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Challenges for Product DevelopmentChallenges for Product Development
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Challenges for Product DevelopmentChallenges for Product Development

• Reducing time to market.

• Accelerating the development process.

• Improving product quality.

• Achieving robust products.
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Is there a magic formula?Is there a magic formula?

How can statistics help?How can statistics help?
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Experiments are an integral part of Product and 
Process Development (PD). Designed
experiments help meet the PD challenge.  
They:

• Facilitate study of complex processes 
with many input factors.

• Provide solid evidence for decision 
making.

• Ramp up the learning curve and 
accelerate product development.
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Classical engineering paradigm:

Modern engineering paradigm:

Design factors Responses

Design factors Responses

Robust solution

Deterministic
Transfer function

Stochastic
Transfer function

Nominal value
Nominal value

Nominal valueNominal value
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The focus of this talk:

Achieving robustness

in product and process design

from computer experimentscomputer experiments.
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Computer Experiments:Computer Experiments:
Study the product or process on a 
computer simulator rather than in the 
laboratory or the field.

Once the simulator code is ready, it is 
possible to run much faster and less 
expensive experiments for complex 
products and processes.
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TITOSIM (Reducing Reducing TTime ime toto Market via Market via SStatistical tatistical 
IInformation nformation MManagement)anagement) a 5FP Growth EU project is 
developing tools and software for effective use of 
computer experiments and robust design to reduce 
time to market.

This EU project is coordinated by Fiat Research 
(CRF). Partners include industrial companies, 
consulting firms (KPA Ltd.), and universities
(London School of Economics).
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Some representative case studies from TITOSIM.

• Improve the design of a highway barrier.

• Identify optimal electronic injection parameters in order to 
minimize engine fuel consumption and noise.

• Optimize the design of a turbine vane.

• Minimize the effects of micro-vibrations on satellite 
performance.

• Improve the performance of a turbofan in a jet engine.

• Maximize the throughput of a production cell
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Robustness Design ExperimentsRobustness Design Experiments
• Variation is not desirable.

• Variation is often caused by specific factors that 
vary during production or use -- noise factors.

• Study the effects of noise factors by including 
them explicitly in an experiment.

• Neutralize their effects by exploiting interactions 
between noise factors and design factors.
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Noise Factor
-1.0 -0.5 0.0 0.5 1.0

30
40

50
60

70 No Additive Used

Additive Used

When the additive is used, the slope is “flatter” so that the 
noise factor transmits less variance to the response.
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Computer experiments are different from 
physical experiments.

• No random error.

• Repeating inputs gives same output.

• Easy to use many factor levels.

Should the same methods be Should the same methods be 
used for robust design?used for robust design?
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Sources of variability in computer experiments.

• Tolerances about nominal levels.

• Environmental factors.

• Construction of finite element grids.

• Ability of simulator to match reality.
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A schematic view of a computer 
experiment for robust product design.

Simulator 
Code

Design 
Factors

Noise 
Factors

Output
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All response variation is a result of input 
(noise factor) variation.  

So careful definition of noise factor 
distributions is essential.

• Shape.

• Spread.

• Are these properties dependent on the 
nominal level?

• Complexity – does a single noise factor 
capture all the input variation?
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Consider a metal rod used in an automobile frame.

What is the thickness of the rod?What is the thickness of the rod?
• Nominal thickness.

• Global deviation from nominal.

• Local deviations from global.

ST-ORM, a stochastic simulation manager, uses 
random fields based on extensive data analysis 
to model the local deviations and include them 
as part of the noise description.  This can mean 
thousands of noise variables.
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Simulations with 
random fields produce
two bifurcating 
phenomena
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Four strategies for robust design 
experimentation with computer simulators.

1. Cross-product design with SN analysis 
(Taguchi’s strategy).

2. Cross-product design with response 
model analysis.

3. Simulate by random sampling and 
model the variability.

4. Emulate the response function and 
simulate the variability from emulator.
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1. The Taguchi Paradigm

1. Set up a cross-product design, with separate 
designs for the design and noise factors. 

2. Summarize the variability at each design factor 
setting by the SN ratio

3. Analyze how SN depends on the design factors 
and set them to maximize SN.

4. Analyze how the mean output depends on the 
design factors.
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Note that the same basic input to the simulator 
code may occur as a design factor (nominal level) 
and as a noise factor (tolerance about nominal).  

A single value is input to the simulator for each 
run, based on both factors in the design.

For example, the design factor level for the weight 
of an input is 300 grams and the noise factor level 
is –2%.  The simulator is run with a weight of 294 
grams.
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2. The Response Model Paradigm

1. Set up a cross-product design or a 
combined array. 

2. Analyze how the output depends on both 
the design and the noise factors.

3. Exploit design by noise factor interactions 
to reduce sensitivity to noise factor 
variations.
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Noise Factor
-1.0 -0.5 0.0 0.5 1.0

30
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70 No Additive Used

Additive Used

The use of interactions follows that in physical robust 
design experiments.
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There is an analogous picture for noise factors that 
represent tolerances of design factors.
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A change in the derivative could also be related 
to one of the other design factors.

The experiment actually uses four levels for the 
basic input to the simulator.

The “design factor” version of the input models 
“macro” variation in the output.

The “noise factor” version of the input models 
“micro” variation in the output.
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3. Simulate and Model the Variability
1. Set up a design using the design factors 

only.

2. At each design factor setting, simulate 
noise factor levels from their distributions.

3. Summarize the variability at each design 
factor setting.

4. Model how the variability depends on the 
design factors.
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4. Emulate the Output and Simulate the Variation

1. Generate a design with the fundamental inputs to the 
simulator.

2. Model how the output is related to the inputs, 
constructing an emulator of the simulator.

3. For a given design factor setting, randomly generate 
noise settings and emulate the output.

4. Summarize the emulated variability.

5. Model how the emulated variability is related to the 
design factors.
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Where do the different strategies Where do the different strategies 
spend their simulator budget?spend their simulator budget?

nmnm4. Emulate

pq=nmqp3. Simulate

nmmn2. Response 
Model

nmmn1. Cross-
product

TotalNoise 
Settings

Design 
Settings
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The emulator approach can provide a much wider 
picture of the “macro” variation related to the inputs.

The macro variation is used to emulate the micro 
variation.

Provided this scheme accurately represents the micro 
variation, the emulator approach may enjoy a real 
advantage for a fixed sample size.  This should be the 
case when the output is essentially a “smooth”
function of the basic inputs.
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Case Study:  The Piston SimulatorCase Study:  The Piston Simulator

Simple simulator of the cycle time of a piston 
developed by Kenett and Zacks for their book 
Modern Industrial StatisticsModern Industrial Statistics (Duxbury Press, 
1998).

The simulator uses a basic random field model 
on seven factors with randomness introduced 
directly in the values of the factors.
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C: Initial Gas Volume (m3)
B: Piston Surface Area (m2)
A: Piston Weight (Kg)

D: Spring Coefficient (N/m)
E: Atmospheric Pressure (N/m2)
F: Ambient Temperature (0K)
G: Gas Temperature (0K)

C: Initial Gas Volume (m3)C: Initial Gas Volume (m3)
B: Piston Surface Area (m2)
A: Piston Weight (Kg)
B: Piston Surface Area (m2)
A: Piston Weight (Kg)A: Piston Weight (Kg)

D: Spring Coefficient (N/m)
E: Atmospheric Pressure (N/m2)
F: Ambient Temperature (0K)
G: Gas Temperature (0K)
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Each of the input factors can be treated as both a

design factor (nominal level) 

and a 

noise factor (tolerance about the nominal).  
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Design Goals

1. Average cycle time of 0.7 sec.

2. Minimal variation.
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The Piston Simulator

1. The Taguchi Paradigm

Experimental plan uses each input as both a design 
factor and a noise factor.  

Separate 27-4 arrays are crossed to generate the design.
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.26356.7343.3Fill Gas Temp

.26295291Amb Temp
20010666693333Atmos Pres
10043331667Spring Coef

.0005.0837.0181Init Gas Vol
.002.0175.0075Surface Area
.25535Weight

ToleranceHighLowFactor

Nominal settings and tolerances for the input 
factors in the cross-product design.

The nominal settings are at –2/3 and +2/3 of the factor ranges 
given by Kenett and Zacks.
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0.034-1.61Fill Gas Temp
-0.041-1.57Amb Temp
-0.0240.62Atmos Pres
-0.1386.95Spring Coef
0.0658.97Init Gas Vol

-0.045-3.05Surface Area
0.0541.39Weight

Effect on 
Average

Effect on 
SN

Factor
Factor effects on the SN ratio and the Average.

Overall average:  0.729.Overall average:  0.729.
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Recommendations.

Set Initial Gas Volume and Spring 
Coefficient to high nominal values to 
reduce variation.

Set Weight high to move mean toward 
target.

Estimated mean:  0.71.
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The Piston Simulator 

2. The Response Model Paradigm

Analyze the same data, but with explicit 
modeling of effects for the noise factors 
and design by noise interactions.
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Half-normal Quantiles
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X’s refer to design factors, N’s to noise factors.
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0.000Fill Gas Temp
0.000Amb Temp
0.000Atmos Pres

-0.013Spring Coef
0.002Init Gas Vol

-0.022Surface Area
0.001Weight

Effect on 
Average

Noise Factor

Effects of the design factors do not change.

The table lists the effect of each input as a noise factor.
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The two main noise factors can be largely neutralized 
through their interactions with design factors.

Surf Area -0.022

x In G Vol 0.012

x Spr Coef 0.010

Spr Coef -0.013

x Spr Coef 0.007

Thus setting the Initial Gas Volume and the Spring 
Coefficient to high levels will substantially reduce 
the transmitted variation.
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Recommendations

As before.

This analysis also shows us which tolerances 
make an important contribution to the variance 
and thus might suggest further effective 
engineering actions to neutralize their effects.
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The Piston Simulator 

3 & 4. Simulate and Model the SD

Design 1:Design 1: four replicates of a 27-3 in the 
design factors.

Design 2:Design 2: two replicates of a 32-run LHC.
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0.0010.3Fill Gas Temp
-0.001-0.1Amb Temp
-0.001-1.6Atmos Pres
-0.194-4.4Spring Coef
0.0000.6Init Gas Vol
0.0002.2Surface Area
0.091-0.9Weight

Effect on 
Average

Effect on 
SD (*100)

Factor
Factor effects on the SN ratio and the Average.

Design 1:Design 1: Average 0.831; Average SD 0.0085.
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Recommendations

To reduce the SD, increase Spring Coef
and decrease Surface Area and 
Atmospheric Pressure.

To move the mean closer to target, 
increase the Weight to about 52.5 (0.5 in 
standardized units).
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0.025-0.1Fill Gas Temp
0.0290.2Amb Temp
0.001-0.2Atmos Pres

-0.312-0.7Spring Coef
0.003-0.1Init Gas Vol
-0.010-0.1Surface Area
0.125-0.2Weight

Effect on 
Average

Effect on 
SD (*100)

Factor
Factor effects on the SN ratio and the Average.

Design 2:Design 2: Average 0.818; Average SD 0.0070.
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Effects of the Spring Coefficient
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The TITOSIM prototype was used to fit a kriging
type model to the data.

The model for the mean picks up the clear 
nonlinear effect of the Spring Coefficient and a 
weaker, linear effect for the Weight.  The other 
factors all have very small effects
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The model for the SD shows weak correlation 
between the factors and the SD.

Several factors are shown to have non-linear 
effects on the SD, including the Spring Coefficient, 
the Surface Area, the Weight and the Ambient 
Temperature.
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Recommendations

To reduce the SD, set the Spring 
Coefficient in the top half of its range, the 
Weight and Surface Area to maximal 
values, and the Ambient Temperature to 
the middle of its range.

To move the mean closer to target, set the 
Spring Coefficient about 20% below the 
top of its range.
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Comparison of the recommended settings, using 
random samples of 50 cycle times.

0.00480.750Design 2
(LHC)

0.00410.692Design 1
(27-3)

0.00480.708Taguchi & 
Response Model

SDAverageMethod
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ConclusionsConclusions

1. Computer experiments have great potential for rapid 
robust design.

2. Several methods are available for achieving 
robustness with computer experiments.

3. Our example does not indicate a clearly preferable 
method – more research is needed.

4. It does suggest that effective modeling of the mean 
is necessary, to ensure the ability to set the process 
on target.

5. Computer experiments open up new paradigms in 
experimental designs (Random fields, 
implementation effects,…).


