setwd("D:/Courses/Statistical Computing/Data/") setwd("E:/Courses/Statistical Computing/Data/") rain.data <- read.csv("Rainfall.csv", header=T,na.strings = "-9") attach(rain.data) rain.data # Assess the correlations. pairs(cbind(Aco,TelDan,ElRom)) cor(cbind(Aco,TelDan,ElRom)) cor(cbind(Aco,TelDan,ElRom),method=c('spearman')) cor(cbind(Aco,TelDan,ElRom),method=c('kendall')) boot.cor <- function(B,x){ r1 <- NULL r2 <- NULL n <- nrow(x) for (b in 1:B){ sample.b <- sample(n,n,replace=TRUE) x.b <- x[sample.b,] r.b <- cor(x.b) r1 <- c(r1,r.b[1,3]) r2 <- c(r2,r.b[2,3]) } return(cbind(r1,r2)) } out <- boot.cor(500,cbind(Aco,TelDan,ElRom)) hist(out[,1]) hist(out[,2]) hist(out[,1]-out[,2]) qqnorm(out[,2]) qqnorm(log((1+out[,2])/(1-out[,2])))