(B, a, ) = oA (B)Ri() A (8)

e Variance function: A; is (n; x n;) diagonal with elements v(u;;), the known GLM
variance function.

e Working correlation: R;(cx) possibly depends on a different set of parameters c.
e Overdispersion parameter: ¢, assumed 1 or estimated from the data.

e The unknown quantities are expressed in terms of the Pearson residuals
_ Yij — Hij
62']' = V.

v(fig)

Note that ¢;; depends on (3.
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19.5 Estimation of Working Correlation

Liang and Zeger (1986) proposed moment-based estimates for the working correlation.

Corr(Yi;, Yir) Estimate
Independence 0 —
Dispersion parameter:
A1 <N 1
Exchangeable o' Q= § Zis1 p(n,o1) Zik CijCik
N i=1n; j=1 "
| 1
AR(1) a &= § Ty g Tjni—1 €ij€ij+1
s _ 1 <N
Unstructured Qi Qj = « Lis1 €ijCik
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19.6 Fitting GEE

The standard procedure, implemented in the SAS procedure GENMOD.
1. Compute initial estimates for 3, using a univariate GLM (i.e., assuming
independence).
2. > Compute Pearson residuals e;;.
> Compute estimates for ax and ¢.
> Compute R;(c) and Vi(B, ) = oA (B)Ri(a) A} (3).
3. Update estimate for 3:

N I
B =B~ | S DYDY | S DV - )

4. lterate 2.-3. until convergence.

Estimates of precision by means of I;! and/or I, 1111 .
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19.7 Special Case: Linear Mixed Models

e Estimate for 3:
N -1y
Bla) = (£ XWX, £ XY,

with o replaced by its ML or REML estimate

e Conditional on o, B has mean
N -1y
o] = (£ XWiX] £ XWx8 = p
provided that F(Y;) = X,

e Hence, in order for B to be unbiased, it is sufficient that the mean of the response
is correctly specified.
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e Conditional on «, 3 has covariance

-1

. N -1 /N N N —1
Var(B) = (z X;WiXi) (z XMVar(YWX@-) (z ngixi) _ (z X;vv@X@-)
1=1 1=1 1=1 1=1

e Note that this model-based version assumes that the covariance matrix
Var(Y;) is correctly modelled as V; = Z;DZ] + 33;.

e An empirically corrected version is:

_ N o 1N N o, -1
Var(8) = (_ngiWiXi) (;1 XZ-WZ-Var(Y;)WZ-XZ-) (ngZWZ-XZ-)

l l l
BREAD MEAT BREAD
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Chapter 20
A Family of GEE Methods

> Classical approach
> Prentice's two sets of GEE
> Linearization-based version

> GEE2

> Alternating logistic regressions
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20.1 Prentice’s GEE

(4 (4

N N
S DVNY =) = 0, S EWN(Z-6) = 0

where
(Yij — pij)(Yie — pir)
Vi (1 = pig) pin (1 — i)’

Lijk = ije = E(Ziji)

The joint asymptotic distribution of v N (3 — 3) and v/N (& — ) normal with
variance-covariance matrix consistently estimated by

A0 All /\12 A B
B CJ|Ay Ay )| 0 C
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where

1 N
A = Z DIV_1D1> , A11 = Z D;‘/Z-_l(:OV(Yi)V;_lDi,
‘ i=1

-1 —1 N
B = N E/H/_lE) (N E/ ._18Zi> (N D/V_1D> A12 _ Z D;‘/Z-_l(:OV(YZ', ZZ_)IIfZ_—lEZ_,
Z’_ A 1 1 Z_ Z[[Z (9/6 Z’_ 271 1 ) i=1
=1 1=1 i=1

N 1 A21 - A127
C = ZEQW[lEi) : N
i=1 Ny = S EW, Cov(Z))W,'E;,
=1
and
Statistic Estimator

Var(Y,;) (Y, — )Y — ;)
Cov(Y, Z) | (Y —p)(Z;—6;)

Var(Z;) (Z;—6;)(Z; —9;)
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20.2 GEE Based on Linearization

20.2.1 Model formulation

e Previous version of GEE are formulated directly in terms of binary outcomes

e This approach is based on a linearization:

Y =K + &
with

n = g9p), m = X8,  Var(y;) = Var(g) =5,
e 7), is a vector of linear predictors,

e g(.) is the (vector) link function.
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20.2.2 Estimation (Nelder and Wedderburn 1972)

e Solve iteratively:

N / N *
Z XZV[/ZXZIB — ;1 VszZ;

1=1
where
‘/‘/i — P;/Zi_lﬂa y;k — ’f'i+(yi_ljl’i)}7i_17
OLL.
F, = 35;:-’ Yi = Var(e), p; = E(y,).
e Remarks:

>y is called ‘working variable’ or “pseudo data’.

> Basis for SAS macro and procedure GLIMMIX

> For linear models, D; = I,,, and standard linear regression follows.

384
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20.2.3 The Variance Structure

% = ¢ A (B)Ri(a) A}”*(8)

e ¢ is a scale (overdispersion) parameter,
e A, = v(u;), expressing the mean-variance relation (this is a function of 3),

e R;(x) describes the correlation structure:
> If independence is assumed then R;(cx) = I,,..

> Other structures, such as compound symmetry, AR(1),...can be assumed as
well.
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20.3 GEE2

e Model:
> Marginal mean structure

> Pairwise association:

+ Odds ratios
+ Correlations

e Working assumptions: Third and fourth moments

e Estimation:
> Second-order estimating equations

> Likelihood (assuming 3rd and 4th moments are correctly specified)
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20.4 Alternating Logistic Regression

e Diggle, Heagerty, Liang, and Zeger (2002) and Molenberghs and Verbeke (2005)

e When marginal odds ratios are used to model association, ¢ can be estimated
using ALR, which is

> almost as efficient as GEE2

> almost as easy (computationally) than GEEL

® 11, as before and a;jr = In(v);;) the marginal log odds ratio:

|Ogit PFO/Z']' = 1‘%@') = a:z-jﬁ
Mij — Hijk
1 — pij — peik + i

|Ogit Pr(YZ-j — 1|}/zk: — yz'k:) = QjkYik + In
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® ;i can be modelled in terms of predictors
e the second term is treated as an offset

e the estimating equations for 3 and « are solved in turn, and the ‘alternating’
between both sets is repeated until convergence.

e this is needed because the offset clearly depends on (3.
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20.5 Application to the Toenail Data

20.5.1 The model

e Consider the model:

3/2']' ~ Bernoulli(,uz-j), |Og (1 quiL ) — 60 + 617_12 -+ ﬁQtZ‘j -+ 637}15@'
— [ij

e Y. severe infection (yes/no) at occasion j for patient ¢
e {;;: measurement time for occasion j

e [;: treatment group
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20.5.2 Standard GEE
e SAS Code:

proc genmod data=test descending;
class idnum timeclss;
model onyresp = treatn time treatn*time
/ dist=binomial;
repeated subject=idnum / withinsubject=timeclss
type=exch covb corrw modelse;
run;

e SAS statements:
> The REPEATED statements defines the GEE character of the model.
> ‘type=": working correlation specification (UN, AR(1), EXCH, IND,...)
> ‘modelse’: model-based s.e.’s on top of default empirically corrected s.e.’s
> ‘corrw’: printout of working correlation matrix

> ‘withinsubject=": specification of the ordering within subjects
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e Selected output:

> Regression parameters:

Analysis Of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits  Square
Intercept 1 -0.5571 0.1090 -0.7708 -0.3433 26.10
treatn 1 0.0240 0.1565  -0.2827 0.3307 0.02
time 1 -0.1769 0.0246 -0.2261 -0.1288 51.91
treatnxtime 1  -0.0783 0.0394 -0.1556  -0.0010 3.95
Scale 0 1.0000 0.0000 1.0000 1.0000

> Estimates from fitting the model, ignoring the correlation structure, i.e.,
from fitting a classical GLM to the data, using proc GENMOD.

> The reported log-likelihood also corresponds to this model, and therefore
should not be interpreted.

> The reported estimates are used as starting values in the iterative estimation
procedure for fitting the GEE's.
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Analysis 0Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits

Intercept -0.5840 0.1734 -0.9238 -0.2441 -3.
treatn 0.0120 0.2613 -0.5001 0.5241 0.
time -0.1770 0.0311 -0.2380 -0.1161 -5.

treatn*time -0.0886 0.0571 -0.2006 0.0233 -1.

Analysis 0f GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits

Intercept -0.5840 0.1344 -0.8475 -0.3204 -4
treatn 0.0120 0.1866 -0.3537 0.3777 0.
time -0.1770 0.0209 -0.2180 -0.1361 -8.

treatn*time -0.0886 0.0362 -0.1596 -0.0177 -2.

> The working correlation:

Exchangeable Working Correlation

Correlation 0.420259237

Z

37
05
69
55

N

34
06
47
45

Pr > |Z]|

0.0008
0.9633
<.0001
0.1208

Pr > |Z]|

<.0001
0.9486
<.0001
0.0143
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20.5.3 Alternating Logistic Regression

e ‘type=exch’ — ‘logor=exch’

e Note that « now is a genuine parameter
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e Selected output:

Analysis 0Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard
Parameter Estimate Error
Intercept -0.5244 0.1686
treatn 0.0168 0.2432
time -0.1781 0.0296
treatn*time -0.0837 0.0520
Alphal 3.2218 0.2908

95% Confidence
Limits

-0.8548 -0.1940 -3.
-0.4599  0.4935 0.
-0.2361 -0.1200 -6.
.61
.08

-0.1856 0.0182 -1
2.6519 3.7917 11

Analysis 0Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard
Parameter Estimate Error
Intercept -0.5244  0.1567
treatn 0.0168 0.2220
time -0.1781 0.0233

treatnxtime -0.0837 0.0392

95% Confidence
Limits

-0.8315 -0.2173 -3.
-0.4182  0.4519 0.
-0.2238 -0.1323 7.
-0.1606 -0.0068  -2.

Z

11
07
01

N

35
08
63
13

Pr > |Z]|

0.0019
0.9448
<.0001
0.1076
<.0001

Pr > |Z]|

0.0008
0.9395
<.0001
0.0329
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20.5.4 Linearization Based Method

e GLIMMIX macro:

%hglimmix (data=test, procopt=Ystr(method=ml empirical),
stmts=)str(
class idnum timeclss;
model onyresp = treatn time treatn*time / solution;
repeated timeclss / subject=idnum type=cs rcorr;
)
error=binomial,
link=logit);

e GLIMMIX procedure:

proc glimmix data=test method=RSPL empirical;

class idnum;

model onyresp (event=’1’) = treatn time treatn*time
/ dist=binary solution;

random _residual_ / subject=idnum type=cs;

run;
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e Both produce the same results

e The GLIMMIX macro is a MIXED core, with GLM-type surrounding statements

e The GLIMMIX procedure does not call MIXED, it has its own engine

e PROC GLIMMIX combines elements of MIXED and of GENMOD

e RANDOM _residual_ is the PROC GLIMMIX way to specify residual correlation
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20.5.5 Results of Models Fitted to Toenail Data

Effect Par. IND EXCH UN

GEE1
Int. Bo -0.557(0.109;0.171) -0.584(0.134;0.173) -0.720(0.166;0.173)
T; $1  0.024(0.157;0.251) 0.012(0.187;0.261)  0.072(0.235;0.246)
tij B -0.177(0.025;0.030) -0.177(0.021;0.031) -0.141(0.028;0.029)
T;-t;; B3 -0.078(0.039;0.055) -0.089(0.036;0.057) -0.114(0.047;0.052)

ALR
Int. Bo -0.524(0.157;0.169)
T; B 0.017(0.222;0.243)
tij Bs -0.178(0.023;0.030)
T;-ti; (s -0.084(0.039;0.052)
Ass. o 3.222( ;0.291)

Linearization based method

Int. Bo -0.557(0.112;0.171) -0.585(0.142;0.174) -0.630(0.171;0.172)
T; $1 0.024(0.160;0.251) 0.011(0.196;0.262)  0.036(0.242;0.242)
tij B -0.177(0.025;0.030) -0.177(0.022;0.031) -0.204(0.038;0.034)
T;-ti; (B3 -0.078(0.040:0.055) -0.089(0.038;0.057) -0.106(0.058;0.058)

estimate (model-based s.e.; empirical s.e.)
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20.5.6 Discussion

e GEE1: All empirical standard errors are correct, but the efficiency is higher for the
more complex working correlation structure, as seen in p-values for T - t;; effect:

Structure p-value

IND  0.1515
EXCH 0.1208
UN 0.0275

Thus, opting for reasonably adequate correlation assumptions still pays off, in
spite of the fact that all are consistent and asymptotically normal

e Similar conclusions for linearization-based method
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e Model-based s.e. and empirically corrected s.e. in reasonable agreement for UN

e Typically, the model-based standard errors are much too small as they are based
on the assumption that all observations in the data set are independent, hereby
overestimating the amount of available information, hence also overestimating the
precision of the estimates.

e ALR: similar inferences but now also « part of the inferences
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Part 1|

Generalized Linear Mixed Models for Non-Gaussian
Longitudinal Data
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Chapter 21
The Beta-binomial Model

> Genesis of the model

> Implied marginal distribution
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21.1 Genesis of the Beta-binomial Model

e Skellam (1948), Kleinman (1973)

o Let Y, be a n;-dimensional vector of Bernoulli-distributed outcomes, with success
probability b;.

e Assume the elements in Y; to be independent, conditionally on b,
e Then, he conditional density of Yj;, given b; is proportional to the density of

Zi= 3 Y,
=1

e The density of Z;, given b; is binomial with n; trials and success probability b;.
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e The beta-binomial model assumes the b; to come from a beta distribution with
parameters o and [3:

b1 (1 — b))
fiba,8) ="

B(.,.): the beta function

e o and (3 can depend on covariates, but this dependence is temporarily dropped
from notation
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21.2 Implied Marginal Model

e The marginal density of Z; is the so-called beta-binomial density:
filzila, B) = /[ ] bi*(1 = bi)" " f(bilex, B)db

n; | Bz +a,n; — z + )

B(a, 5)

Zj
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e Useful moments and relationships (7 = pu;/n;):

o)
Mea i =EZ) =ny
n i = E(Z) e
Correlatio Corr(Y;;, Yir) :
on = rr\xr;;, r; =
P DR T 4 g4+1
Variance Var(Z;) = nym(1 — 7)[1 + (n; — 1)p]
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e The density can now be written as:

ni | Blzi+mlpt—=1),n;—2z+ (1 —m)(pt—1)
2 Blr(p~t=1),(1 —=m)(p~' = 1)]

filzilm, p) =

e When there are covariates (e.g., sub-populations, dose groups), rewrite 7 and /or
p as m; and/or p;, respectively.

e It is then easy to formulate a model through the marginal parameters 7; and p;:
> 7; can be modeled through, e.g., a logit link

> p; can be modeled through, e.g., Fisher's 2z transformation

e In Part |V, the NTP data will be analyzed using the beta-binomial model
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Chapter 22
Generalized Linear Mixed Models (GLMM)

> Introduction: LMM Reuvisited
> Generalized Linear Mixed Models (GLMM)
> Fitting Algorithms

> Example
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22.1 Introduction: LMM Reuvisited

e \We re-consider the linear mixed model:

lfz|bz ~ N(XZ,B + Z;b;, Zz’); b; ~ N(O, D)
e The implied marginal model equals Y; ~ N(X;3,Z,DZ! + %)

e Hence, even under conditional independence, i.e., all X; equal to 02]7%, a marginal
association structure is implied through the random effects.

e [he same ideas can now be applied in the context of GLM's to model association
between discrete repeated measures.
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22.2 Generalized Linear Mixed Models (GLMM)

e Given a vector b; of random effects for cluster ¢, it is assumed that all responses
Y;; are independent, with density

fiil0ij, 0) = oxp {6 [yibij — ¥(0:)] + c(yij, @)}
e 0, is now modelled as 0;, = x;;/8 + z;;'b;
o As before, it is assumed that b; ~ N(0, D)

o Let f;i(yij|bi, B, ®) denote the conditional density of Y;; given b;, the conditional
density of Y; equals

fi(yi‘bi7/87¢) = jﬁl fij(yz‘j\biaﬁaﬁb)
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e The marginal distribution of Y; is given by

fiwilB, D, ¢) = | fiyi|bi, B,) f(bs| D) db;
= Ti, £ (01 1bs, B.0) £ (bl D) db
where f(b;|D) is the density of the N (0, D) distribution.

e The likelihood function for 3, D, and ¢ now equals

L(B,D.¢) = 11 [i(ylB, D, o)

- zﬁl /jﬁl fij(yzj‘bi,ﬁ7¢) f(bz‘D) db;
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e Under the normal linear model, the integral can be worked out analytically.

e In general, approximations are required:
> Approximation of integrand
> Approximation of data

> Approximation of integral

e Predictions of random effects can be based on the posterior distribution

f(b:]Y; = y;)

e ‘Empirical Bayes (EB) estimate’:
Posterior mode, with unknown parameters replaced by their MLE
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22.3 Laplace Approximation of Integrand

e Integrals in L(3, D, ¢) can be written in the form [ = /eQ(b)db

e Second-order Taylor expansion of )(b) around the mode yields

Q(b) ~ Q(B) + (b~ B/ Q"(b)(b—b).

e Quadratic term leads to re-scaled normal density. Hence,

—

I~ (2m)"2|—-Q"(B)[ " D).
e Exact approximation in case of normal kernels

e Good approximation in case of many repeated measures per subject
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22.4 Approximation of Data

22.4.1 General ldea

e Re-write GLMM as:
Yij = wij+ei; = hlz;8+ zi;bi) + ¢

with variance for errors equal to Var(Y;;|b;) = ¢v(u;;)

e Linear Taylor expansion for 1;;:

> Penalized quasi-likelihood (PQL): Around current B3 and b;
> Marginal quasi-likelihood (MQL): Around current 3 and b; = 0
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22.4.2 Penalized quasi-likelihood (PQL)

e Linear Taylor expansion around current 3 and b;:

o~

Yij h(:r:ng + Z;ng + h/(fL’;jB + Z%@)‘”;j(ﬁ — B) + h/(fB;jB + z;jgi)zgj(bi —b;) + ey

Q

~ i+ v(fg) e (8 — B)+ v(fiij) 25 (b — b;) + cij

—

e In vector notation: Y; ~ ; + V. X;(B — B) + V;Z;(b; — b;) + €;

e Re-ordering terms yields:

Y = Vi (Yi—m) + XiB+ Zibi = XiB+ Zib; + €],

e Model fitting by iterating between updating the pseudo responses Y;* and fitting
the above linear mixed model to them.
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22.4.3 Marginal quasi-likelihood (MQL)

e Linear Taylor expansion around current 3 and b; = 0:

Q

Yij h(fvéﬁ) + h’(wéﬁ)wéj(ﬁ -8) + h/(m;j/@>z;jbi + €ij
~ i + v (8 — B) + v(fiy)zibi + i)

e In vector notation: Y; ~ pn, + \Z-XZ-(B — B) + V. Z:b; + €;

e Re-ordering terms yields:

Y—i* = Vi_lafi _ ﬁz) 4+ XZ.B i~ Xz'/B —+ Zibi + E:;‘

e Model fitting by iterating between updating the pseudo responses Y;*

the above linear mixed model to them.

and fitting
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22.4.4 PQL versus MQL

e MQL only performs reasonably well if random-effects variance is (very) small
e Both perform bad for binary outcomes with few repeated measurements per cluster

e With increasing number of measurements per subject:
> MQL remains biased

> PQL consistent

e Improvements possible with higher-order Taylor expansions
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22.5 Approximation of Integral

e The likelihood contribution of every subject is of the form
| f(2)¢(z)dz

where ¢(z) is the density of the (multivariate) normal distribution

e Gaussian quadrature methods replace the integral by a weighted sum:

| [(z)¢(2)dz ~

MO

wqf(zq>

1

e () is the order of the approximation. The higher () the more accurate the
approximation will be
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e The nodes (or quadrature points) z, are solutions to the (Jth order Hermite
polynomial

e The w, are well-chosen weights

e The nodes z, and weights w, are reported in tables. Alternatively, an algorithm is
available for calculating all 2, and w, for any value ().

e With Gaussian quadrature, the nodes and weights are fixed, independent of

f(2)o(2).

e With adaptive Gaussian quadrature, the nodes and weights are adapted to
the ‘support’ of f(2)p(2).
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e Graphically (@ = 10):

Gaussian Quadrature Adaptive Quadrature

f(zo(z)
f(z)o(z)
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e Typically, adaptive Gaussian quadrature needs (much) less quadrature points than
classical Gaussian quadrature.

e On the other hand, adaptive Gaussian quadrature is much more time consuming.

e Adaptive Gaussian quadrature of order one is equivalent to Laplace transformation.

e Ample detail can be found in Molenberghs and Verbeke (2005, Sections 14.3-14.5)
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22.6 Example: Toenail Data

e Y}, is binary severity indicator for subject 7 at visit 7.

e Model:
Y;'j|bz' ~ Bernoulli(mj), IOg (1 i ) — ﬁ() + bz’ + 617—; + 6275@7' + ﬁgﬂtzj
— Tij
e Notation:

> T;: treatment indicator for subject ¢

> t;;: time point at which jth measurement is taken for ¢th subject

e Adaptive as well as non-adaptive Gaussian quadrature, for various ().
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e Results:

Gaussian quadrature

Q=3

Q=5 Q=10 Q = 20

Q =50

o
&)
2
e

-1.52 (0.31
-0.39 (0.38
-0.32 (0.03)
-0.09 (0.05)
2.26 (0.12)

)
)

-2.49
0.19
-0.38
-0.12
3.09

(0.39) -0.99 (0.32)

(0.36) 0.47 (0.36) -0.43 (0.80)
(0.04) -0.38 (0.05) -0.40 (0.05)
(0.07) -0.15 (0.07)
(0.21) (0.39)

-1.54 (0.69)

0.07 -0.14 (0.07)

0.21) 4.53(0.39) 3.86 (0.33)

-1.65 (0.43)
-0.09 (0.57)
-0.40 (0.05)
-0.16 (0.07)
4.04 (0.39)

—2/0

1344.1

1259.6 1254.4 1249.6

1247.7

Adaptive Gaussian quadrature

Q=3

Q=5 Q=10 Q =20

Q = 50

Ho
&)
G2
O3

-2.05 (0.59)
-0.16 (0.64)
-0.42 (0.05)
-0.17 (0.07)
451 (0.62)

-1.47
-0.09
-0.40
-0.16

3.70

(0.40) -1.65 (0.45) -1.63 (0.43)
0.59) -0.11 (0.59)

)

0.54 )
0.05) -0.40 (0.05)

)

)

0.04
0.07
0.34

-0.12
-0.41
-0.16

4.07

0.07) -0.16 (0.07)

(
(
(
( 0.43) 4.01 (0.38)

) (
) (
) (
) (

-1.63 (0.44)
-0.11 (0.59)
-0.40 (0.05)
-0.16 (0.07)
4.02 (0.38)

—20

1259.1

1257.1 1248.2 1247.8

1247.8
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e Conclusions:
> (Log-)likelihoods are not comparable

> Different () can lead to considerable differences in estimates and standard
errors

> For example, using non-adaptive quadrature, with () = 3, we found no
difference in time effect between both treatment groups

(t = —0.09/0.05, p = 0.0833).

> Using adaptive quadrature, with () = 50, we find a significant interaction
between the time effect and the treatment (¢t = —0.16/0.07, p = 0.0255).

> Assuming that () = 50 is sufficient, the ‘final’ results are well approximated
with smaller () under adaptive quadrature, but not under non-adaptive
quadrature.
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e Comparison of fitting algorithms:

> Adaptive Gaussian Quadrature, () = 50
> MQL and PQL

e Summary of results:

Parameter QUAD

Intercept group A —1.63 (0.44)
Intercept group B —1.75 (0.45)
Slope group A —0.40 (0.05)
Slope group B —0.57 (0.06)
Var. random intercepts (72) 15.99 (3.02)

—0.72 (0.24) —0.56 (0.17
—0.72 (0.24) —0.53 (0.17
—0.29 (0.03) —0.17 (0.02
—0.40 (0.04) —0.26 (0.03

4.71 (0.60)  2.49 (0.29)

e Severe differences between QUAD (gold standard 7) and MQL/PQL.

e MQL/PQL may yield (very) biased results, especially for binary data.
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Chapter 23
Fitting GLMM'’s in SAS

> Proc GLIMMIX for PQL and MQL
> Proc NLMIXED for Gaussian quadrature
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23.1 Procedure GLIMMIX for PQL and MQL

e Re-consider logistic model with random intercepts for toenail data

e SAS code (PQL):

proc glimmix data=test method=RSPL ;

class idnum;

model onyresp (event=’1’) = treatn time treatn*time
/ dist=binary solution;

random intercept / subject=idnum;

run;

e MQL obtained with option ‘method=RMPL’

e Inclusion of random slopes:

random intercept time / subject=idnum type=un;
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e Selected SAS output (PQL):

Covariance Parameter Estimates

Standard

Cov Parm Subject Estimate Error

Intercept idnum 4.7095 0.6024

Solutions for Fixed Effects
Standard

Effect Estimate Error DF t Value
Intercept -0.7204 0.2370 292 -3.04
treatn -0.02594 0.3360 1612 -0.08
time -0.2782 0.03222 1612 -8.64
treatn*xtime -0.09583 0.05105 1612 -1.88

Pr > |t]|

0.0026
0.9385
<.0001
0.0607
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23.2 Procedure NLMIXED for Gaussian Quadrature

e Re-consider logistic model with random intercepts for toenail data

e SAS program (non-adaptive, () = 3):

proc nlmixed data=test noad gpoints=3;

parms betal0=-1.6 betal=0 beta2=-0.4 beta3=-0.5 sigma=3.9;
teta = beta0 + b + betal*treatn + beta2*time + beta3*xtimetr;
expteta = exp(teta);

p = expteta/(l+expteta);

model onyresp ~ binary(p);

random b ~ normal (0,sigma**2) subject=idnum;

run;

e Adaptive Gaussian quadrature obtained by omitting option ‘noad’
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e Automatic search for ‘optimal’ value of () in case of no option ‘gpoints=’

e Selected SAS output (non-adaptive, ) = 3):

Parameter Estimates

Standard
Parameter Estimate Error DF Value Pr > |t| Alpha Lower Upper Gradient
betal -1.5311 0.2961 293 -5.17 <.0001 0.05 -2.1139 -0.9483 2.879E-7
betal -0.4294 0.3728 293 -1.15 0.25603 0.05 -1.1631 0.3043 -2.11E-6
beta2 -0.3107 0.03373 293 -9.21 <.0001 0.05 -0.3771 -0.2443 -0.00003
beta3 -0.07539  0.04998 293 -1.51 0.1325 0.05 -0.1738 0.02298 -0.00003
sigma 2.2681 0.1220 293 18.58 <.0001 0.05 2.0279 2.5083 -3.6E-6
e Good starting values needed !
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e The inclusion of random slopes can be specified as follows:

proc nlmixed data=test noad gqpoints=3;

parms betal0=-1.6 betal=0 beta2=-0.4 beta3=-0.5
d11=3.9 d12=0 d22=0.1,;

teta = beta0 + bl + betalxtreatn + beta2+*time
+ b2*time + betal3d*timetr;

expteta = exp(teta);

p = expteta/(l+expteta);

model onyresp ~ binary(p);

random bl b2 ~ normal ([0, 0] , [d11, d12, d22])

subject=1idnum;
run;
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23.2.1 Some Comments on the NLMIXED Procedure

e Different optimization algorithms are available to carry out the maximization of
the likelihood.

e Constraints on parameters are also allowed in the optimization process.

e The conditional distribution (given the random effects) can be specified as
Normal, Binomial, Poisson, or as any distribution for which you can specify the
likelihood by programming statements.

e E-B estimates of the random effects can be obtained.
e Only one RANDOM statement can be specified.

e Only normal random effects are allowed.
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e Does not calculate automatic initial values.

e Make sure your data set is sorted by cluster D!

e PROC NLMIXED can perform Gaussian quadrature by using the options NOAD
and NOADSCALE. The number of quadrature points can be specified with the
option QPOINTS=m.

e PROC NLMIXED can maximize the marginal likelihood using the
Newton-Raphson algorithm by specifying the option TECHNIQUE=NEWRAP.
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23.2.2 The Main Statements

e NLMIXED statement:
> option ‘noad’ to request no adaptive quadrature
> by default, adaptive Gaussian quadrature is used
> the option ‘gpoints’ specifies the number of quadrature points

> by default, the number of quadrature points is selected adaptively by
evaluating the log-likelihood function at the starting values of the parameters
until two successive evaluations show sufficiently small relative change.

e PARMS statement:
> starting values for all parameters in the model

> by default, parameters not listed in the PARMS statement are given an initial
value of 1
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e MODEL statement:
> conditional distribution of the data, given the random effects

> valid distributions:

« normal(m,v): Normal with mean m and variance v

* binary(p): Bernoullie with probability p

* binomial(n,p): Binomial with count n and probability p
* poisson(m): Poisson with mean m

+ general(ll): General model with log-likelihood (I

> since no factors can be defined, explicit creation of dummies is required

e RANDOM statement:
> specification of the random effects
> the procedure requires the data to be ordered by subject !

> empirical Bayes estimates can be obtained by adding out=eb
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Part IV

Marginal Versus Random-effects Models and Case Studies
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Chapter 24
Marginal Versus Random-effects Models

> Interpretation of GLMM parameters
> Marginalization of GLMM

> Conclusion
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24.1 Interpretation of GLMM Parameters: Toenail Data

e \We compare our GLMM results for the toenail data with those from fitting GEE's
(unstructured working correlation):

GLMM GEE

Parameter Estimate (s.e.) Estimate (s.e.)
Intercept group A —1.6308 (0.4356) —0.7219 (0.1656)
Intercept group B —1.7454 (0.4478) —0.6493 (0.1671)
Slope group A —0.4043 (0.0460) —0.1409 (0.0277)

( ) ( )

Slope group B —0.5657 (0.0601 0.0380

—0.2548
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e The strong differences can be explained as follows:

> Consider the following GLMM:

Y;i;|b; ~ Bernoulli(7;;), log (1 i ) = [o+ b + Biti;
— T

> The conditional means E(Y;;|b;), as functions of ¢;;, are given by

Average evolutions, conditional on random effects

E(Yi0:)

0.81

_ exp(ﬁo -+ bz -+ 61?5@]')
1 -+ 6Xp<ﬁ0 + bi + ﬁltiﬂ

0.6

P(Y=11!b)

0.4

0.21

Time
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> The marginal average evolution is now obtained from averaging over the
random effects:

| exp(Bo + b + Bitij) |
1 + exp(By + b + Bitij)

exp(Bo + Bitij)

1+ exp(Bo + Bitij)

E(Yj;) = EE(Y|b)] = E

Average evolutions, conditional on random effects

0.8

0.6

P(Y=1{ b)

0.4

0.2

00 7, /,,;,::/— = — :

Time
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e Hence, the parameter vector 3 in the GEE model needs to be interpreted
completely different from the parameter vector 3 in the GLMM:

> GEE: marginal interpretation

> GLMM: conditional interpretation, conditionally upon level of random effects

e In general, the model for the marginal average is not of the same parametric form
as the conditional average in the GLMM.

e For logistic mixed models, with normally distributed random random intercepts, it
can be shown that the marginal model can be well approximated by again a
logistic model, but with parameters approximately satisfying

BRE
= V2o + 1 > 1, o = variance random intercepts

B
¢ = 16v/3/(157)
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e For the toenail application, o was estimated as 4.0164, such that the ratio equals
Vcto? + 1 =2.5649.

e The ratio’s between the GLMM and GEE estimates are:

GLMM GEE

Parameter Estimate (s.e.) Estimate (s.e.) Ratio

Intercept group A —1.6308 (0.4356) —0.7219 (0.1656) 2.2590

)
Intercept group B —1.7454 (0.4478) —0.6493 (0.1671) 2.6881
Slope group A —0.4043 (0.0460) —0.1409 (0.0277) 2.8694
Slope group B —0.5657 (0.0601) —0.2548 (0.0380) 2.2202

e Note that this problem does not occur in linear mixed models:
> Conditional mean: E(Y;|b;) = X;8 + Z;b;
> Specifically: E(Y;|b, =0) = X;3
> Marginal mean: E(Y;) = X3
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e The problem arises from the fact that, in general,

Elg(Y)] # glE(Y)]

e So, whenever the random effects enter the conditional mean in a non-linear way,
the regression parameters in the marginal model need to be interpreted differently
from the regression parameters in the mixed model.

e In practice, the marginal mean can be derived from the GLMM output by
integrating out the random effects.

e This can be done numerically via Gaussian quadrature, or based on sampling
methods.
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24.2 Marginalization of GLMM: Toenail Data

e As an example, we plot the average evolutions based on the GLMM output

obtained in the toenail example:

Marginal average evolutions (GLMM)

0.4

P(Y; =1)
s [ exp(—1.6308 + b; — 0.4043t;)
1+ exp(—1.6308 + b; — 0.4043t;;) " _
_ :
[ op(=1.7454 + b; — 0.5657t;)
1+ exp(—1.7454 4 b; — 0.5657¢;;) |
0 1 2 3 4 5 6 Ti:ne 8 9 10 1 12 13 14

443
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e SAS code (averaging over 1000 draws):

data h;
do treat=0 to 1 by 1;
do subject=1 to 1000 by 1;
b=4.0164*rannor(-1)
do t=0 to 12 by 0.1;
if treat=0 then y=exp(-1.6308 + b -0.4043%t)
/(1+ exp(-1.6308 + b -0.4043%t));
else y=exp(-1.7454 + b -0.5657*t)
/(1+ exp(-1.7454 + b -0.5657*t));

)

output;
end;
end;
end;

proc sort data=h;
by t treat;
run;

proc means data=h;
var y;

by t treat;

output out=out;
run;

proc gplot data=out;
plot y*t=treat / haxis=axisl vaxis=axis2 legend=legendl;
axisl label=(h=2 ’Time’) value=(h=1.5)

order=(0 to 14 by 1) minor=none;
axis2 label=(h=2 A=90 ’P(Y=1)’) value=(h=1.5)

order=(0 to 0.4 by 0.1) minor=none;
legendl label=(h=1.5 ’Treatment: ’)

value=(h=1.5 ’A’ ’B’);

title h=2.5 ~’ Marginal average evolutions (GLMM)’;
symboll c=black i=join w=b 1=1 mode=include;
symbol2 c=black i=join w=b 1=2 mode=include;
where _stat_=’MEAN’;
run;quit;run;
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e Average evolutions obtained from the GEE analyses:

Marginal average evolutions (GEE)

0.4

P(Y; =1)

exp(—0.7219 — 0.1409¢ ;)
1+ exp(—0.7219 — 0.1409¢;)

1)

P(Y

exp(—0.6493 — 0.2548t;;)
1 + exp(—0.6493 — 0.2548¢;)

0.04,

445

Introduction to Longitudinal Data Analysis



e In a GLMM context, rather than plotting the marginal averages, one can also plot
the profile for an ‘average’ subject, i.e., a subject with random effect b, = O:

exp(—1.6308 — 0.4043t;;)

1+ GXp(—1.6308 — 04043t@j>

GXp(—1.7454 — 05657t@j>

1 + exp(—1.7454 — 0.5657¢;)

P(Y=1 | b=0)

Evolutions for subjects with random effects zero (GLMM)

0.4

0.3

0.2
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24.3 Example: Toenail Data Reuvisited

e Overview of all analyses on toenail data:

Parameter QUAD PQL MQL

Intercept group A —1.63 (0.44) —0.72 (0.24) —0.56 (0.17) —0.72 (0.17)
Intercept group B —1.75 (0.45) —0.72 (0.24) —0.53 (0.17) —0.65 (0.17)
Slope group A —0.40 (0.05) —0.29 (0.03) —0.17 (0.02) —0.14 (0.03)
Slope group B —0.57 (0.06) —0.40 (0.04) —0.26 (0.03) —0.25 (0.04)
Var. random intercepts (72) 15.99 (3.02)  4.71 (0.60)  2.49 (0.29)

e Conclusion:

IGEE| < [MQL| < |PQL| < |QUAD
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Chapter 25
Case Study: The NTP Data

> Research question

> Conditional model

> Bahadur model

> GEE1 analyses

> GEE2 analysis

> Alternating logistic regressions
> Beta-binomial model

> Generalized linear mixed model

> Discussion
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25.1 Research Question

e Dose-response relationship: effect of dose on malformations

e Regression relationship:

|Og|t[P<}/w = 1|dz', .. )] = ﬁ() + ﬁd d;

e Association parameter: (3; Precise meaning is model-dependent:
> Transformed conditional odds ratio
> Transformed correlation

> Transformed marginal odds ratio
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25.2 Conditional Model

e Regression relationship:

logit| P(Y;; = 1|d;, Yi, = 0,k # 7)| = Bo + Bad,
e ), = (3, is conditional log odds ratio
e Quadratic loglinear model

e Maximum likelihood estimates (model based standard errors; empirically corrected
standard errors)
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Outcome Par. DEHP EG DYME

External (3, -2.81(0.58;0.52) -3.01(0.79;1.01) -5.78(1.13;1.23
Ba  3.07(0.65;0.62

Ba .18(0.04;0.04

2.25(0.68;0.85) 6.25(1.25;1.41

0.25(0.05;0.06) 0.09(0.06;0.06

Visceral 3y -2.39(0.50;0.52) -5.09(1.55;1.51) -3.32(0.98;0.89

Ba  2.45(0.55;0.60) 3.76(1.34;1.20) 2.88(0.93;0.83

Skeletal 3, -2.79(0.58;0.77) -0.84(0.17;0.18) -1.62(0.35;0.48

Bq  2.91(0.63;0.82) 0.98(0.20;0.20

0.20(0.02;0.02

2.45(0.51;0.82

Ba .17(0.04;0.05 0.25(0.03;0.03

Collapsed (3, -2.04(0.35;0.42) -0.81(0.16;0.16) -2.90(0.43;0.51
Bq  2.98(0.51;0.66

B,  0.16(0.03;0.03

0.97(0.20;0.20

(
(
(
(
(
B,  0.18(0.04;0.04
(
(
(
(
( 5.08(0.74:0.96
(

N N N | N N N | N N N N N N

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
0.23(0.09;0.09)  0.29(0.05;0.05)
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

0.20(0.02;0.02) 0.19(0.03;0.03
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25.3 The Bahadur Model

e Regression relationship:

logit[P(Y; = 1{d;)| = B + Bad,
e (3, Fisher's z transformed correlation

e p: correlation
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Outcome Parameter DEHP EG DYME
External [ -4.93(0.39) -5.25(0.66) -7.25(0.71)
Ba 5.15(0.56) 2.63(0.76) 7.94(0.77)
Ba 0.11(0.03) 0.12(0.03) 0.11(0.04)
p 0.05(0.01) 0.06(0.01) 0.05(0.02)
Visceral [ -4.42(0.33) -7.38(1.30) -6.89(0.81)
Ba 4.38(0.49) 4.25(1.39) 5.49(0.87)
Ba 0.11(0.02) 0.05(0.08) 0.08(0.04)
p 0.05(0.01) 0.02(0.04) 0.04(0.02)
Skeletal [ -4.67(0.39) -2.49(0.11) -4.27(0.61)
Ba 4.68(0.56) 2.96(0.18) 5.79(0.80)
Ba 0.13(0.03) 0.27(0.02) 0.22(0.05)
p 0.06(0.01) 0.13(0.01) 0.11(0.02)
Collapsed [ -3.83(0.27) -2.51(0.09) -5.31(0.40)
Ba 5.38(0.47) 3.05(0.17) 8.18(0.69)
Ba 0.12(0.03) 0.28(0.02) 0.12(0.03)
p 0.06(0.01) 0.14(0.01) 0.06(0.01)
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25.4 GEE1

e Regression relationship:

logit[P(Y; = 1{d;)| = B + Bad,
e ¢: overdispersion parameter
e p: working correlation

e Parameter estimates (model-based standard errors; empirically corrected standard
errors)

e Two sets of working assumptions:
> Independence working assumptions

> Exchangeable working assumptions
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Outcome Par. Standard Prentice Linearized

External 3, -5.06(0.30:0.38) -5.06(0.33;0.38) -5.06(0.28:0.38)
B, 5.31(0.44:0.57) 5.31(0.48:0.57) 5.31(0.42;0.57)
¢ 0.90 0.74

Visceral 3, -4.47(0.28;0.36) -4.47(0.28;0.36) -4.47(0.28;0.36)
By 4.40(0.43,0.58) 4.40(0.43,0.58) 4.40(0.43:0.58)
& 1.00 1.00

Skeletal (3, -4.87(0.31:0.47) -4.87(0.31:0.47) -4.87(0.32:0.47)
B, 4.89(0.46:0.65) 4.90(0.47:0.65) 4.90(0.47:0.65)
¢ 0.99 1.02

Collapsed 3, -3.98(0.22;0.30) -3.98(0.22;0.30) -3.98(0.22;0.30)
3, 5.56(0.40:0.61) 5.56(0.40;0.61) 5.56(0.41;0.61)
¢ 0.99 1.04
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Outcome Par. Standard Prentice Linearized
External (5, -4.98(0.40;0.37) -4.99(0.46;0.37) -5.00(0.36;0.37)
By 5.33(0.57;0.55) 5.32(0.65;0.55) 5.32(0.51;0.55)
o) 0.88 0.65
p 0.11 0.11(0.04) 0.06
Visceral By -4.50(0.37;0.37) -4.51(0.40;0.37) -4.50(0.36;0.37)
By 4.55(0.55;0.59) 4.59(0.58;0.59) 4.55(0.54;0.59)
o 1.00 0.92
p 0.08 0.11(0.05) 0.08
Skeletal 3, -4.83(0.44;0.45) -4.82(0.47;0.44) -4.82(0.46;0.45)
By 4.84(0.62;0.63) 4.84(0.67;0.63) 4.84(0.65;0.63)
o) 0.98 0.86
p 0.12 0.14(0.06) 0.13
Collapsed [, -4.05(0.32;0.31) -4.06(0.35;0.31) -4.04(0.33;0.31)
By 5.84(0.57;0.61) 5.89(0.62;0.61) 5.82(0.58;0.61)
o 1.00 0.96
p 0.11 0.15(0.05) 0.11
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25.5 GEE2

e Regression relationship:

logit[P(Y; = 1{d;)| = B + Bad,
e (3, Fisher's z transformed correlation
e p: correlation
e Working assumption: third- and fourth-order correlations are zero

e Parameter estimates (empirically corrected standard errors)
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Outcome Parameter DEHP EG DYME
External Bo -4.98(0.37) -5.63(0.67) -7.45(0.73)
By 5.29(0.55) 3.10(0.81) 8.15(0.83)
By 0.15(0.05) 0.15(0.05) 0.13(0.05)
p 0.07(0.02) 0.07(0.02) 0.06(0.02)
Visceral Bo -4.49(0.36) -7.50(1.05) -6.89(0.75)
B 4.52(0.59) 4.37(1.14) 5.51(0.89)
By 0.15(0.06) 0.02(0.02) 0.11(0.07)
p 0.07(0.03) 0.01(0.01) 0.05(0.03)
Skeletal Gy -5.23(0.40) -4.05(0.33)
B 5.35(0.60) 4.77(0.43)
By 0.18(0.02) 0.30(0.03)
0 0.09(0.01) 0.15(0.01)
Collapsed Bo -5.23(0.40) -4.07(0.71) -5.75(0.48)
By 5.35(0.60) 4.89(0.90) 8.82(0.91)
B, 0.18(0.02) 0.26(0.14) 0.18(0.12)
p 0.09(0.01) 0.13(0.07) 0.09(0.06)
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25.6 Alternating Logistic Regressions

e Regression relationship:

logit|P(Y;; = 1|d;)] = By + Bad;
e Exchangeable association structure
e «: log odds ratio
e 1): odds ratio

e Parameter estimates (empirically corrected standard errors)
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Outcome Parameter DEHP EG DYME
External Bo -5.16(0.35) -5.72(0.64) -7.48(0.75)
Ba 5.64(0.52) 3.28(0.72) 8.25(0.87)
o 0.96(0.30) 1.45(0.45) 0.79(0.31)
Y 2.61(0.78) 4.26(1.92) 2.20(0.68)
Visceral Bo -4.54(0.36) -7.61(1.06) -7.24(0.88)
Ba 4.72(0.57) 4.50(1.13) 6.05(1.04)
o 1.12(0.30) 0.49(0.42) 1.76(0.59)
3.06(0.92) 1.63(0.69) 5.81(3.43)
Skeletal Bo -4.87(0.49) -3.28(0.22) -4.92(0.34)
Ba 4.90(0.70) 3.85(0.39) 6.73(0.65)
o 1.05(0.40) 1.43(0.22) 1.62(0.37)
2.86(1.14) 4.18(0.92) 5.05(1.87)
Collapsed Bo -4.04(0.31) -3.19(0.22) -5.08(0.37)
Ba 5.93(0.63) 3.86(0.40) 7.98(0.75)
o 1.17(0.29) 1.40(0.22) 1.26(0.31)
Y 3.22(0.93) 4.06(0.89) 3.53(1.09)
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25.7 Beta-binomial Model

e Regression relationship:

logit[P(Y; = 1]d;, )] = fo + Bad;
e 3,: Fisher's 2z transformed correlation
e p: correlation

e Parameter estimates (standard errors)
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Outcome Parameter DEHP EG DYME
External [ -4.91(0.42) -5.32(0.71) -7.27(0.74)
Ba 5.20(0.59) 2.78(0.81) 8.01(0.82)
Ba 0.21(0.09) 0.28(0.14) 0.21(0.12)
p 0.10(0.04) 0.14(0.07) 0.10(0.06)
Visceral [y -4.38(0.36) -7.45(1.17) -6.21(0.83)
Ba 4.42(0.54) 4.33(1.26) 4.94(0.90)
Ba 0.22(0.09) 0.04(0.09) 0.45(0.21)
p 0.11(0.04) 0.02(0.04) 0.22(0.10)
Skeletal [ -4.88(0.44) -2.89(0.27) -5.15(0.47)
Ba 4.92(0.63) 3.42(0.40) 6.99(0.71)
Ba 0.27(0.11) 0.54(0.09) 0.61(0.14)
p 0.13(0.05) 0.26(0.04) 0.30(0.06)
Collapsed S -3.83(0.31) -2.51(0.09) -5.42(0.45)
Ba 5.59(0.56) 3.05(0.17) 8.29(0.79)
Ba 0.32(0.10) 0.28(0.02) 0.33(0.10)
p 0.16(0.05) 0.14(0.01) 0.16(0.05)
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25.8 Generalized Linear Mixed Model

e Regression relationship:

logit| P(Y;; = 1|d;, b;)] = Bo + bi + Bad;, bi ~ N(0,7%)
e External malformation in DEHP study

e Four ways of dealing with the integral: Laplace, adaptive Gaussian quadrature,

PQL, and MQL
e Two versions of PQL and MQL: ML and REML

e Parameter estimates (standard errors)
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Effect Parameter Laplace QUAD

Intercept Bo -6.02 (0.59) -5.97 (0.57)
Dose effect Ba 6.50 (0.86) 6.45 (0.84)
Intercept var. > 1.42 (0.70) 1.27 (0.62)
Effect Parameter PQL (REML) PQL (ML)
Intercept Bo -5.32 (0.40) -5.30 (0.40)
Dose effect Ba 5.73 (0.65) 5.71 (0.64)
Intercept var. 72 0.95 (0.40) 0.89 (0.38)
Effect Parameter MQL (REML) MQL (ML)
Intercept Gy 5.18 (0.40) -5.17 (0.39)
Dose effect Ba 5.70 (0.66) 5.67 (0.65)
Intercept var. T 1.20 (0.53) 1.10 (0.50)
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25.9 Summary Table

e External malformation in DEHP study
e All conditional, marginal, and random-effects models considered
e Parameter estimates (standard errors)

e For non-likelihood methods, the empirically corrected standard errors are reported
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Family Model o B4 Association
Conditional Quadr. loglin. (ML)  -2.81(0.58) 3.07(0.65) LOG OR  0.18(0.04)
Quadr. loglin. (PL)  -2.85(0.53) 3.24(0.60) LOG OR  0.18(0.04)
Marginal Lik. Bahadur 14.93(0.39)  5.15(0.56) p 0.05(0.01)
St. GEE1 (exch) -4.98(0.37)  5.33(0.55) 0 0.11
St. GEE1 (ind) 15.06(0.38)  5.31(0.57)
Prent. GEE1 (exch) -4.99(0.37)  5.32(0.55) p 0.11 (0.04)
Prent. GEE1 (ind)  -5.06(0.38)  5.31(0.57)
Lin. based (exch) -5.00(0.37)  5.32(0.55) p 0.06
Lin. based (ind) -5.06(0.38)  5.31(0.57)
GEE2 14.98(0.37)  5.29(0.55) P 0.07(0.02)
ALR _516(0.35)  5.64(0.52) Ba 0.96(0.30)
Random-effects  Beta-binomial -4.91(0.42)  5.20(0.59) p 0.10(0.04)
GLLM (MQL) 5.18(0.40)  5.70(0.66) Int.var 72 1.20(0.53)
GLMM (PQL) 5.32(0.40)  5.73(0.65) Int.var 72 0.95(0.40)
GLMM (QUAD) 5.97(0.57)  6.45(0.84) Int.var 72 1.27(0.62)
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25.10 Discussion

e Relationship between regression model parameters:

|conditional| < |marginal| < |random-effects|

e Beta-binomial model behaves like a marginal model (similar to the linear mixed
model)

e Marginal model parameters:
> Mean function parameters: very similar

> Correlation parameters:

|Bahadur| < |GEE2| < |GEEl| < |beta-binomiall
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> Reason: strength of constraints:

« Bahadur model valid if all higher order probabilities are valid
x GEE2 valid if probabilities of orders 1, 2, 3, and 4 are valid

«x GEE1 valid if probabilities of orders 1 and 2 are valid
* beta-binomial model is unconstrained of correlations in [0, 1]

> Correlation in Bahadur model really highly constrained:

For instance, the allowable range of (3, for the external outcome in the DEHP data is

(—0.0164;0.1610) when 3y and [, are fixed at their MLE. This range excludes the MLE under
a beta-binomial model. It translates to (—0.0082;0.0803) on the correlation scale.

e Additional conditional and marginal approaches can be based on
pseudo-likelihood (Molenberghs and Verbeke 2005, Chapters 9 and 12, in
particular pages 200 and 246)

e Programs: Molenberghs and Verbeke (2005, p. 219ff)
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e The random effects in generalized linear mixed models

> enter linearly on the logit scale:
logit| P(Yi; = 1|d;, bi) = Bo + b + 1 d;

x mean of random intercepts is 0
x mean of average over litters is —3.8171
« mean of predicted value over litters is —3.8171

> enter non-linearly on the probability scale:

exp(fy + b; + b1 d;)

P}/Zzldwbz —
( J | ) 1+€Xp<ﬁ0+bi+ﬁldi)

« mean of random effect is 0.0207
« mean of average probabilities over litters is 0.0781
« mean of predicted probabilities over litters is 0.0988
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Chapter 26
Case Study: Binary Analysis of Analgesic Trial

> Research question

> GEE

> Alternating logistic regressions
> Further GEE analyses

> Generalized linear mixed model

> Discussion
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20.1 Research Question

e Binary version of Global Satisfaction Assessment

1 if GSA < 3 (‘Very Good' to ‘Moderate’),
GSABIN =

0 otherwise.

e Marginal regression relationship:
logit[ P(Yi; = 1]t;j, X;)] = Bo + Butij + Pats; + X

e GLMM regression relationship:
logit[ P(Yi; = 1]t;j, X, b;)| = Bo + bi + ity + Oati; + 03X

e X;: baseline pain control assessment (PCAQ)

e Association parameters: correlation or marginal odds ratio

Introduction to Longitudinal Data Analysis 472



26.2 GEE1

e Parameter estimates (model-based standard errors; empirically corrected standard
errors)

e Four sets of working assumptions:
> Independence
> Exchangeable
> AR(1)

> Unstructured
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Effect Parameter IND EXCH
Intercept 51 2.80(0.49;0.47) 2.92(0.49;0.46)
Time By -0.79(0.39:0.34) -0.83(0.34:0.33)
Time? By 0.18(0.08;0.07) (0.07:0.07)
Basel. PCA By -0.21(0.09;0.10) -0.23(0.10;0.10)
Correlation P — 0.22
Effect Parameter AR UN
Intercept 103} 2.94(0.49;0.47) (0.48;0.46)
Time Bo -0.90(0.35;0.33) (0.33;0.32)
Time? By 0.20(0.07;0.07) (0.07:0.07)
Basel. PCA By -0.22(0.10;0.10) (0.10;0.10)
Correlation P 0.25 —
Correlation (1,2) P12 0.18
Correlation (1,3) P13 0.25
Correlation (1,4) P14 0.20
Correlation (2,3) 023 0.18
Correlation (2,4) P24 0.18
Correlation (3,4) P34 0.46
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e Fitted working correlation matrices:

REXCH —

1 0.22 0.22 0.22
0.22 0.22
0.22

1

|

1 0.18 0.25 0.20
1 0.18 0.18
1 046

1

1 0.25 0.06 0.02
0.25 0.06
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26.3 Alternating Logistic Regressions

e Parameter estimates (empirically corrected standard errors)

e [ hree sets of odds ratio structures:

> Exchangeable
> Unstructured = full clustering (FULLCLUST)
> User-defined design (ZREP)
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Effect Parameter EXCH FULLCLUST /REP

Intercept G, 298(0.46)  2.92(0.46) 2.92(0.46)
Time 3o -0.87(0.32)  -0.80(0.32) -0.80(0.32)
Time? G, 0.18(0.07)  0.17(0.06) 0.17(0.07)
Basel. PCA B, -0.23(0.22)  -0.24(0.10) -0.24(0.10)
Log OR o 1.43(0.22)

Log OR(12) o 1.13(0.33)

Log OR(1,3)  aus 1.56(0.39)

Log OR(1,4)  au 1.60(0.42)

Log OR(2,3) Qo3 1.19(0.37)

Log OR(2,4) (o4 0.93(0.42)

Log OR(3,4) Q34 2.44(0.48)

Log OR par. Qg 1.26(0.23)
Log OR par. aq 1.17(0.47)
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e In the FULLCLUST structure, there is a hint that a3y is different from the others,
with all others being equal.

e To confirm this, a Wald test can be used for the null hypothesis:

Hy @ aqp = g3 = g = Q3 = iy
e Details on the test: Molenberghs and Verbeke (2005, pp. 312-313)

e [he reduced structure, fitted with ZREP, is:

X119 = (V13 = (X14 = (a3 = (g4 = (O,
3y = Qo+ Qg

e At the odds ratio level, with fitted values:

P19 = P13 = Y1y = o3 = oy = Py = 3.53,
3y = o - 11 = 11.36.
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e “Odds ratio matrices”:

\IJEXCH —

1 4.18 4.18 4.18
1 4.18 4.18
I 4.18

1

quREP —

1 3.53 3.53 3.53
3.53 3.53

1

1 3.10 4.76 4.95
I 3.29 2.53
1 11.47

1

11.36
1

Introduction to Longitudinal Data Analysis

479



26.4 A Variety of GEE Methods

e Methods used:
> Ordinary logistic regression

> Standard GEE1
> Prentice’'s GEE1
> The linearization-based method

> Alternating logistic regression
e Exchangeably working assumption (except for logistic regression)

e Parameter estimates (empirically corrected standard errors, unless for logistic
regression)
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Effect Parameter Log. regr.  Standard Prentice
Intercept B 2.80(0.49) 2.92(0.46) 2.94(0.46)
Time B -0.79(0.39) -0.83(0.33) -0.84(0.33)
Time? B3 0.18(0.08) 0.18(0.07) 0.18(0.07)
Basel. PCA B4 -0.21(0.09) -0.23(0.10) -0.23(0.10)
Correlation p 0.21 0.26(0.05)
Effect Parameter Lineariz. ALR

Intercept B 2.94(0.46) 2.98(0.46)

Time B -0.84(0.33) -0.87(0.32)

Time? B3 0.18(0.07) 0.18(0.07)

Basel. PCA B4 -0.23(0.10) -0.23(0.10)

Corr. p 0.26(0.04)

Log OR o) 1.43(0.22)
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26.5 Generalized Linear Mixed Models

e Four tools:

> SAS procedure GLIMMIX: > SAS procedure NLMIXED:
+* MQL (= MQL1) * |: non-adaptive (@ = 10)
+* PQL (= PQLI) * 11: non-adaptive (@ = 10)
. = adaptive (@ = 10)
> MLwi: = adaptive (@ = 20)
* PQL1
> MIXOR
* PQL2

e Parameter estimates (standard errors)
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Integrand approximation

SAS GLIMMIX MLwiN
Effect Par. MQL PQL1 PQL1 PQL2
Intercept /1 2.91(0.53) 3.03(0.55) 3.02(0.55) 4.07(0.70)
Time By -0.83(0.39) -0.87(0.41) -0.87(0.41) -1.17(0.48)
Time? G, 0.18(0.08) 0.19(0.08) 0.19(0.08) 0.25(0.10)
Basel. PCA 3, -0.22(0.11) -0.22(0.11) -0.22(0.11) -0.31(0.15)
Rand. intsd. r  1.06(0.25) 1.04(0.23) 1.01(0.12) 1.61(0.15)
Rand. int var. 72 1.12(0.53) 1.08(0.48) 1.02(0.25) 2.59(0.47)

Numerical integration

SAS NLMIXED
Effect Par. I I MIXOR
Intercept /1 4.07(0.71) 4.05(0.71) 4.05(0.55)
Time By -1.16(0.47) -1.16(0.47) -1.16(0.45)
Time? By 0.25(0.09) 0.24(0.09) 0.24(0.10)
Basel. PCA 3, -0.30(0.14) -0.30(0.14) -0.30(0.15)
Rand. intsd. 7 1.60(0.22) 1.59(0.21) 1.59(0.21)
Rand. intvar. 72 2.56(0.70) 2.53(0.68) 2.53(0.67)
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26.6 Discussion

e Results are very similar, due to a relatively weak random-effects variance
e PQL1 and MQL1 perform relatively poorly
e T he ratio between the RE and marginal parameters now is 1.37

e Programs: Molenberghs and Verbeke (2005, p. 219ff)
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Chapter 27
Case Study: Ordinal Analysis of Analgesic Trial

> Proportional odds logistic regression
> Generalized estimating equations
> Generalized linear mixed models

> Analysis of the analgesic trial

Introduction to Longitudinal Data Analysis 485



27.1 Proportional Odds Logistic Regression

e Standard logistic regression for binary data:

|Og|t[P(}/z = 1|ZCZ)] =+ 6332

e An extension to ordinal data: proportional odds logistic regression

logit| P(Y; < k|x;)| = ay + By, (k=1,...,c—1)

e A further extension poses problems with range-preserving restrictions:
IOgIt[P(K < k‘xZ)] :ak+/30xia (k: 17"'76_ 1)

and is usually not considered

e An alternative model for ordinal data is the continuation-ratio model:

logit|P(Y; > k|Y; > k,x;)| = . + By, (k=1,...,c—1)
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It is of use only when there is one natural directionality in the data: subjects go
from the lowest category to higher categories, without ever returning. This is

often not satisfied.

e Proportional-odds model for the 5-point GSA outcome in the analgesic trial:

logit[ P(Y;; < kltij, X;)] = oy + Batij + Bty + 81X, (k=1,...,4)

e SAS code:

proc genmod data=m.gsaZ2;
title ’Analgesic, logistic regression, Ordinal’;

class patid timecls;
model gsa = time|time pcal / dist=multinomial link=cumlogit;

run;

e Note that the ‘dist’ and ‘link’ options have been adapted
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e Selected output:

The GENMOD Procedure

Analysis Of Parameter Estimates

Standard Wald 957 Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq
Interceptl 1 -1.0048 0.3437 -1.6785 -0.3312 8.55 0.0035
Intercept2 1 0.5225 0.3407 -0.1452 1.1903 2.35 0.1251
Intercept3 1 2.3171 0.3481 1.6349 2.9994 44 .31 <.0001
Intercept4 1 4.0525 0.3754 3.3166 4.7884 116.51 <.0001
TIME 1 -0.2027 0.2706 -0.7330 0.3277 0.56 0.4539
TIME*TIME 1 0.0479 0.0545 -0.0590 0.1547 0.77 0.3798
PCAO 1 -0.2141 0.0622 -0.3361 -0.0922 11.84 0.0006

e There are 5 — 1 = 4 intercepts, as it should.
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27.2 Generalized Estimating Equations

e [he same regression model as in the PO logistic regression case is used:

logit| P(Y;; < K|tij, Xi)| = ay + Batij + 5315@2]- + 54X, (k=1,...,4)
e This model is supplemented with working assumptions to obtain GEE

e In the SAS procedure GENMOD, only independence working assumptions are
implemented for ordinal outcomes:

proc genmod data=m.gsa2;
title ’Analgesic, GEE, Ordinal’;
class patid timecls;
model gsa = time|time pcal / dist=multinomial link=cumlogit;
repeated subject=patid / type=ind covb corrw within=timecls modelse;
run;
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e The output is structured in the same way as for PO logistic regression:

Analysis 0f GEE Parameter Estimates
Empirical Standard Error Estimates

Parameter Estimate

Interceptl
Intercept2
Intercept3
Intercept4d
TIME
TIME*TIME
PCAO

.0048
.52256
.3171
.05625
.2027
.0479
.2141

Standard

O O O O O O O

Error

.3549
.3568
.3669
.3938
.2028
.0399
.0911

95% Confidence

Limits
.7004 -0
1767 1
.5980 3
.2807 4
.6001 0
.0304 O
.3927 -0

.3092
.2218
.0363
.8243
.1948
.1261
.0356

Z Pr > |Z]
.83 0.0046
.46 0.1430
.31 <.0001
29 <.0001
.00 0.3176
.20  0.2304
.35 0.0187
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27.3 Generalized Linear Mixed Models

e A generalized linear mixed model for ordinal data:

|Og|t[P(Y;] < /{‘XZ, Zz)] = oy + I‘;jﬂ + Zgjbz', (]{ — 1, e, C— 1)

e This is the obvious counterpart for the PO logistic and GEE marginal models
considered above.

e For the case of the 5-point GSA outcome in the analgesic study:

logit|P(Yi; < kltij, Xi,bi)] = ag + by + Batyj + 537% + 04X, (k=1,....4)
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e Code for the SAS procedure GLIMMIX:

proc glimmix data=m.gsa2 method=RSPL;

title ’PROC GLIMMIX analysis, ordinal, RSPL (PQL, REML)’;

class patid timecls;

nloptions maxiter=50;

model gsa = time|time pcal / dist=multinomial link=cumlogit solution;
random intercept / subject=patid type=un;

run;

e Also here, the ‘dist’ and ‘link’ functions have to be adapted to the ordinal setting.
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e Selected output:

Effect

Intercept
Intercept
Intercept
Intercept
TIME

TIME*TIME
PCAO

Covariance Parameter Estimates

Cov Standard
Parm Subject Estimate Error
UN(1,1) PATID 3.5348 0.4240

Solutions for Fixed Effects

Standard
GSA Estimate Error DF t Value
1 -1.4352 0.5033 393 -2.85
2 0.9101 0.4999 393 1.82
3 3.4720 0.5084 393 6.83
4 5.6263 0.5358 393 10.50
-0.4825 0.2958 737 -1.63
0.1009 0.05972 737 1.69
-0.2843 0.1249 737 -2.28

Pr > |t]

SO O O AN AN O O

.0046
.0694
.0001
.0001
.1033
.0916
.0231
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e In case the procedure NLMIXED is used, more drastic changes are needed:

proc nlmixed data=m.gsa2 gpoints=20;

title ’Analgesic, PROC NLMIXED, ordinal, adaptive, q=20’;

parms 1intl=-1.5585 int2=1.0292 int3=3.8916 int4=6.2144

betal=0.5410 beta2=-0.1123 beta3=0.3173 d=2.1082;

eta = betal*time + beta2*timextime + beta3d*pcal + bl;

if gsa=1 then z = 1/(1+exp(-(intl-eta)));

else if gsa=2 then z = 1/(1+exp(-(int2-eta))) - 1/(l+exp(-(intl-eta)));
else if gsa=3 then z = 1/(1+exp(-(int3-eta))) - 1/(l+exp(-(int2-eta)));
else if gsa=4 then z = 1/(1+exp(-(intd-eta))) - 1/(l+exp(-(int3-eta)));
else z = 1 - 1/(1+exp(-(intd-eta)));

if z > 1e-8 then 11 = log(z);

else 11 = -1e100;

model gsa ~ general(ll);

random bl ~ normal(0,d*d) subject=patid;

estimate ’var(d)’ dxd;
run;
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e Now, the general likelihood is used: a fully user-defined likelihood function.

e The probabilities are obtained as differences between cumulative probabilities:

P(Y,j=k)=P(Y,; <=k)—PY,; <=k —-1), (k=1,...5)
with
> P(Y;; <=0)=0
> P(Y;,; <=5)=1

e 1) is the part of the linear predictor excluding the intercept
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e Selected output:

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |[t| Alpha Lower Upper Gradient
intl -1.55685 0.5481 394 -2.84 0.0047 0.05 -2.6360 -0.4810 0.000235
int2 1.0292 0.5442 394 1.89 0.0593 0.05 -0.04063 2.0991 -0.00004
int3 3.8916 0.5624 394 6.92 <.0001 0.05 2.7860 4.9973 -0.00017
int4 6.2144 0.5990 394 10.37 <.0001 0.05 5.0368 7.3920 -0.00004
betal 0.5410 0.3078 394 1.76 0.0796 0.05 -0.06421 1.1462 -0.00008
beta?2 -0.1123 0.06187 394 -1.82 0.0702 0.05 -0.2340 0.009311 0.000019
beta3 0.3173 0.1386 394 2.29 0.0226 0.05 0.04475 0.5898 0.000013
d 2.1082 0.1412 394 14.94 <.0001 0.05 1.8307 2.3858 0.000331
Additional Estimates
Standard
Label Estimate Error DF t Value Pr > |t Alpha Lower Upper
var (d) 4.4447 0.5952 394 7.47 <.0001 0.05 3.2746 5.6148
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27.4 Analysis of the Analgesic Trial

e Three approaches:

> Logistic regression

> GEE
> GLMM

e For GEE: (model based standard errors; empirically corrected standard errors)

e MQL performs again rather poorly
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Marginal models

Effect Parameter OLR GEE

Intercept 1 aq -1.00(0.34) -1.00(0.34,0.35)
Intercept 2 o 0.52(0.34) 0.52(0.34;0.36)
Intercept 3 a3 2.32(0.35) 2.32(0.34;0.37)
Intercept 4 ay 4.05(0.38) 4.05(0.37;0.39)
Time 3o -0.20(0.27) -0.20(0.27;0.20)
Time? Gy 0.05(0.05)  0.05(0.05:0.04)
Basel. PCA B4 -0.21(0.06) -0.21(0.06;0.09)
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Random-effects models

Effect Parameter MQL PQL N.Int.

Intercept 1 o, -0.93(0.40) -1.44(0.50) -1.56(0.55)
Intercept 2 Qg 0.60(0.39) 0.51(0.50) 1.03(0.54)
Intercept 3 o 2.39(0.40) 3.47(0.51) 3.89(0.56)
Intercept 4 ay 4.13(0.42) 5.63(0.54) 6.21(0.60)
Time Gy -0.30(0.28) -0.48(0.30) 0.54(0.31)
Time? Gy 0.06(0.06)  0.10(0.06) -0.11(0.06)
Basel. PCA G, -0.21(0.09) -0.28(0.12) 0.32(0.14)
Rand. int s.d. - 1.06(0.08) 1.88(0.11) 2.11(0.14)
Rand. int var. 72 1.13(0.16)  3.53(0.42)  4.44(0.60)
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Chapter 28
Count Data: The Epilepsy Study

> The epilepsy data
> Poisson regression
> Generalized estimating equations
> Generalized linear mixed models

> Overview of analyses of the epilepsy study

> Marginalization of the GLMM
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28.1 The Epilepsy Data

e Consider the epilepsy data:

Epilepsy data
500

450 ¢
400 ¢
250 ¢
200 -
250 ¢
200 ¢

# observations

150 ¢
100 ¢

50 ¢

a 5] Mo o1% 200 25 30 35 40 45 S0 5% B0 6% V0O U5

# seizures in past week
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e \We want to test for a treatment effect on number of seizures, correcting for the
average number of seizures during the 12-week baseline phase, prior to the
treatment.

e The response considered now is the total number of seizures a patient
experienced, i.e., the sum of all weekly measurements.

e Let Y; now be the total number of seizures for subject i:
ny
Y, = '21 Yi;
1=

where Y;; was the original (longitudinally measured) weekly outcome.
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e Histogram:

22 ¢
20 ¢
18 ¢
16 ¢
14 ¢
12 ¢
10+

# observations

e As these sums are not taken over an equal number of visits for all subjects, the

Epilepsy data

o N B O

<=10 (20,30] (40,50] (60,70] (80,90] > 100
(10,20] (30,40] (50,60] (70,80]  (90,100]

Total # seizures

above histogram is not a ‘fair’ one as it does not account for differences in n; for

this.
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e We will therefore use the following Poisson model:

Y; ~ Poisson(\;)
ln()\z/nz) — ZBZ'//B

e Note that the regression model is equivalent to

N = n; exp(x’B) = exp(x; B+ Inny)

e Since n; is the number of weeks for which the number of seizures was recorded for
subject 7, exp(ax;'3) is the average number of seizures per week.

e Inn; is called an offset in the above model.

e |n our application, the covariates in x; are the treatment as well as the baseline
seizure rate.
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e SAS statements for the

model:

proc sort data=test;
by id studyweek;
run;

proc means data=test sum n nmiss;

var nseizw;

by id;

output out=result
n=n
nmiss=nmiss
sum=sum;

run;

data result;

set result;
offset=log(n-nmiss) ;
keep id offset sum;
run;

data first;

set test;

by id;

if first.id;

keep id bserate trt;
run;

data result;

merge result first;
by id;

run;

proc genmod data=result;
model sum=bserate trt

/ dist=poisson offset=offset;

run;

calculation of outcome, offset, and for fitting the Poisson
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e The treatment variable trt is coded as O for placebo and 1 for treated

e Output from the GENMOD procedure:

Analysis 0f Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits  Square

1 0.8710 0.0218 0.8283 0.9138 1596.16
bserate 1 0.0172 0.0002 0.0167 0.0177 4826.14
trt 1 -0.4987 0.0341 -0.5655 -0.4319 214.18
0 1.0000 0.0000 1.0000 1.0000

Intercept

Scale

e \We obtain a highly significant reduction in the average number of seizures in the
treated group, in comparison to the placebo group.
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e A more general model would allow the treatment effect to depend on the baseline

average number of seizures:

proc genmod data=result;
model sum=bserate trt bseratex*trt

/ dist=poisson offset=offset;
run,

e Relevant part of the output:

Analysis Of Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits  Square

Intercept 1 0.2107 0.0353 0.1415 0.2799 35.60
bserate 1 0.0450 0.0009 0.0432 0.0469 2286.94
trt 1 0.2938 0.0454 0.2047 0.3829 41.81
bseratextrt 1 -0.0295 0.0010 -0.0314 -0.0276 911.43
Scale 0 1.0000 0.0000 1.0000 1.0000
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e We get a significant interaction.

e In order to explore the nature of this interaction, we estimate the treatment effect
when the baseline average number of seizures equals 6, 10.5, as well as 21
(quartiles).

e This is possible via inclusion of estimate statements:

proc genmod data=result;
model sum=bserate trt bseratextrt

/ dist=poisson offset=offset;
estimate ’trt, bserate=6’ trt 1 bseratextrt 6;
estimate ’trt, bserate=10.5’ trt 1 bseratextrt 10.5;
estimate ’trt, bserate=21’ trt 1 bseratextrt 21;
run;
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e Additional output:

Contrast Estimate Results

Label

trt, bserate=
trt, bserate=
trt, bserate=

Label

trt, bserate=6
trt, bserate=10.5
trt, bserate=21

e On average, there are more seizures in the treatment group when there are few
seizures at baseline. The opposite is true for patients with many seizures at

baseline.

Standard

Estimate Error

6 0.1167 0.0415

10.5 -0.0161 0.0388

21 -0.3260 0.0340
Chi-
Confidence Limits Square
0.0355 0.1980 7.93
-0.0921 0.0600 0.17
-0.3926 -0.2593 91.86

Alpha

0.05
0.05
0.05

Pr > ChiSq
0.0049

0.6786
<.0001
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28.2 Generalized Estimating Equations

e Poisson regression models will be used to describe the marginal distributions, i.e.,

the distribution of the outcome at each time point separately:

Y;; = Poisson(\;;)
log(Aij) = Bo+ BiTi + Baotiy + B3T3t

e Notation:
> T;: treatment indicator for subject ¢

> t;;: time point at which jth measurement is taken for ith subject

e Note that, again, the randomization would allow to set (3; equal to 0.
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e More complex mean models can again be considered (e.g. including polynomial
time effects, or including covariates).

e As the response is now the number of seizures during a fixed period of one week,
we do not need to include an offset, as was the case in the GLM fitted previously
to the epilepsy data, not in the context of repeated measurements.

e Given the long observation period, an unstructured working correlation would
require estimation of many correlation parameters.

e Further, the long observation period makes the assumption of an exchangeable
correlation structure quite unrealistic.

e We therefore use the AR(1) working correlation structure, which makes sense
since we have equally spaced time points at which measurements have been taken.

Introduction to Longitudinal Data Analysis 511



e SAS code:

proc genmod data=test;
class i1d timeclss;

model nseizw = trt time trt*time / dist=poisson;

repeated subject=id / withinsubject=timeclss type=AR(1) corrw modelse;

run;

e Relevant SAS output:

Working Correlation Matrix
Coll Col2 Col3 .....
Rowl 1.0000 0.5946 0.3535 .....

Row?2 0.5946 1.0000 0.5946 .....
Row3 0.3535 0.5946 1.0000 .....
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Parameter

Intercept
trt

time
trt*xtime

Parameter

Intercept
trt

time
trtxtime

Analysis 0f GEE Parameter Estimates
Empirical Standard Error Estimates

95% Confidence
Limits

0.8774 1.5743 6.
-0.3777 0.7138 0.
-0.0519 0.0378 -0.
-0.0730 0.0364 -0.

Analysis 0f GEE Parameter Estimates
Model-Based Standard Error Estimates

Standard

Estimate Error
1.2259 0.1778
0.1681 0.2785
-0.0071 0.0229
-0.0183 0.0279
Standard

Estimate Error
1.2259 0.2349
0.1681 0.3197
-0.0071 0.0230
-0.0183 0.0310

95% Confidence
Limits

0.7655 1.6862 5.
-0.4585 0.7947 0.
-0.0521 0.0380 -0.
-0.0790 0.0425 -0.

Z

90
60
31
66

22
53
31
59

Pr > |Z]|

<.0001
0.5461
0.7574
0.5124

Pr > |Z]

<.0001
0.5991
0.7585
0.5553
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e The AR(1) correlation coefficient is estimated to be equal to 0.5946

e There is no difference in average evolution between both treatment groups
(p = 0.5124).

e Note also the huge discrepancies between the results for the initial parameter
estimates and the final results based on the GEE analysis.
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28.3 Random-effects Model

e Conditionally on a random intercept b;, Poisson regression models will be used to
describe the marginal distributions, i.e., the distribution of the outcome at each
time point separately:

Y;; = Poisson(\;;)
log(\ij) = Bo+bi + BiTi + Botij + B3T5t;
e Notation:

> T;: treatment indicator for subject ¢

> t;;: time point at which jth measurement is taken for ith subject

e Similar as in our GEE analysis, we do not need to include an offset, because the
response is now the number of seizures during a fixed period of one week.
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e Two equivalent SAS programs:

proc nlmixed data=test;
parms int0=0.5 slope0=-0.1 intl=1 slopel=0.1 sigma=1,;
if (trt = 0) then eta = int0 + b + slopeO*time;
else if (trt = 1) then eta = intl + b + slopel*time;
lambda = exp(eta);
model nseizw ~ poisson(lambda);
random b ~ normal (0,sigma**2) subject = id;
estimate ’difference in slope’ slopel-slopeO;
run;

proc nlmixed data=test;
parms int0=0.5 slope0=-0.1 intl=1 slopel=0.1 sigma=1;
eta = (1-trt)*int0 + trt*xintl + b
+ (1-trt)*slopeO*time + trt*slopel*time;
lambda = exp(eta);
model nseizw ~ poisson(lambda);
random b ~ normal(0,sigma**2) subject = id;
estimate ’difference in slope’ slopel-slopeO;
run;
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e As in the MIXED procedure, CONTRAST and ESTIMATE statements can be
specified as well. However, under PROC NLMIXED, one is no longer restricted to
linear functions of the parameters in the mean structure only.

e For example, estimation of the ratio of both slopes, as well as of the variance of
the random intercepts is achieved by adding the following ESTIMATE statements:

estimate ’ratio of slopes’ slopel/slopeO;
estimate ’variance RIs’ sigmax*2;

e Inference for such functions of parameters is based on the so-called ‘delta-method":
> Let 1) be the vector of all parameters in the marginal model.

> Let 1) be the MLE of 1)

> 1) is asymptotically normally distributed with mean 1) and covariance matrix

—

var(1)) (inverse Fisher information matrix).
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> The ‘delta-method’ then implies that any function F (1)) of 1) is asymptotically
normally distributed with mean F'(¢)) and covariance matrix equal to

war(F) = 25 varp) S Y

> Hence, a Wald-type test can be constructed, replacing the parameters in

—

var(F'(1))) by their estimates

e Relevant SAS output:

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > [t| Alpha Lower Upper Gradient
intO 0.8180 0.1675 88 4.88 <.0001 0.05 0.4852 1.1509 0.006008
slopeO -0.01429 0.004404 88 -3.24 0.0017 0.05 -0.02304 -0.00554 0.022641
intl 0.6478 0.1699 88 3.81 0.0003 0.05 0.3101 0.9855 0.010749
slopel -0.01200 0.004318 88 -2.78 0.0067 0.05 -0.02058 -0.00342 -0.04858
sigma 1.0742 0.08556 88 12.55 <.0001 0.05 0.9042 1.2442 0.009566
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Additional Estimates

Standard
Label Estimate Error

difference in slope 0.002287 0.006167
ratio of slopes 0.8399 0.3979
variance RIs 1.1539 0.1838

DF t Value
88 0.37
88 2.11
88 6.28

Pr > |t]

0.7116
0.0376
<.0001

Alpha

0.05
0.05
0.05

Lower

-0.00997
0.04923
0.7886

Upper

0.01454
1.6306
1.5192

e The number of quadrature points was not specified, and therefore was selected

adaptively, and set equal to only one.

e In order to check whether () = 1 is sufficient, we refitted the model, prespecifying
() = 20. This produced essentially the same output.

Introduction to Longitudinal Data Analysis

519



e Corresponding code for the GLIMMIX procedure is:

proc glimmix data=test method=RSPL;

class 1d trt;

model nseizw = trt*time / dist=poisson solution;
random intercept time / type=UNR subject=id;
estimate ’diff slopes’ trt*time 1 -1;

run;
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28.4 Overview of Epilepsy Data Analyses

e GEE analysis (empirically corrected s.e.; model based s.e.)

Effect Parameter Estimate (s.e.)
Common intercept Bo 1.3140 (0.1435; 0.1601)
Slope placebo 103} —0.0142 (0.0234; 0.0185)
Slope treatment 1)) —0.0192 (0.0178; 0.0174)

e Various GLMM analyses:
> MQL
> PQL
> Laplace

> Gaussian quadrature
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MQL PQL
Effect Parameter ~ Estimate (s.e.) Estimate (s.e.)
Common intercept Bo 1.3525 (0.1492)  0.8079 (0.1261)
Slope placebo 103} —0.0180 (0.0144) —0.0242 (0.0094)
Slope treatment o —0.0151 (0.0144) —0.0191 (0.0094)
Variance of intercepts dyy 1.9017 (0.2986)  1.2510 (0.2155)
Variance of slopes do 0.0084 (0.0014)  0.0024 (0.0006)
Correlation rand.eff. p —0.3268 (0.1039) —0.3394 (0.1294)
Laplace QUAD

Effect

Parameter ~ Estimate (s.e.)

Estimate (s.e.)

Common intercept
Slope placebo

Slope treatment
Variance of intercepts
Variance of slopes

Correlation rand.eff.

B 0.7740 (0.1291)
B —0.0244 (0.0096)
B3 —0.0193 (0.0096)
diy 1.2814 (0.2220)
o 0.0024 (0.0006)
p —0.3347 (0.1317)

0.7739 (0.1293)
—0.0245 (0.0096)
—0.0193 (0.0097)

1.2859 (0.2231)

0.0024 (0.0006)
—0.3349 (0.1318)
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28.5 Marginalization of the Random-effects Model

e Regression coefficients in GLMM need to be interpreted conditionally on the
random effects b;.

e Additional computations are needed for the population-averaged evolutions.

e The marginal expectation of Y;; measured at ¢;; in the placebo group is

ElY;] = E|E[Y;|bi]]
= Flexp[(Bo + bi1) + (B1 + bia)ti;]]
# exp|Bo + Bitij]

e Calculations can be done using numerical integration or numerical averaging.

e SAS code and computation: Molenberghs and Verbeke (2005, pp. 343-344)
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Marginal evolutions (GEE)

Marginal average evolutions (GEE)

Time (weeks)
Treatment: = Placebo """ Treated

Marginal evolutions (integrated GLMM)

Marginal average evolutions (GLMM)

Time (weeks)
Treatment: = Placebo " Treated

Evolutions average subjects (b;

Evolutions for subjects with random effects zero (GLMM)

E(Y | zero random effect)

Time (weeks)
Treatment: = Placebo " Treated

0)

Sampled predicted profiles for 20 placebo

patients & marginal evolution (bold)

Subject —specific and average evolutions

20

15 

EY)

=
0 5 10 15 20 25

Time (weeks)
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e Curvature different in GEE and GLMM

e Ordering of treatment groups different in GEE and GLMM (although none
significant)

e Watch out for the effects of missingness: many patients leave the study after
week 16

e The evolution of an ‘average’ patient is completely different from the
population-averaged evolution
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Part V

Incomplete Data
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Chapter 29
Setting The Scene

> Orthodontic growth data

> Depression trial

> Age-related macular degeneration trial
> Notation

> Taxonomies
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29.1 Growth Data

e Taken from Potthoff and Roy, Biometrika (1964 )

e Research question:

Is dental growth related to gender ?

e The distance from the center of the pituitary to the maxillary fissure was recorded
at ages 8, 10, 12, and 14, for 11 girls and 16 boys
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e Individual profiles:

> Much variability between girls / boys
> Considerable variability within girls / boys
> Fixed number of measurements per subject

> Measurements taken at fixed time points

Orthodontic Growth Data
Profiles and Means

34 7

30 1

26

Distance

22

Age in Years
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29.2 The Depression Trial

e Clinical trial: experimental drug versus standard drug
e 170 patients
e Response: change versus baseline in HAM D17 score

e 5 post-baseline visits: 4-8

o ——= Standard Drug
Experimental Drug

Change
Change
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29.3 Age-related Macular Degeneration Trial

e Pharmacological Therapy for Macular Degeneration Study Group (1997)

e An occular pressure disease which makes patients progressively lose vision

e 240 patients enrolled in a multi-center trial (190 completers)

e Treatment: Interferon-av (6 million units) versus placebo

e Visits: baseline and follow-up at 4, 12, 24, and 52 weeks

e Continuous outcome: visual acuity: # letters correctly read on a vision chart

e Binary outcome: visual acuity versus baseline > 0 or < 0
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e Missingness:

Measurement occasion

4 wks 12 wks 24 wks 52 wks Number %

Completers

O O O O 188  78.33
Dropouts

O O O M 24 10.00

O O M M 8 3.33

O M M M 6 2.50

M M M M 6 2.50

Non-monotone missingness

O O M 0) 4 1.67

O M M @) 1 0.42

M O O O 2 0.83

M 0) M M 1 0.42
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29.4 Incomplete Longitudinal Data
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29.5 Scientific Question

e In terms of  entire longitudinal profile

e In terms of  last planned measurement

e In terms of last observed measurement
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29.6 Notation

e Subject 7 at occasion (time) j =1,...,n;

e Measurement Y;

. o 1 if Y}; is observed,
e Missingness indicator R;; =

0  otherwise.
e Group Yj; into a vector Y, =Ya,...,.Y) =X.,Y")

Y  contains Yj; for which I?;; =1,

Y " contains Yj; for which R;; = 0.
e Group R;; into a vector R, = (R;1,..., Ri.)

e [;: time of dropout: D; =1+ 2?11 Ri;
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29.7 Framework

f(Y;,D;0,)

Selection Models: f(Y,|0) f(D;|Y?, Y 1)

MCAR — MAR — MNAR

f(Dil) f(DiY7, %) FDY YT, 9)
Pattern-Mixture Models: f(Y;|D;,0)f(D;|vy)

Shared-Parameter Models: f(Y;|b;,0)f(D;|b;, ¥)
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f(Y;,D;0,)

Selection Models: f(Y;|0) f(D:|Y?, Y, 1)

MCAR —

CC?
LOCF 7

imputation ?

MAR —

direct likelihood !
expectation-maximization (EM).
multiple imputation (MI).

(weighted) GEE !

MNAR

joint model 17

sensitivity analysis 7!
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29.8 Selection Models versus Pattern-mixture Models:
A Paradox!?

e Glynn, Laird and Rubin (1986)
e Two measurements (Y7, Y5)

e Y always observed.

e Y, observed (R = 1) or missing (R = 0).
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e Selection model versus pattern-mixture model

f,y2)g(r = 1y, y2) = filyr, ye)p(r = 1)
f(yla yQ)g(T — O|y17 y?) — fO(y17 yQ)p(T — O)

or

S, v2)9(y1,y2) = filys, yo)p
fyv2)[1 = gy, 12)] = folyr, v2)[1 — p)

of which the ratio yields:

L—g(yy2) p Jilyi, v2)

9y, 12) 1—p

folyr, y2) =

e The right hand side is identifiable «—  the left hand side is not. ..
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Chapter 30
Proper Analysis of Incomplete Data

> Simple methods
> Bias for LOCF and CC
> Direct likelihood inference

> Weighted generalized estimating equations

Introduction to Longitudinal Data Analysis 540



30.1 Incomplete Longitudinal Data
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Data and Modeling Strategies

o | Unobserved..

"'LOCF 'data’
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Modeling Strategies

o Unobserved..

"'LOCF 'data’

N -

-
CC..=
.’f

-
- Comp.Obs.
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30.2 Simple Methods

Complete case analysis:

= delete incomplete subjects

e Standard statistical software
e Loss of information

e Impact on precision and power

e Missingness # MCAR = bias

MCAR

ast observation carried forward:
= impute missing values

e Standard statistical software
e |Increase of information

e Constant profile after dropout:
unrealistic

e Usually bias
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Quantifying the Bias

Dropouts ¢;; =0

Probability  pg

Treatment indicator 7; = 0,1

E(Y;) = Bo+ BiT; + Batij + B3T3t

Completers

Probability

tij = 0,1

L —po=pm

Treatment indicator 7; =0,1

E(Y;;) = vot+nTit+yati+vsLits;

—o|(1=p)(Bo+ 61— — 1) — (1 —po)(Bo — )]

CC LOCF
MCAR 0 (P1—p0)B2 — (L= p1)s
—ol(1=p)(Bo+ B =7 — ™) P10+ + 2 +73) + (1= p1)(Bo + B1)
MAR —(1 = po)(Bo — 0)] —po(Y0+72) — (L =po)Bo — 11 — 73
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30.3 Ignorability

e Let us decide to use likelihood based estimation.

e The full data likelihood contribution for subject i:
L*(97 ¢‘Y27 DZ) X f(Yia Di|97 '(,b)
e Base inference on the observed data:

L(97¢‘Yu Dz) X f(Yzoa Dz|9777b)
with

f(YZO7DZ|97¢> — /f(Y27D2|97¢)dY;n
— [F(Y°,Y™0)f(D,|Y°, Y™ 4)dY ™.

7

Introduction to Longitudinal Data Analysis 546



e Under a MAR process:

fY7,Dil0,4) = [ f(Y],Y"0)f(Di|Y7,4)dY
= [(YF10)f(DilY7, ),

e The likelihood factorizes into two components.

Introduction to Longitudinal Data Analysis 547



30.3.1 Ignorability: Summary

Likelihood /Bayesian + MAR

Frequentist + MCAR
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30.4 Direct Likelihood Maximization

MAR |: f(Y?]6) £BH¥2 by

Mechanism is MAR
0 and 1) distinct

— Likelihood inference is valid
Interest in 6
Use observed information matrix
Outcome type Modeling strategy Software
Gaussian Linear mixed model SAS proc MIXED
Non-Gaussian | Generalized linear mixed model | SAS proc GLIMMIX, NLMIXED
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30.4.1 Original, Complete Orthodontic Growth Data

Mean Covar

# par

1 unstructured unstructured
2+ slopes

3 = slopes

unstructured
unstructured

7 = slopes CS

14
13
6

Distance

Distance

Unstructured Means, Unstructured Covarianc

28

26

24

22

20

28

26

24

22

20

Growth Data, Model 1

L J
. ”
— Girls e
- — Boys . [ 4
'
7
- @
¢’
6 8 10 12 14 18
Age in Years
Growth Data, Madel 3
Parallel Lines, Unstructured Covariance
[ ]
— Girls _-
[Ep— -
Boys . ®
6 8 10 12 14 16

Age in Years

Distance

Distance

28

28

24

22

20

28

286

24

22

20

Growth Data, Model 2

Two Lines, Unstructured Covariance

°
. '
— Girls e
- - Boys e
'
s
-6
'
./ -
8 10 12 14 18

Age in Years

Growth Data, Model 7
Two Lines, Campound Symmetry

]
. ”
— Girls _
- — Boys _®
-~
-~
P
-~ /‘
‘ ”
8 10 12 14 16

Age in Years

Introduction to Longitudinal Data Analysis

550



30.4.2 Trimmed Growth Data: Simple Methods

Method Model Mean Covar # par
Complete case 7a = slopes CS 5
LOCF 2a quadratic unstructured 16
Unconditional mean 7a = slopes CS 5
Conditional mean 1 unstructured unstructured 18
distorting
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30.4.3 Trimmed Growth Data: Direct Likelihood

Mean  Covar # par
7 +# slopes CS 6

Growth Data, Model 1 Growth Data, Model 2
Missing At Randam Missing At Random
Unstructured Means, Unstructured Cavariance Two Lines, Unstructured Covariance
28 ] 28 |
] ] - | _ o
27 — Girls P 27 — Girls Pie
26 | - — Boys 2 28 | - — Boys 'y
(0] ] (] 4
o 25 o 25
C C
ﬂ 24 S 24 |
o o
(SR O o
22 22 |
21 21
20 T T T T ! 20
6 8 1a 12 14 18 6 8 1a 12 14 18
Age in Years Age Iin Years
Growth Data, Model 3 Growth Data, Madel 7
Missing At Randam Missing At Random
Parallel Lines, Unstructured Covariance Two Lines, Caompound Symmetry
28 | 28 |
¢ ] ° ° o
27 — Girls _ - - 27 — Girls P
26 - = Boys Y 3 2 | - = Bays g
(o] ] (0] 4
Q 25 o 25
C fo
E 24 S 24 |
o o
O 23 0O 23 ]
22 22 |
21 21
20 ) ) ) ) ' 20
6 8 10 12 14 16 6 8 10 12 14 1B
Age in Years Age Iin Years
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30.4.4 Growth Data: Comparison of Analyses

e Data
> Complete cases

> LOCF imputed data

> All available data

e Analysis methods

> Direct likelihood

* ML
* REML

> MANOVA
> ANOVA per time point

e Model
> Unstructured group by time mean

> Unstructured covariance matrix
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Principle Method Boys at Age 8  Boys at Age 10
Original Direct likelihood, ML 22.88 (0.56) 23.81 (0.49)
Direct likelihood, REML = MANOVA 22.88 (0.58) 23.81 (0.51)
ANOVA per time point 22.88 (0.61) 23.81 (0.53)
Direct Lik.  Direct likelihood, ML 22.88 (0.56) 23.17 (0.68)
Direct likelihood, REML 22.88 (0.58) 23.17 (0.71)
MANOVA 24.00 (0.48)  24.14 (0.66)
ANOVA per time point 22.88 (0.61) 24.14 (0.74)
CC Direct likelihood, ML 24.00 (0.45) 24.14 (0.62)
Direct likelihood, REML = MANOVA 24.00 (0.48) 24.14 (0.66)
ANOVA per time point 24.00 (0.51) 24.14 (0.74)
LOCF Direct likelihood, ML 22.88 (0.56) 22.97 (0.65)
Direct likelihood, REML = MANOVA 22.88 (0.58) 22.97 (0.68)
ANOVA per time point 22.88 (0.61) 22.97 (0.72)
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30.4.5 Growth Data: Graphical Comparison of Analyses

— Original Data
o | | T - CC
Al 7| | sssmesas LOCF .
=== Direct Likelihood (Fitted) | -7
=== Direct Likelihood (Observed) | __.="7
© |
A
[0]
o
[
o
7]
a
o
I\
N — Original Data
o | | T - CC
Al | semeseas LOCF
=== Direct Likelihood (Fitted)
T T T T === Direct Likelihood (Observed)
8 10 12 14
Age © |
[aV)
[0)
[&]
C
it
L
a
<
[aV)
[\
Y

8 10 12 14
Age
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30.4.6 Behind the Scenes

e R completers <— N — R “incompleters”
Y IR
Y 2

e Conditional density

Yiolyin ~ N (8o + 1y, 022.1)

[ freq. & lik. | [ = ]i”gl Yil
(4o frequentist flo = ! § Yi2
Ri=1
o L (n y 5
12 likelihood flo = N {izl Yiz + z':%ﬂ Yo+ Bilyin — yl)}}
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30.4.7 Growth Data: Further Comparison of Analyses

Principle Method Boys at Age 8 Boys at Age 10
Original  Direct likelihood, ML ~ 22.88 (0.56)  23.81 (0.49)
Direct Lik. Direct likelihood, ML 22.88 (0.56)  23.17 (0.68)
CC Direct likelihood, ML 24.00 (0.45) 24.14 (0.62)
LOCF Direct likelihood, ML 22.88 (0.56)  22.97 (0.65)
Data Mean Covariance  Boys at Age 8 Boys at Age 10
Complete  Unstructured Unstructured 22.88 23.81
Unstructured CS 22.88 23.81
Unstructured Independence 22.88 23.81
Incomplete Unstructured Unstructured 22.88 23.17
Unstructured CS 22.88 23.52
Unstructured Independence 22.88 2414
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Growth Data, Models 1, 7b, and

Missing At Random

28 7
m— Girls (Model 1) 9
57 - == Girls (Model 7b) /’/
o Girls [MOdBl 8b] /
o - = = = Boys(Model 1] 7
oo Boys (Model 7b) ,
o | == == Boys (Model 8b] s
25 r
8 / III,
® .,
9 24 - e,
@O / |"IIII,,
n 23 ] "f-ll-ll-l - prpennnen!
22 o
I,l"l ,’I
I il -
21 7
20 ‘ | ‘ | ‘
5 g 10 12 14

Age In Years

1S
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30.4.8 Growth Data: SAS Code for Model 1

IDNR AGE SEX MEASURE

1 3 2 21.0

1 10 2 20.0
1 12 2 21.5
1 14 2 23.0

3 3 2 20.5
3 12 2 24.5
3 14 2 26.0

e SAS code:

proc mixed data = growth method = ml;

class sex 1idnr age;

model measure = sex age*sex / s;

repeated age / type = un
subject = idnr;

run;

> Subjects in terms of IDNR blocks

> age ensures proper ordering of observations

within subjects!
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30.4.9 Growth Data: SAS Code for Model 2

IDNR AGE SEX MEASURE

1

1
1
1

3
10
12
14

12
14

2

2
2
2

21.0
20.0
21.5
23.0

20.5
24.5
26.0

e SAS code:

data help;
set growth;
agecat = age;
run;

proc mixed data = growth method = ml;
class sex idnr agecat;
model measure = sex age*sex / s;
repeated agecat / type = un
subject = idnr;
run,

> Time ordering variable needs to be
gorical

cate-
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30.5 Analysis of the Depression Trial

e Complete case analysis:

hcc(data=depression, id=patient, time=visit, response=change, out={cc});

= performs analysis on CC data set

e LOCF analysis:
%hlocf (data=depression, id=patient, time=visit, response=change, out={locf});
= performs analysis on LOCF data

e Direct-likelihood analysis: =- fit linear mixed model to incomplete data
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e Treatment effect at visit 8 (last follow-up measurement):

Method

Estimate (s.e.) p-value

CC
LOCF
MAR

-1.94  (1.17) 0.0995
-1.63  (1.08) 0.1322
238 (1.16) 0.0419

Observe the slightly significant p-value under the MAR model
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Chapter 31
Weighted Generalized Estimating Equations

> General Principle
> Analysis of the analgesic trial

> Analysis of the ARMD trial

> Analysis of the depression trial
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31.1 General Principle

MAR and non-ignorable !

e Standard GEE inference correct only under MCAR

Robins, Rotnitzky & Zhao (JASA, 1995)
e Under MAR: weighted GEE

Fitzmaurice, Molenberghs & Lipsitz (JRSSB, 1995)

e Decompose dropout time D;=(Ry,...,Ry)=(1,...,1,0,...,0)
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e Weigh a contribution by inverse dropout probability

d;i—1
vig, = P|D; = d;] = k:l;[2<1 — P[Ry, =0|Rpp=...=Rj;_1 =1]) X
P[Riy, =O0|Rip=...= Ry 41 = 1J/14=T}

e Adjust estimating equations

N 1 Oy
5 M

: “yi— i) = 0
S aﬁ’% (ys — 1)
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31.2 Computing the Weights

e Predicted values from (PROC GENMOD) output

e The weights are now defined at the individual measurement level:
> At the first occasion, the weight is w =1

> At other than the last ocassion, the weight is the already accumulated weight,
multiplied by 1—the predicted probability

> At the last occasion within a sequence where dropout occurs the weight is
multiplied by the predicted probability

> At the end of the process, the weight is inverted
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31.3 Analysis of the Analgesic Trial

e A logistic regression for the dropout indicator:

logit| P(D; = j|D; > j,-)] = Yo+ ¥11l(GSA; j_1 =1) + 12l (GSA; ;1 = 2)
10130 (GSA; j—1 = 3) + Y1al (GSA; j_1 = 4)
+19PCAQ; + ¥3PF; + 1,GD;

with

> GSA; j_1 the 5-point outcome at the previous time

> [(-) is an indicator function

> PCAOQ; is pain control assessment at baseline

> PF; is physical functioning at baseline

> GD, is genetic disorder at baseline are used)
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Effect Par. Estimate (s.e.)
Intercept Yo -1.80 (0.49)
Previous GSA=1 1,  -1.02 (0.41)
Previous GSA=2 1, -1.04 (0.38)
Previous GSA=3 13 -1.34 (0.37)
Previous GSA=4 14  -0.26 (0.38)
Basel. PCA ds  0.25 (0.10)
Phys. func. b5 0.009 (0.004)
Genetic disfunc. )y 0.59 (0.24)

e There is some evidence for MAR: P(D; = j|D; > j) depends on previous GSA.

e Furthermore: baseline PCA, physical functioning and genetic/congenital disorder.
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e GEE and WGEE:

|Og|t[P(}/Z] — 1‘tj, PCAOZ)]

=01 + 62?5]' + ﬁgt? + ﬁ4PCAO)Z

Effect Par. GEE WGEE

Intercept 31 2.95(0.47) 2.17 (0.69)
Time Gy -0.84 (0.33) -0.44 (0.44)
Time? G, 0.18 (0.07) 0.12 (0.09)
Basel. PCA 3, -0.24 (0.10) -0.16 (0.13)

e A hint of potentially important differences between both
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e Working correlation matrices:

1 0.173 0.246 0.201
L 0.177 0.113
RUN, GEE —
1 0.456
|

RUN, WGEE —

1 0.215 0.253 0.167

I 0.196 0.113
1 0.409
1
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31.4 Analgesic Trial: Steps for WGEE in SAS

1. Preparatory data manipulation:

hdropout (. ..)

2. Logistic regression for weight model:

proc genmod data=gsac;
class prevgsa;
model dropout = prevgsa pcal physfct gendis / pred dist=b;
ods output obstats=pred;
run;

3. Conversion of predicted values to weights:

hdropwgt (. ..)
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4. Weighted GEE analysis:

proc genmod data=repbin.gsaw;
scwgt wi;
class patid timecls;
model gsabin = time|time pcal / dist=Db;
repeated subject=patid / type=un corrw within=timecls;

run;
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31.5 Analysis of the ARMD Trial

e Model for the weights:
logit| P(D; = j|D; > 7)] = Yo+ Y1yij—1 + YT} + 31 Ly + Y30Lo; + P34 Ls;
+nl(t; =2) + sl (t; = 3)
with

> ;. ,—1 the binary outcome at the previous time ¢; ;_1 = t;_1 (since time is
common to all subjects)

> T; = 1 for interferon-ac and T; = 0 for placebo

> Ly; = 1 if the patient’s eye lesion is of level k = 1,...,4 (since one dummy
variable is redundant, only three are used)

> [(-) is an indicator function
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e Results for the weights model:

Effect Parameter Estimate (s.e.)
Intercept o 0.14 (0.49)
Previous outcome (N 0.04 (0.38)
Treatment o -0.86 (0.37)
Lesion level 1 V31 -1.85 (0.49)
Lesion level 2 V32 -1.91 (0.52)
Lesion level 3 P33 -2.80 (0.72)
Time 2 b -1.75 (0.49)
Time 3 Y42 -1.38 (0.44)
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o GEE:
logit| P(Yi; = 1[T;, 15)] = Bjn + BT,
with
> T; = 0 for placebo and T; = 1 for interferon-«
>t (j =1,...,4) refers to the four follow-up measurements

> Classical GEE and linearization-based GEE
> Comparison between CC, LOCF, and GEE analyses

e SAS code: Molenberghs and Verbeke (2005, Section 32.5)

e Results:
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Effect Par. CC LOCF Observed data

Unweighted WGEE
Standard GEE
Int.4 (17 -1.01(0.24;0.24) -0.87(0.20;0.21) -0.87(0.21;0.21) -0.98(0.10;0.44)
Int.12 (35 -0.89(0.24;0.24) -0.97(0.21;0.21) -1.01(0.21;0.21) -1.78(0.15;0.38)
Int.24 (3 -1.13(0.25;0.25) -1.05(0.21;0.21) -1.07(0.22;0.22) -1.11(0.15;0.33)
Int.52 (4 -1.64(0.29;0.29) -1.51(0.24;0.24) -1.71(0.29;0.29) -1.72(0.25;0.39)
Tr4 (5 0.40(0.32;0.32) 0.22(0.28;0.28) 0.22(0.28;0.28) 0.80(0.15;0.67)
Tr.12 [y 0.49(0.31;0.31) 0.55(0.28;0.28) 0.61(0.29;0.29) 1.87(0.19;0.61)
Tr.24 (5, 0.48(0.33;0.33) 0.42(0.29;0.29) 0.44(0.30;0.30) 0.73(0.20;0.52)
Tr.52 [ 0.40(0.38;0.38) 0.34(0.32;0.32) 0.44(0.37;0.37) 0.74(0.31;0.52)

Corr.  p 0.39 0.44 0.39 0.33
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Effect Par. CC LOCF Observed data
Unweighted WGEE
Linearization-based GEE

Int.4 B -1.01(0.24:0.24) -0.87(0.21:0.21) -0.87(0.21;0.21) -0.98(0.18;0.44)
Int.12 B -0.89(0.24:0.24) -0.97(0.21:0.21) -1.01(0.22:0.21) -1.78(0.26;0.42)
Int.24 B3 -1.13(0.25:0.25) -1.05(0.21:0.21) -1.07(0.23:0.22) -1.19(0.25;0.38)
Int.52 By -1.64(0.29:0.29) -1.51(0.24:0.24) -1.71(0.29:0.29) -1.81(0.39;0.48)
Tr4 (1o 0.40(0.32;0.32) 0.22(0.28;0.28) 0.22(0.29:0.29) 0.80(0.26:0.67)
Tr12 B 0.49(0.31;0.31) 0.55(0.28;0.28) 0.61(0.28:0.29) 1.85(0.32:0.64)
Tr24 B3 0.48(0.33;0.33) 0.42(0.29:0.29) 0.44(0.30:0.30) 0.98(0.33:0.60)
Tr52 B 0.40(0.38;0.38) 0.34(0.32;0.32) 0.44(0.37:0.37) 0.97(0.49:0.65)

o2 0.62 0.57 0.62 1.29

7’ 0.39 0.44 0.39 1.85

Corr.  p 0.39 0.44 0.39 0.59
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31.6 Analysis of the Depression Trial

e Response: create binary indicator ybin for HAM D7 > 7

e Model for dropout:

logit|P(D; = j|D; > j)| = o + 1y j—1 + VT
with
> 1; j—1: the binary indicator at the previous occasion

> T}: treatment indicator for patient ¢

Introduction to Longitudinal Data Analysis 578



e SAS code:
> Preparing the dataset:
Jhdropout (data=depression,id=patient,time=visit,response=ybin,out=dropout);
producing:
> dropout indicates whether missingness at a given time occurs

> prev contains outcome at the previous occasion

> The logistic model for dropout:

proc genmod data=dropout descending;
class trt;
model dropout = prev trt / pred dist=b;
output out=pred p=pred;
run,

> The weights can now be included in the GENMOD program which specifies the
GEE, through the WEIGHT or SCWGT statements:
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proc genmod data=study descending;
weight wi;
class patient visitclass trt;
model ybin = trt visit trt*visit basval basval*visit / dist=bin;
repeated subject=patient / withinsubject=visitclass type=cs corrw;
run,

e Results:

Effect est. (s.e.) p-value est.

Treatment at visit 4 -1.57 0.11 -0.24

Treatment at visit 6 0.62

Treatment at visit 7 -0.57 0.12 -0.43

0.03 -0.71

( (

( (
Treatment at visit 5 -0.67 (0.65) 030 0.09 (0.40

( (

( (
Treatment at visit 8 -0.84 ( (

)
)
0.56) 027 0.17
)
)
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Chapter 32
Multiple Imputation

> General idea

> Estimation

> Hypothesis testing

> Use of MI in practice

> Analysis of the growth data

> Analysis of the ARMD trial

> Creating monotone missingness
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32.1 General Principles

e Valid under MAR
e An alternative to direct likelihood and WGEE

e Three steps:

1. The missing values are filled in M times = M complete data sets
2. The M complete data sets are analyzed by using standard procedures

3. The results from the M analyses are combined into a single inference

e Rubin (1987), Rubin and Schenker (1986), Little and Rubin (1987)
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32.1.1 Informal Justification

e We need to estimate 6 from the data (e.g., from the complete cases)

e Plug in the estimated 6 and use

Flyl"lye, 0)

to impute the missing data.

e \We need to acknowledge that 0 is a random variable; its uncertainty needs to be
included in the imputation process

e Given this distribution we:

> draw a random 6* from the distribution of

> put this " in to draw a random Y from

fyi"lyi,0%).
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32.1.2 The Algorithm

1. Draw 8" from its posterior distribution
2. Draw Y™ from f(y!"|y?,0%).

3. To estimate 3, then calculate the estimate of the parameter of interest, and its
estimated variance, using the completed data, (Y°, Y""):

B=B(Y)=BY"Y"™)
The within imputation variance is

U = Var(B)

4. Repeat steps 1, 2 and 3 a number of M times

~

= 8" & U™ (m=1,...,M)
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32.1.3 Pooling Information

e With M imputations, the estimate of 3 is

~ TN

e Further, one can make normally based inferences for 3 with

(B—B)~ N(0,V),

where
M+ 1
total: V:W—I—( ]\}_ )B
M g™
ithin: — Tm=l
within W Vi
M Am_A* Am_A*,
e = Sl = B)B" = B
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32.1.4 Hypothesis Testing

e Two “sample sizes":
> IN: The sample size of the data set

> M: The number of imputations

e Both play a role in the asymptotic distribution (Li, Raghunathan, and Rubin 1991)

H()IH:HO

|
p=P(F,,>F)
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where

k . length of the parameter vector 6

Fk,w ~ P

(0" — 0, TW-1(0" — 6,)

k(1+r)
w =4+ (1 —4) {H(l_ffl) 2
ro= ]1(1+]\14) tr(BW™1)
T = k(M —1)

e Limiting behavior:
F 2 Foo = Xk
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32.2 Use of MI in Practice

e Many analyses of the same incomplete set of data

e A combination of missing outcomes and missing covariates

e As an alternative to WGEE: MI can be combined with classical GEE

e M| in SAS:

Imputation Task:

Analysis Task:

Inference Task:

PROC MI
l

PROC “MYFAVORITE"

l

PROC MIANALYZE
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32.2.1 MI Analysis of the Orthodontic Growth Data

e [he same Model 1 as before

e Focus on boys at ages 8 and 10

e Results

Boys at Age 8 Boys at Age 10

Original Data 22.88 (0.58)  23.81 (0.51)
Multiple Imputation 22.88 (0.66)  22.69 (0.81)

e Between-imputation variability for age 10 measurement

e Confidence interval for Boys at age 10: [21.08,24.29]
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32.3 MI Analysis of the ARMD Trial

e M = 10 imputations

e GEE:
logit[P(Y;; = 1|1}, t;)] = Bj1 + Bj2T;

e GLMM:
logit| P(Yi; = 1|T5,t;,b:)] = B0 + b + 35215, bi ~ N (0, T2>

e [ =0 for placebo and T; = 1 for interferon-a
ot;(j=1,...,4) refers to the four follow-up measurements

e Imputation based on the continuous outcome
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e Results:

Effect  Par. GEE GLMM

Int.4 P11 -0.84(0.20) -1.46(0.36)
Int.12 [y -1.02(0.22) -1.75(0.38)
Int.24 (3 -1.07(0.23) -1.83(0.38)
Int.52 Gy -1.61(0.27) -2.69(0.45)
Trt.4 P12 0.21(0.28) 0.32(0.48)
Trt.12 [y 0.60(0.29) 0.99(0.49)
Trt.24 (3, 0.43(0.30) 0.67(0.51)
Trt.52 [ 0.37(0.35) 0.52(0.56)
Rl sd 7 2.20(0.26)
Rl var. 72 4.85(1.13)
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32.4 SAS Code for Ml

1. Preparatory data analysis so that there is one line per subject

2. The imputation task:

proc mi data=armdl3 seed=486048 out=armdl3a simple nimpute=10 round=0.1;
var lesion diff4d diffl12 diff24 diff52;
by treat;
run;

Note that the imputation task is conducted on the continuous outcome ‘diff-’,
indicating the difference in number of letters versus baseline

3. Then, data manipulation takes place to define the binary indicators and to create
a longitudinal version of the dataset
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4. The analysis task (GEE):

proc genmod data=armdl3c;
class time subject;
by _imputation_;
model bindif = timel time2 time3 timed
trttimel trttime2 trttime3 trttimed
/ noint dist=binomial covb;
repeated subject=subject / withinsubject=time type=exch modelse;
ods output ParameterEstimates=gmparms parminfo=gmpinfo CovB=gmcovb;
run;
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5. The analysis task (GLMM):

proc nlmixed data=armdl3c gpoints=20 maxiter=100 technique=newrap cov ecov;
by _imputation_;
eta = betall*timel+betal2*time2+betal3*time3+betald*timed+b
+beta2lxtrttimel+beta22*xtrttime2+betal23*trttime3+beta24*xtrttimed;
p = exp(eta)/(1l+exp(eta));
model bindif ~ binary(p);
random b ~ normal (0,tau*tau) subject=subject;
estimate ’tau2?’ tauxtau;
ods output ParameterEstimates=nlparms CovMatParmEst=nlcovb
AdditionalEstimates=nlparmsa CovMatAddEst=nlcovba;

run;
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6. The inference task (GEE):

proc mianalyze parms=gmparms covb=gmcovb parminfo=gmpinfo wcov bcov tcov;
modeleffects timel time2 time3 timed trttimel trttime2 trttime3 trttime4;

run;

7. The inference task (GLMM):

proc mianalyze parms=nlparms covb=nlcovb wcov bcov tcov;
modeleffects betall betal2 betal3 betald beta2l beta22 beta23 beta24;
run;
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Chapter 33
Creating Monotone Missingness

e \When missingness is non-monotone, one might think of several mechanisms
operating simultaneously:

> A simple (MCAR or MAR) mechanism for the intermittent missing values

> A more complex (MNAR) mechanism for the missing data past the moment of
dropout

e Analyzing such data are complicated, especially with methods that apply to
dropout only
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e Solution:

> Generate multiple imputations that render the datasets monotone missing, by
including into the MI procedure:

mcmc impute = monotone;

> Apply method of choice to the so-completed multiple sets of data

e Note: this is different from the monotone method in PROC MI, intended to fully
complete already monotone sets of data
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Part VI

Topics in Methods and Sensitivity Analysis for Incomplete
Data

Introduction to Longitudinal Data Analysis 598



Chapter 34
An MNAR Selection Model and Local Influence

> The Diggle and Kenward selection model
> Mastitis in dairy cattle
> An informal sensitivity analysis

> Local influence to conduct sensitivity analysis
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34.1 A Full Selection Model

MNAR |: [ f(Y;|0)f(D;|Y;,)dY "

f(Y|0) F(Di|Y i, )
Linear mixed model Logistic regressions for dropout
Y, = X,0+ Zb, + ¢ logit ([P(D; =7 | D; > j,Yi;-1,Y)]

=1y + V1Y + Y

Diggle and Kenward (JRSSC 1994)
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34.2 Mastitis in Dairy Cattle

e Infectious disease of the udder

e Leads to a reduction in milk yield

e High yielding cows more susceptible?

e But this cannot be measured directly be-
cause of the effect of the disease: ev-
idence is missing since infected cause
have no reported milk yield

Milk yields (1000 L]

Introduction to Longitudinal Data Analysis

601



e Model for milk yield:

2
Yii p oy pO109

Yio \u+A) | poioy of

e Model for mastitis:
logit [P(R; = 1|Yi1, Yio)] = o+ ¢1Yir + 1Y
= 0.37+ 2.25Y;1 — 2.54Y;

= (.37 — 0.29Y;; — 2.54(Y;o — Vi)

o LR test for Hy: ¥y =0: G* =5.11
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34.3 Criticism — Sensitivity Analysis

“..., estimating the ‘unestimable’ can be accomplished only by making

modelling assumptions,.... The consequences of model misspeci-
fication will (...) be more severe in the non-random case.”  (Laird
1994)

e Change distributional assumptions  (Kenward 1998)

e Local and global influence methods

e Pattern-mixture models

e Several plausible models or ranges of inferences

e Semi-parametric framework  (Scharfstein et a/ 1999)
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34.4 Kenward’s Sensitivity Analysis

e Deletion of #4 and #5 = G? for 1
5.11 — 0.08

e Cows #4 and #5 have unusually large
increments

e Kenward conjectures: #4 and #b5 ill dur-
ing the first year

e Kenward (SiM 1998)

Milk yields (1000 L]

1

10
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34.5 Local Influence

e Verbeke, Thijs, Lesaffre, Kenward (Bcs 2001)

e Perturbed MAR dropout model:

logit [P(D; = 1|Yj1, Yio)]

= Yo + PiYa +| wiYi

e Likelihood displacement:

LD(‘—’-’) = 2 [Lw:0 (97%\) _ Lw:0 (Ewafbwﬂ 2 0
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34.5 Local Influence

e Verbeke, Thijs, Lesaffre, Kenward (Bcs 2001)

e Perturbed MAR dropout model:

logit [P(D; = 1|Yj1, Yio)]

= Yo + PiYa +| wiYi

or Yy + 1Yy + | wi(Yie — YY)

e Likelihood displacement:

LD(‘—’-’) = 2 [Lw:0 (97%\) _ Lw:0 (Ewafbwﬂ 2 0
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34.5.1 Likelihood Displacement

LD(w)

Local influence direction h

I

normal curvature C’h

e Local influence for 8 and ):

Ch = Ch(g) -+ Ch(ip)

Introduction to Longitudinal Data Analysis

607



34.5.2 Computational Approaches

Measuring local influence: Fit for continuous outcomes:
e Expression for Cy,: e Fit MAR model:
> linear mixed model for outcomes
/ r—1 o :
Cp =2|h AL Ah| > logistic regression for dropout
e Choices for h e evaluate closed-form expressions for

> Direction of the ith subject = C; local influence

> Direction h,,,, of maximal curva-
ture Clax
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34.6 Application to Mastitis Data

Ci

0.32
#4

#5

#66

[DR[=}p A

0.00 0 40 B0 80 100
Ci(W]

0.32 P

#5

#66

0I6 [ A

LM.R .&.L,.. aalla ..A ) . J
0.00 0 20 40 60 80 100

e Removing #4, #5 and #66

=

® hp,ax: different signs for (#4,#5) and #66

G* =0.005

0.050

0.025

0.000

Gi(©]

i

80 80 100

hma><,i

0.7

0.0

#66

-0.7

o

60 80 100

Milk yields (1000 L]
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34.6.1 Interpretable Components of C;(v))

%W%WMW‘V\WW P(R;=1)[1 — P(R; = 1)]

20| #An#S
J\Mﬂw\/\ | y
s \ SV JLJ“-WSU AP | E(Yin | Vi) — Vi

Hat Matrix Diagonal

i w-um{zvj(}}ﬂ)(l Ym}_l

#5
#66

Q1

a.08

0.00 g
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34.7 Global Influence Analysis

e MAR versus MNAR model

e For a variety of subsets:
> All data

> Removal of:

(53,54,66,69): from local influence on Y5
4,5): from Kenward's informal analysis
66): additional one identified from local influence on Y;, — Y]

4,5,66): frol local influence on Y, —Y;

*
*
*
*

(
(
(
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MAR

Effect Parameter all (53,54,66,69) (4,5) (66) (4,5,60)
Measurement model:
Intercept I 5.77(0.09) 5.69(0.09) 5.81(0.08) 5.75(0.09) 5.80(0.09)
Time effect A 0.72(0.11) 0.70(0.11) 0.64(0.09) 0.68(0.10) 0.60(0.08)
First variance o 0.87(0.12)  0.76(0.11) 0.77(0.11) 0.86(0.12) 0.76(0.11)
Second variance o3 1.30(0.20) 1.08(0.17) 1.30(0.20) 1.10(0.17) 1.09(0.17)
Correlation p 0.58(0.07) 0.45(0.08) 0.72(0.05) 0.57(0.07) 0.73(0.05)
Dropout model:
Intercept o 2.65(1.45)  -3.69(1.63) -2.34(1.51) -2.77(1.47) -2.48(1.54)
First measurement (0 0.27(0.25) 0.46(0.28) 0.22(0.25) 0.29(0.24) 0.24(0.26)
Second measurement  w = 0 0 0 0 0
-2 loglikelihood 280.02 246.64 237.94 264.73 220.23
MNAR
Effect Parameter all (53,54,66,69) (4,5) (66) (4,5,60)
Measurement model:
Intercept i 5.77(0.09) 5.69(0.09) 5.81(0.08) 5.75(0.09) 5.80(0.09)
Time effect A 0.33(0.14)  0.35(0.14) 0.40(0.18) 0.34(0.14)  0.63(0.29)
First variance o 0.87(0.12)  0.76(0.11) 0.77(0.11) 0.86(0.12)  0.76(0.11)
Second variance o3 1.61(0.29) 1.29(0.25) 1.39(0.25) 1.34(0.25) 1.10(0.20)
Correlation p 0.48(0.09) 0.42(0.10) 0.67(0.06) 0.48(0.09) 0.73(0.05)
Dropout model:
Intercept o 0.37(2.33)  -0.37(2.65) -0.77(2.04) 0.45(2.35) -2.77(3.52)
First measurement Un 2.25(0.77) 2.11(0.76) 1.61(1.13) 2.06(0.76) 0.07(1.82)
Second measurement  w =1  -2.54(0.83)  -2.22(0.86) -1.66(1.29) -2.33(0.86) 0.20(2.09)
-2loglikelihood 274.91 243.21 237.86 261.15 220.23
G? for MNAR 5.11 3.43 0.08 3.57 0.005
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Chapter 35
Mechanism for Growth Data

By the way, how did Little and Rubin
delete data from the growth data set ?

Introduction to Longitudinal Data Analysis 613



35.1 Modeling Missingness

e Candidate model for missingness:

logit| P(R; = Oly;)| = ¥o + ¥1yij,

e When 7 = 2, then MNAR, else MAR.

e Results:

with j = 1,2,3, or 4

Mechanism Effects Deviance p-value

MAR

MAR

MAR
MNAR

Yt

Yis
Yio

19.51
7.43
2.51
2.55

<0.0001
0.0064
0.1131
0.1105
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e Including covariates:

Boys : logit| P(R; = 0[yi1, x; = 0)]
Girls : logit|P(R; = O|y;1, z; = 1)]

00(22 — yzl)
00(20.75 — y;1)

e These models are interpreted as follows:

1 if yip < 22,
Boys : P(R; =0lyj1,zi =0) =505 if y; = 22,

0 if i1 > 22.

L if gy < 20.75,
0 if yq > 20.75.

Girls : P(R; = 0|y, 2, =1) =
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Chapter 36
Interval of Ignorance

> The Fluvoxamine Study

> The Slovenian Public Opinion Survey
> MAR and MNAR analyses

> Informal sensitivity analysis

> Interval of ignorance & interval of uncertainty
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36.1 Fluvoxamine Trial: Side Effects

e Post-marketing study of fluvoxamine in psychiatric patients

e Absence versus presence of side effects

89 13
57 65

e [wo measurement occasions

e 315 subjects:

> 224 completers, 75 drop out after first, 2 non-monotone, 14 without follow up

e Questions:

> Do side effects evolve over time ?

> Are both measurements dependent ?

26
49

20

14
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36.2 The Slovenian Plebiscite

e Rubin, Stern, and Vehovar (1995)
e Slovenian Public Opinion (SPO) Survey
e Four weeks prior to decisive plebiscite

e Three questions:

1.| Are you in favor of Slovenian independence 7

2. Are you in favor of Slovenia’s secession from Yugoslavia ?

3. Will you attend the plebiscite ?

e Political decision: ABSENCE=NO

e Primary Estimand: #: Proportion in favor of independence
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e Slovenian Public Opinion Survey Data:

Independence

Secession  Attendance Yes No *
Yes Yes 1191 8 21
No 8 0 4
* 107 3 9
No Yes 158 68 29
No (14 3
* 18 43 31
* Yes 90 2 109
No 1 2 25
* 19 8 96
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36.3 Slovenian Public Opinion: 1st Analysis

e Pessimistic: All who can say NO will say NO

1439
0 =—— =0.694
2074

e Optimistic: All who can say YES will say YES

S~ 1439+ 159 + 144 4+ 136 1878

0 = = (0.904
2074 2076

e Resulting Interval:

0 € [0.694: 0.904]
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¢ Resulting Interval:

0 € [0.694: 0.904]

e Complete cases: All who answered on 3 questions

_ 1191 + 158
0 = i —0.928 7
1454

e Available cases: All who answered on both questions

g__1191—kl58%—90
N 1549

= (0.929 ?
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36.4 Slovenian Public Opinion: 2nd Analysis

e Missing at Random:

Non-response is allowed to depend on observed, but not on unobserved outcomes:

> Based on two questions: B
6 = 0.892

> Based on three questions:
0 = 0.883

e Missing Not at Random (NI):

Non-response is allowed to depend on unobserved measurements:

—

0 =0.782
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36.5 Slovenian Public Opinion Survey

Pgss NI MAR| AC
° A: L] L
Pleb
Estimator 0

Pessimistic bound | 0.694
Optimistic bound 0.904
Complete cases 0.928 2
Available cases 0.929 7
MAR (2 questions) | 0.892
MAR (3 questions) | 0.883
MNAR 0.782
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36.6 Slovenian Plebiscite: The Truth ?

6 =0.885
Pass NI MAR| AC
) KO.Dt EC
Pleb
Estimator 0

Pessimistic bound | 0.694
Optimistic bound 0.904
Complete cases 0.928 2
Available cases 0.929 7
MAR (2 questions) | 0.892
MAR (3 questions) | 0.883
MNAR 0.782
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36.7 Did “the” MNAR model behave badly ?

Consider a family of MNAR models

e Baker, Rosenberger, and DerSimonian (1992)
e Counts Y, ik
e j,k = 1,2 indicates YES/NO

e 1,79 = 0,1 indicates MISSING/OBSERVED
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36.7.1 Model Formulation

E(Ynjr) = mjs,
EMYiok) = mjkfir,
E(Youk) = mjrap,
E(Yoojr) = mjroBinvir,

Interpretation:

e «,;.: models non-response on independence question
° @-k: models non-response on attendance question

® 7;i: interaction between both non-response indicators (cannot depend on j or k)
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36.7.2 Identifiable Models

Model  Structure  d.f. loglik 0 C.l

BRD1 (a, B) 6  -249529  0.892  [0.878;0.906]
BRD2  (a,f)) 7 -2467.43  0.884  [0.869;0.900]
BRD3 (a3, 3) 7 -2463.10 0.881  [0.866;0.897]
BRD4  (a,f) 7 -2467.43  0.765  [0.674;0.856]
BRD5 (o, ) 7 -2463.10 0.844  [0.806;0.882]
BRD6  (a;, ) 8  -2431.06 0819  [0.788;0.849]
BRD7 (o, O 8  -2431.06 0764  [0.697;0.832]
BRDS (o, 31) 8  -2431.06 0741  [0.657;0.826]
BRD9  (ay,(3;) 8  -2431.06 0.867 [0.851;0.884]
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36.7.3 An “Interval’” of MNAR Estimates

6 =0.885
Pess NI MAR AC
:Opt cc
Pleb
Estimator 6
[Pessimistic; optimistic] | [0.694;0.904]
Complete cases 0.928
Available cases 0.929
MAR (2 questions) 0.892
MAR (3 questions) 0.883
MNAR 0.782
MNAR “interval” [0.741;0.892]
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36.8 A More Formal Look

Statistical Uncertainty

Statistical Imprecision Statistical Ignorance
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Statistical Imprecision: Due to finite sampling

e Fundamental concept of mathematical statistics

e Consistency, efficiency, precision, testing,. ..

e | Disappears as sample size increases

Statistical Ignorance: Due to incomplete observations

e Received less attention

e Can invalidate conclusions

e | Does not disappear with increasing sample size

Kenward, Goetghebeur, and Molenberghs (StatMod 2001)
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36.8.1 Monotone Patterns
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36.8.2 Models for Monotone Patterns

R=1 R=0
}/1,11 1/*1,12 }/E],l
}/1,21 1/*1,22 %,2
T
R=1 R=0
Yin | Yie Yo | Yo12
Yior | Vi Yo21 | Y022
Hrij = Pij4r|ij (4,j=1,2;r=0,1)
Model qrij # Par. Observed d.f. Complete d.f.
1. MCAR qr 4 Non-saturated Non-saturated
2. MAR Qv 5 Saturated Non-saturated
3. MNAR(0) qr(j 5 Saturated Non-saturated
4. MNAR(1)  logit(q,jij) = a + Bi +; 6 Overspecified Non-saturated
5. MNAR(2) Qrli 7 Overspecified Saturated
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36.8.3 Sensitivity Parameter Method

Sensitivity Parameter: A minimal set n

Estimable Parameter: u, estimable, given 1

Procedure:
> Given 1), calculate parameter and C.I. for p
> Set of parameter estimates: region of ignorance
> Set of interval estimates: region of uncertainty

> Single parameter case: ‘region’ becomes ‘interval’
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36.9 Side Effects: Monotone Patterns

Parameter Model 1/2 Model 3 Model 4 Model 5
1st Margin | 0.43 0.43 0.43 0.43
IU  [0.37;0.48] [0.37,0.48] 0.37,0.48 0.37,0.48
2nd Margin |l 0.64 0.59 0.49;0.74] 0.49;0.74]
IU  [0.58;0.70] [0.53,0.65] 0.43;0.79 0.43;0.79
Log O.R. I 2.06 2.06 1.52;2.08 0.41;2.84
U [1.37;2.74] [1.39;2.72] 1.03;2.76) [0.0013;2.84]
O.R. I 7.81 7.81 4.57;7.98 [1.50;17.04]
IU [3.95;15.44] [4.00;15.24] | [2.79;15.74] [1.0013;32.89]
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36.10

Side Effects: Non-Monotone Patterns

Model df. G P Marg. Prob. Odds Ratio

First Second Orig. Log
BRD1 6 4.5 0.104 0.43]0.37;0.49] 0.64[0.58;0.71] 7.80[3.94;15.42] 2.06[1.37;2.74]
BRD2 7 1.7 0.192 0.43[0.37;0.48] 0.64[0.58;0.70] 7.81[3.95;15.44] 2.06[1.37;2.74]
BRD3 7 2.8 0.097 0.44[0.38;0.49] 0.66[0.60;0.72] 7.81[3.95;15.44] 2.06[1.37;2.74]
BRD4 7 1.7 0.192 0.43[0.37;0.48] 0.58[0.49;0.68] 7.81[3.95;15.44] 2.06[1.37;2.74]
BRD7 8 0.0 - 0.44]0.38;0.49] 0.61][0.53;0.69] 7.81[3.95;15.44] 2.06[1.37;2.74]
BRD9 8 0.0 - 0.43[0.38;0.49] 0.66[0.60;0.72] 7.63[3.86;15.10] 2.03[1.35;2.71]
Model 10:I 9 0.0 - [0.425;0.429]  [0.47;0.75] [4.40;7.96] [1.48;2.07]
Model 10:IU 9 0.0 - [0.37;0.49] [0.41;0.80] [2.69;15.69] [0.99;2.75]
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36.11 Slovenian Public Opinion: 3rd Analysis

Model Structure  d.f. loglik 0 C.I.
BRD1 (a, ) 6  -2495.29 0.892 0.878;0.906]
BRD2 (a, 3)) 7 -2467.43 0.884 0.869;0.900]
BRD3 (g, ) 7 -2463.10 0.881 0.866;0.897]
BRD4 (av, B) 7 -2467.43 0.765 0.674;0.856]
BRD5 (aj, 8) 7 -2463.10 0.844 [0.806;0.882]
BRD6 (a;,5) 8  -2431.06 0.819 [0.788;0.849]
BRD7 (ag, Br) 8  -2431.06 0.764 0.697;0.832]
BRDS (aj, B) 8  -2431.06 0.741 [0.657;0.826]
BRD9 (ar, 5;) 8  -2431.06 0.867 [0.851;0.884]
Model 10 (az,f8,) 9  -2431.06  [0.762;0.893]  [0.744;0.907]
Model 11 (a1, 5;) 9  -2431.06  [0.766;0.883]  [0.715;0.920]
Model 12 (ajp, Bx) 10 -2431.06  [0.694;0.904]
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36.12 Every MNAR Model Has Got a MAR Bodyguard

e Fit an MNAR model to a set of incomplete data

e Change the conditional distribution of the unobserved outcomes, given the
observed ones, to comply with MAR

e The resulting new model will have exactly the same fit as the original MNAR
model

e [he missing data mechanism has changed

e This implies that definitively testing for MAR versus MNAR is not possible
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36.13 Slovenian Public Opinion: 4rd Analysis

Model Structure d.f. loglik 0 C.l. 0.

BRD1 (av, B) 6  -2495.29 0.892 [0.878;0.906]  0.8920
BRD2 (av, B3) 7 -2467.43 0.884 [0.869;0.900]  0.8915
BRD3 (v, B) 7 -2463.10 0.881 [0.866;0.897]  0.8915
BRD4 (o, Br) 7 -2467.43 0.765 [0.674;0.856]  0.8915
BRD5 (aj, B) 7 -2463.10 0.844 [0.806;0.882]  0.8915
BRD6 (aj, ;) 8  -2431.06 0.819 [0.788;0.849]  0.8919
BRD7 (v, Br) 8  -2431.06 0.764 [0.697;0.832]  0.8919
BRDS (aj, Br) 8  -2431.06 0.741 [0.657;0.826]  0.8919
BRD9 (ar, 5;) 8  -2431.06 0.867 [0.851;0.884]  0.8919
Model 10 (ay, Bi) 9  -2431.06 [0.762;0.893]  [0.744;0.907]  0.8919
Model 11 (ajp, 3;) 9  -2431.06 [0.766;0.883]  [0.715;0.920]  0.8919
Model 12 (i, Bj) 10 -2431.06  [0.694;0.904] 0.8919
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Estimator 0

[Pessimistic; optimistic| | [0.694;0.904]

MAR (3 questions) 0.883

MNAR 0.782

MNAR “interval” [0.753;0.891]

Model 10 [0.762;0.893]

Model 11 [0.766;0.883]

Model 12 [0.694;0.904]
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Chapter 37
Pattern-mixture Models

> A selection model for the vorozole study
> Initial pattern-mixture models for the vorozole study
> Principles of pattern-mixture models

> Connection between selection models and pattern-mixture models
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37.1 The Vorozole Study

e open-label study in 67 North American centers

e postmenopausal women with metastatic breast cancer

e 452 patients, followed until disease progression/death

e two groups: vorozole 2.5 mg x 1 «+—— megestrol acetate 40mg x 4
e several outcomes: response rate, survival, safety,. ..

e focus: quality of life: total Function Living Index: Cancer (FLIC)

a higher score is more desirable
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37.2 A Selection Model for the Vorozole Study

Effect Parameter Estimate (s.e.)

Treatment effect: p = 0.5822
Fixed-Effect Parameters:

time Gy 7.78 (1.05)

timexbaseline 1 -0.065 (0.009)

timextreatment Bs 0.086 (0.157) Fitted Mean Profiles

time?2 B, -0.30 (0.06) 10 :

time2xbaseline B, 0.0024 (0.0005) |

Variance Parameters:

Random intercept d 105.42 °

Serial variance T2 77.96 S EEEESVF;E’JJ%

Serial association A 7.22 T Eggggvfd]p'prg]

Measurement error o’ 77.83 Mo 4 s s 0 2@ u .
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37.2.1 The Dropout Model

MAR

MNAR

First 0.080(0.341) — 0.014(0.003)base; — 0.033(0.004)y; ;_;

0.53 — 0.015base; — 0.076y; ;j—1 + 0.057y;;

Extended | 0.033(0.401) — 0.013(0.003)base; — 0.023(0.005) =2} %=t
—0.047(0.010) Y=t =2

1.38 — 0.021base; — 0.0027y; ;s
—0.064%7]'_1 + 0035%]

Dropout increases with:

e low score
® negative trend

e lower baseline value

Proportion Still in Study

1.0

0.8

0.6

0.0

0.4
T

0.2
T

—— Megestrol Acetate
\ ---- Vorozale

L L L L L
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ture Analysis of the Vorozole Study:

-MIX

37.3 Pattern

Profiles
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Megestrol Acetate Vorozaole

Change in FLIC
Change in FLIC

8 12 16 4 0 4 8 12 16
Months in Study Months in Study
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37.3.1 Two Pattern-Mixture Models

Includes: timextreatment Includes: timextreatmentxpattern

Standard New Standard New

o o o o
o o o o

10
10
10
10

15
15
15
15

20
20
20
20

"o 4 8 12 16 20 24 10 4 8 12 18 20 24 "o 4 8 12 16 20 24 10 4 8 12 18 20 24
Month Month Month Month

Assessment of Treatment Effect

Selection model: p = 0.5822 (1 df; output)
p = 0.2403 (13 df; output)
p = 0.3206 (1 df; delta method)

PMM1: p = 0.6868 (1 df; output) PMM2:
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37.3.2 Estimating Marginal Effects From PMM

e Pattern-membership probabilities:

e The marginal effects:

e [ heir variance:

where

and

ﬁgztglﬁﬁtﬂ-ta gzlaag

Var(fy,...,0,) = AVA’

v _ Var(ﬁgt)‘ 0 j
0 ‘Var(m)
B OB, -, By)
A_8(&11,...,%9,7@,...,7%)
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37.3.3 Considerations

e Models fitted over the observation period within a certain pattern

e How do we extrapolate beyond dropout time 7

e Making the model simple enough ?

e Formal identifying restrictions ?
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37.4 PMM: Three Strategies

(la) Simple model per pattern: Y, = X8 (d;) + Z;b; + €
b; ~ N (0,D (d;))
E; N (O, Zz’ (dz))

(Ib)  Pattern as covariate: Y, = X0+ Zb; +d;0 + ¢

(2)  ldentifying restrictions: CCMV: Complete Case Missing Values
ACMV: Available Case Missing Values
NCMV: Neighbouring Case Missing Values
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37.4.1 Identifying Restrictions

Pattern 3

Pattern 2

Pattern 1
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Effect Initial CCMV NCMV ACMV
Pattern 1:

Time 3.40(13.94) 13.21(15.91) 7.56(16.45) 4.43(18.78)
Timexbase -0.11(0.13) -0.16(0.16) -0.14(0.16) -0.11(0.17)
Timesxtreat 0.33(3.91) -2.09(2.19) -1.20(1.93) -0.41(2.52)
Time? -0.84(4.21) -2.12(4.24) -0.70(4.22)
Time?xbase 0.01(0.04) 0.03(0.04) 0.02(0.04)
o1 131.09(31.34) 151.91(42.34) 134.54(32.85) 137.33(34.18)
012 59.84(40.46) 119.76(40.38) 97.86(38.65)
022 201.54(65.38) 257.07(86.05) 201.87(80.02)
013 55.12(58.03) 49.88(44.16) 61.87(43.22)
023 84.99(48.54) 99.97(57.47) 110.42(87.95)
033 245.06(75.56) 241.99(79.79) 286.16(117.90)
Pattern 2:

Time 53.85(14.12) 29.78(10.43) 33.74(11.11) 28.69(11.37)
Timexbase -0.46(0.12) -0.29(0.09) -0.33(0.10) -0.29(0.10)
Timesxtreat -0.95(1.86) -1.68(1.21) -1.56(2.47) -2.12(1.36)
Time? -18.91(6.36) -4.45(2.87) -7.00(3.80) -4.22(4.20)
Time2xbase 0.15(0.05) 0.04(0.02) 0.07(0.03) 0.05(0.04)
o011 170.77(26.14) 175.59(27.53) 176.49(27.65) 177.86(28.19)
012 151.84(29.19) 147.14(29.39) 149.05(29.77) 146.98(29.63)
022 202.32(44.61) 297.38(46.04) 299.40(47.22) 297.39(46.04)
013 57.22(37.96) 89.10(34.07) 99.18(35.07)
023 71.58(36.73) 107.62(47.59) 166.64(66.45)
033 212.68(101.31) 264.57(76.73) 300.78(77.97)
Pattern 3:

Time 29.91(9.08) 29.91(9.08) 29.91(9.08) 29.91(9.08)
Timexbase -0.26(0.08) -0.26(0.08) -0.26(0.08) -0.26(0.08)
Timesxtreat 0.82(0.95) 0.82(0.95) 0.82(0.95) 0.82(0.95)
Time? -6.42(2.23) -6.42(2.23) -6.42(2.23) -6.42(2.23)
Time2xbase 0.05(0.02) 0.05(0.02) 0.05(0.02) 0.05(0.02)
o011 206.73(35.86) 206.73(35.86) 206.73(35.86) 206.73(35.86)
o012 96.97(26.57) 96.97(26.57) 96.97(26.57) 96.97(26.57)
022 174.12(31.10) 174.12(31.10) 174.12(31.10) 174.12(31.10)
013 87.38(30.66) 87.38(30.66) 87.38(30.66) 87.38(30.66)
023 91.66(28.86) 91.66(28.86) 91.66(28.86) 91.66(28.86)
033 262.16(44.70) 262.16(44.70) 262.16(44.70) 262.16(44.70)
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37.4.2 Pattern As Covariate

Effect Pattern Estimate (s.e.)
Time 1 7.29(15.69)
Time 2 37.05(7.67)
Time 3 39.40(9.97)
Timesxtreat 1 5.25(6.41)
Timesxtreat 2 3.48(5.46)
Timesxtreat 3 3.44(6.04)
Timexbase 1 -0.21(0.15)
Timexbase 2 -0.34(0.06)
Timesbase 3 -0.36(0.08)
Timesxtreat«base -0.06(0.04)
Time? 1

Time? 2 -0.18(2.47)
Time? 3 -7.70(2.29)
Time?xtreat 1.10(0.74)
Time?xbase 0.07(0.02)
o1 173.63(18.01)
1o 117.88(17.80)
02 233.86(26.61)
023 116.12(34.27)
33 273.98(48.15)
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37.4.3 Plot for Three Different Strategies

Strategy 1, ACMV

40
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37.5 Connection SEM-PMM

Molenberghs, Michiels, Kenward, and Diggle (Stat Neerl 1998) Kenward, Molenberghs, and Thijs (Bka 2002)

Selection Models: f(D;|Y;, ) o f(Y;|D;, 0) : Pattern-Mixture Models

f(D;) f(DilYi, ..., Yi—1) F(DilYi, ..., Y -1, Yi;) FDi|Yir, oo Yij1, Y, oo Yin)
SeM : MCAR C MAR C — future C MNAR

l l l l
PMM : MCAR ¢ ACMV  C — future C general
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Chapter 38

Concluding Remarks

MCAR/simple | CC biased
LOCF inefficient
not simpler than MAR methods
MAR direct likelihood easy to conduct
weighted GEE Gaussian & non-Gaussian
MNAR variety of methods strong, untestable assumptions
most useful in sensitivity analysis
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