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Monovex sets

by

Lev Buhovsky, Eilon Solan and Omri N. Solan (Tel Aviv)

Abstract. A set A in a finite-dimensional Euclidean space is monovex if for any
x, y ∈ A there is a continuous path within A that connects x and y and is monotone
(nonincreasing or nondecreasing) in each coordinate. We prove that every open monovex
set and every closed monovex set are contractible, and we provide an example of a nonopen
and nonclosed monovex set that is not contractible. Our proofs reveal additional properties
of monovex sets.

1. Introduction. A set A in a finite-dimensional Euclidean space is
monovex if for any x, y ∈ A there is a continuous path within A that con-
nects x and y and is monotone (nonincreasing or nondecreasing) in each
coordinate. In particular, whether or not a set is monovex depends on the
choice of basis for the space.

Monovex sets arise in the study of stochastic games [S] where an ex-
tension of the Kakutani’s fixed-point theorem [K] for set-valued functions
with a closed graph and nonempty monovex values is needed (1). By the
Eilenberg–Montgomery fixed-point theorem [EM] any set-valued functions
from a convex compact subset of Rn to itself with a closed graph and
nonempty contractible values has a fixed point. Consequently, our goal is to
study contractibility of monovex sets.

In this paper we prove that every open monovex set, as well as every
closed monovex set, is contractible. We also provide an example of a nonopen
and nonclosed monovex set that is not contractible.
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(1) Kakutani’s fixed-point theorem states that any set-valued function F from a convex
and compact subset of Rn to itself with a closed graph and nonempty convex values has
a fixed point.
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2. Definition and main results

Definition 2.1. A set A ⊆ Rn is monovex if for any x, y ∈ A there is a
continuous path γ : [0, 1]→ A that has the following properties:

(M1) γ(0) = x and γ(1) = y.
(M2) γi : [0, 1] → R is a monotone function (nondecreasing or nonincreas-

ing) for every i ∈ {1, . . . , n}.

A path γ that satisfies (M2) is called monotone.

The image of a monovex set under a diagonal affine transformation is
monovex, yet a rotation of a monovex set need not be monovex. Every convex
set is monovex. If A is a monovex set, then so is the projection of A onto
any “coordinate subspace”, that is, a subspace spanned by a collection of
elements of the standard basis of Rn. Every monovex subset of R is convex,
yet there are monovex subsets of R2 that are not convex (see Figure 1).

Part A Part BFig. 1. A monovex set (left) and a nonmonovex set (right) in the plane

As the following example shows, monovex sets may be complex objects.
In particular, they need not be CW-complexes.

Example 2.2. Let A ⊂ [0, 1]2 be the following set (see Figure 2):

A = {(0, 0)} ∪
∞⋃
k=0

[
1

2k+1
,

1

2k

]2
.

It is evident that A is monovex, yet it is not a CW-complex.

Fig. 2. The monovex set A of Example 2.2
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The Minkowski sum of two convex sets is a convex set. This property
is not shared by monovex sets. In fact, as the following example shows, the
Minkowski sum of a monovex set and a convex set need not be monovex.
In Lemma 3.4 below we will prove that the Minkowski sum of a monovex
set in Rn and an n-dimensional box whose faces are parallel to the axes is
monovex.

Example 2.3. Let A be the union of the line segments [(0, 0, 0), (0, 1, 1)]
and [(0, 1, 1), (1, 1, 2)], which is monovex. Let B be the line segment [(0, 0, 0),
(−1,−1, 2)]. The intersection of A+B := {a+b : a ∈ A, b ∈ B} and the line
L := {x ∈ R3 : x1 = x2 = 0} is the two points (0, 0, 0) and (0, 0, 4). Indeed,
all points b ∈ B satisfy b1 = b2, while the only points a ∈ A that satisfy
a1 = a2 are (0, 0, 0) and (1, 1, 2). Hence a+ b ∈ A+B is on L if and only if
a = b = (0, 0, 0), or a = (1, 1, 2) and b = (−1,−1, 2).

Since (A + B) ∩ L contains two points, there is no monotone path that
connects these points and lies in A+B, and therefore A+B is not monovex.

The Minkowski sum of the sets in Example 2.3 is contractible. As the
following example shows, the Minkowski sum of a monovex set and a convex
set can be homotopy equivalent to the circle S1.

Example 2.4. Let A be the union of the line segments [(0, 0, 0), (1, 0, 0)],
[(1, 0, 0), (1, 1, 0)], and [(1, 1, 0), (1, 1, 1)], which is monovex. Let B =
{(x, x, x) : x ∈ R}, which is convex. Denote by C the triangle in R3 with
vertices (0, 0, 0), (2/3,−1/3,−1/3), and (1/3, 1/3,−2/3). The Minkowski
sum of A and B is A + B = C + B, which is homotopy equivalent to the
circle.

As mentioned in the introduction, our goal is to study whether monovex-
ity implies contractibility. It is a little technical but not difficult to show that
every monovex subset of R2 is contractible. As the following example shows,
not every three-dimensional monovex set is contractible.

Example 2.5. Let A ⊂ [−1, 1]3 be the set of all points that have at least
one negative coordinate and at least one nonnegative coordinate. The reader
can verify that A is monovex. It is disjoint from the line {(x, x, x) : x ∈ R},
and it contains the loop γ depicted in Figure 3 and is not contractible in
R3 \ {(x, x, x) : x ∈ R}. In particular, A is not contractible. In fact, one can
show that it is homotopy equivalent to the circle S1.

Theorem 2.6. Every open monovex subset of Rn is contractible.

Proof. The proof is by induction on n. For n = 1, an open monovex
set is an open interval, hence contractible. Assume now that A is an open
monovex subset of Rn with n > 1. Let B be the projection of A onto its
first n− 1 coordinates, and let F : B ⇒ R be the set-valued function whose
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(1, 1, 1)

(−1,−1,−1) (1,−1,−1)

(1, 1,−1)

(−1,−1, 1)

(−1, 1, 1)

Fig. 3. The path γ in Example 2.5 (dark)

graph is A, that is,

F (x) := {t ∈ R : (x, t) ∈ A}, ∀x ∈ B.
Note that F (x) is an open interval for every x ∈ B. The set B is open
and monovex, so by the induction hypothesis it is contractible. The set-
valued function F satisfies the conditions of Michael’s selection theorem [M,
Theorem 3.1′′′] (2), hence there is a continuous function f : B → R such that
f(x) ∈ F (x) for every x ∈ B. This implies that A is contractible; indeed
first contract A to graph(f), and then contract graph(f) to a point.

The main result of the paper is the following.

Theorem 2.7. Every closed monovex subset of Rn is contractible.

We provide two proofs to Theorem 2.7, each using different properties
of monovex sets, which may be of independent interest. The first proof,
provided in Section 3.1, relies on the property that one can assign, in a
continuous way, to every pair of points in a monovex set a (not necessarily
monotone) path that connects these points and lies in the set. The second
proof, provided in Section 3.2, relies on the stronger property that the com-
plement of a monovex set can be continuously projected onto the set. In
the first proof we will provide a direct argument that shows the existence
of a continuous map from pairs of points in the monovex set to paths that
connect the points and lie in the set.

(2) Michael’s selection theorem implies in particular that for every subset X ⊆ Rn

and every set-valued function F : X ⇒ Rm with an open graph and nonempty convex
values there exists a continuous function f : X → Rn such that f(x) ∈ F (x) for every
x ∈ X.
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Several open problems regarding contractibility of monovex sets still re-
main. We prove that every closed monovex set is contractible. We do not
know whether for every such set there is a Lipschitz continuous contraction.
Another issue is whether our results hold for infinite-dimensional spaces.

3. Proof of Theorem 2.7. Throughout the paper we use the maxi-
mum metric in Rn, that is, d∞(x, y) := max1≤i≤n |xi − yi| for all x, y ∈ Rn.
The distance between a point x ∈ Rn and a set A ∈ Rn is d∞(x,A) :=
infy∈A d∞(x, y), and the distance between two sets A,B ⊂ Rn is the Haus-
dorff distance

d∞(A,B) := max
{

sup
x∈A

d∞(x,B), sup
y∈B

d∞(y,A)
}
.

For every x ∈ Rn and r > 0 we write B(x, r) := {y ∈ Rn : d∞(x, y) < r}
and B(x, r) := {y ∈ Rn : d∞(x, y) ≤ r}. We denote by ~0 the vector (0, . . . , 0)
in Rn.

A (closed) box in Rn is a set of the form
Śn

i=1[ai, bi], where ai ≤ bi for each
i ∈ {1, . . . , n}. A box is l-dimensional if the number of indices i such that
ai < bi is l. The set of vertices of a box R is denoted vert(R). The smallest
box that contains a set A is called the b-hull of A and denoted b-hull(A).

A b-lattice is a set of the form Γ = {(a1k1, . . . , ankn) : k1, . . . , kn ∈ Z},
where a1, . . . , an > 0. Denote by Pl(Γ ) the set of l-dimensional elementary
boxes having vertices in Γ , that is, the collection of all sets

Śn
i=1 Ji such that

for each i either Ji = {aiki} or Ji = [aiki, ai(ki+1)] for some ki ∈ Z, and more-
over the second condition holds for exactly l values of i. Denote by P (Γ ) :=
Pn(Γ ) the set of full-dimensional elementary boxes with vertices in Γ .

3.1. First proof. The following proposition states that any function
f from an m-dimensional grid to a monovex set A can be extended to a
continuous function (still denoted by f) from the m-dimensional space to A
with the property that the image under f of any elementary l-dimensional
box whose vertices are points in the grid is a subset of the b-hull of the
image under f of the vertices of the box.

Proposition 3.1. Let A ⊂ Rn be a closed monovex set and let Γ ⊂ Rm
be a b-lattice. Let X ⊂ Rm be a (finite or infinite) union of boxes in P (Γ ),
and let S := X ∩ Γ be the set of their vertices. Let f : S → A. Then f can
be extended to a continuous function f : X → A with the following property:

(P) For every 1 ≤ l ≤ m and R ∈ Pl(Γ ) with R ⊂ X, the image f(R) is a
subset of the b-hull of f(vert(R)).

Proof. Assume without loss of generality that Γ = Zm. We will define
the extension f iteratively on the sets X∩((2−k−1Γ )\(2−kΓ )), k = 0, 1, . . . ,
and show that f can be further extended to a continuous function over X.
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For every r ∈ N and 1 ≤ i ≤ n, define ϕr,i : Ar → A as follows. Let

(q(1), . . . , q(r)) ∈ Ar, let jmin be an index at which min1≤j≤r q
(j)
i is attained,

and let jmax be an index at which max1≤j≤r q
(j)
i is attained. Choose a con-

tinuous monotone curve γ : [0, 1] → A connecting q(jmin) and q(jmax) (if
jmin = jmax, the curve is constant). By continuity there exists t0 ∈ [0, 1]

such that γi(t0) = (q
(jmin)
i + q

(jmax)
i )/2. Set

ϕr,i(q
(1), . . . , q(r)) := γ(t0).

We now extend f from X ∩ 2−kΓ to X ∩ 2−k−1Γ , for k = 0, 1, . . . .
Suppose that f : X ∩ 2−kΓ → A is given, and set i := k+ 1 (mod n). Every
q ∈ X ∩ ((2−k−1Γ ) \ (2−kΓ )) is the center of a unique l-dimensional box
R ∈ Pl(2−kΓ ) contained in X (where 1 ≤ l ≤ n). Define

f(q) := ϕ2l,i(q
(1), . . . , q(2

l)),

where q(1), . . . , q(2
l) are the f -images of the vertices of R.

We have extended f to a function f : X ∩
⋃∞
k=0

1
2k

Γ → A. Note that
a property reminiscent of (P) is satisfied: for any integers k ≥ 0 and 1 ≤
l ≤ m, and for any box R ∈ Pl(2

−kΓ) that is a subset of X, we have
f
(
R∩
⋃∞
k=0

1
2k

Γ
)
⊆ b-hull(f(vert(R))). We moreover claim that the function

f is locally uniformly continuous (3), and in fact, locally 1/n-Hölder. Indeed,
for k∈N and a box R∈P (2−kΓ ) denote Mi(R) := max{|fi(q(j))−fi(q(m))| :
q(j), q(m) ∈ vert(R)}. Let Ni(R) := max{Mi(S) : S ∈ P (2−k−1Γ ), S ⊂ R}.
If i = k + 1 (mod n) then Ni(R) ≤ Mi(R)/2, while if i 6= k + 1 (mod n)
then Ni(R) ≤ Mi(R). Since i = k + 1 (mod n) infinitely often with step n
as k increases, f is indeed locally 1/n-Hölder continuous.

The set X ∩
⋃∞
k=0 2−kΓ, where f is now defined, is dense in X, hence f

can be extended by continuity to a continuous function from X to A. The
extended function f is locally 1/n-Hölder as well, and it satisfies (P).

We would like to prove that there is a continuous function f : A × A ×
[0, 1]→ A that satisfies f(x, y, 0) = x and f(x, y, 1) = y for every x, y ∈ A.
In the next lemma we prove an approximate version of this result. We will
use it in Proposition 3.3 below to prove a stronger version.

Lemma 3.2. Let A ⊂ Rn be a closed monovex set. For every δ > 0 there
exists a continuous function gδ : A × A × [0, 1] → A such that for every
x, y ∈ A we have:

(1) d∞(x, gδ(x, y, 0)) ≤ δ and d∞(y, gδ(x, y, 1)) ≤ δ.
(2) d∞(gδ(x, y, t), b-hull({x, y})) ≤ δ for every t ∈ [0, 1].

(3) A function is locally uniformly continuous if it is uniformly continuous on every
bounded subset.
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Proof. Fix δ > 0. Consider the lattice Γ := (δ/2)Zn, and denote by X

the union of all boxes R ∈ P (Γ ) that satisfy R ∩ A 6= ∅. Denote X̃ :=

X ×X × [0, 1] ⊆ R2n+1, Γ̃ := Γ × Γ × Z, and S̃ := X̃ ∩ Γ̃ .

Let f : S̃ → A be any function with the following property: for all
x, y ∈ X ∩ Γ we have d∞(x, f(x, y, 0)) ≤ δ/2 and d∞(y, f(x, y, 1)) ≤ δ/2.
Such a function exists since every x ∈ X ∩ Γ is a vertex of a box R ∈ P (Γ )
whose sidelength is δ/2 with R ∩A 6= ∅.

By Proposition 3.1, the function f can be extended to a continuous
function f : X̃ → A that satisfies (P). In particular, for any two boxes
Q,R ∈ P (Γ ) lying in X, we have:

• f(Q×R× {0}) is contained in the b-hull of f(vert(Q)× vert(R)× {0});
• f(Q×R× {1}) is contained in the b-hull of f(vert(Q)× vert(R)× {1}).

Moreover, for all x ∈ Q, y ∈ R, q ∈ vert(Q), and r ∈ vert(R) we have
d∞(x, q) ≤ δ/2, d∞(y, r) ≤ δ/2, d∞(q, f(q, r, 0)) ≤ δ/2, and d∞(r, f(q, r, 1))
≤ δ/2. By the triangle inequality it follows that d∞(x, f(q, r, 0)) ≤ δ and
d∞(y, f(q, r, 1)) ≤ δ. We conclude that given x ∈ Q and y ∈ R, for every q ∈
vert(Q) and r ∈ vert(R) we have d∞(x, f(q, r, 0)) ≤ δ and d∞(y, f(q, r, 1))
≤ δ. Therefore, since f(x, y, 0) ∈ b-hull(f(vert(Q) × vert(R) × {0})) and
f(x, y, 1) ∈ b-hull(f(vert(Q)×vert(R)×{1})), we have d∞(x, f(x, y, 0)) ≤ δ
and d∞(y, f(x, y, 1)) ≤ δ.

In addition, since f satisfies (P), the image f(Q×R× [0, 1]) is contained
in the b-hull of f(vert(Q) × vert(R) × {0, 1}), and hence we also conclude
that d∞(f(x, y, t), b-hull({x, y})) ≤ δ for every t ∈ [0, 1].

To summarize, for all x, y ∈ X and t ∈ [0, 1] we have:

• d∞(x, f(x, y, 0)) ≤ δ,
• d∞(y, f(x, y, 1)) ≤ δ, and
• d∞(f(x, y, t), b-hull({x, y})) ≤ δ.

To end the proof, define gδ to be the restriction of f to A×A× [0, 1].

Proposition 3.3. There exists a continuous function

ϕ : A×A× [0, 1]→ A

such that ϕ(x, y, 0) = x and ϕ(x, y, 1) = y for all x, y ∈ A.

We note that Proposition 3.3 implies Theorem 2.7. Indeed, choose any
x0 ∈ A. The function G : A× [0, 1]→ A defined by G(x, t) := ϕ(x, x0, t) for
all x ∈ A and t ∈ [0, 1] is a homotopy between A and {x0}.

Proof of Proposition 3.3. Let (δk)
∞
k=1 be a sequence of positive reals such

that
∑∞

k=1 δk < ∞. We define the function ϕ in several steps by a Cantor
set construction. Define C0 := {0, 1}, C1 := {[1/3, 2/3]}, and for every k ≥ 2
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let Ck be the collection of all closed intervals [s, s′] where

s =
1

3k
+

k−1∑
j=1

αj
3j

and s′ =
2

3k
+

k−1∑
j=1

αj
3j
,

for some αj ∈ {0, 2}, j = 1, . . . , k − 1 (see Figure 4).

C0

C1

C2

C3

0 11
3

2
3

1
9

2
9

7
9

8
9

Fig. 4. The sets Ck for k = 0, 1, 2, 3

For k = 0, 1, . . . , in step k we define ϕ on A × A ×
⋃

[s,s′]∈Ck
[s, s′]. For

k = 0 set

ϕ(x, y, 0) := x, ϕ(x, y, 1) := y, ∀x, y ∈ A.
For k ≥ 1, consider an interval [s, s′] ∈ Ck and set t := s − 1/3k and
t′ := s′ + 1/3k. Each of the points t and t′ is an endpoint of an interval in
Cj for some j < k. Hence ϕ(·, ·, t) and ϕ(·, ·, t′) were already defined. Set

ϕ(x, y, (1−λ)s+λs′) := gδk(ϕ(x, y, t), ϕ(x, y, t′), λ), ∀x, y ∈ A, ∀λ ∈ [0, 1],

where gδk satisfies the statement of Lemma 3.2. The above procedure defines
ϕ on A×A×

⋃∞
k=0

⋃
[s,s′]∈Ck

[s, s′]. The latter union is dense in [0, 1], hence

ϕ is defined in a dense subset of A × A × [0, 1]. Since
∑∞

k=1 δk < ∞, the
function ϕ is in fact locally uniformly continuous, hence it can be extended
to a continuous function ϕ : A×A× [0, 1]→ A, as desired.

3.2. Second proof. We first argue that if A is a monovex set and R is
an open box whose faces are parallel to the axes, then A + R is monovex.
We note that the proof is valid also when the box R is closed.

Lemma 3.4. If A ⊂ Rn is monovex and R ⊂ Rn is an open box whose
faces are parallel to the axes, then A+R is monovex.

Proof. Let x, y ∈ A + R. Then x = x′ + a′ and y = y′ + b′, where
x′, y′ ∈ A and a′, b′ ∈ R. Assume without loss of generality that x′i ≤ y′i for
every i ∈ {1, . . . , n}, and let γ′ : [0, 1]→ A be a continuous monotone path
that connects x′ to y′. Let J := {i : 1 ≤ i ≤ n, x′i < y′i}. There are a diagonal
matrix D ∈ Mn,n(R) and a vector v ∈ Rn such that (Dx′ + v)i = a′i and
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(Dy′ + v)i = b′i for every i ∈ J . Define for every i ∈ {1, . . . , n} a continuous
function δi : [0, 1]→ R as follows:

• If i ∈ J then δi(t) := (Dγ′(t) + v)i.
• If i 6∈ J then δi is any continuous monotone function with δi(0) = a′i and
δi(1) = b′i.

Since δi is monotone for every i and since δ(0) = a′ and δ(1) = b′, we have
δ(t) ∈ R for every t ∈ [0, 1].

The path γ := γ′+ δ has the following properties, which imply that it is
a continuous monotone path in A+R from x to y:

• γ(0) = x′ + a′ = x and γ(1) = y′ + b′ = y.
• γ(t) ∈ A+R for every t ∈ [0, 1].
• For every i ∈ J we have γi = ((I +D)γ′ + v)i. Since I +D is a diagonal

matrix, the function γi is monotone.
• For every i 6∈ J we have γi = x′i + δi, and therefore in this case γi is

monotone as well.

Since x and y are arbitrary, the result follows.

We will use the following extension of Michael’s selection theorem to
monovex-valued functions.

Lemma 3.5. Let X ⊆ Rn and let F : X ⇒ Rm with open graph and
nonempty monovex values. Then F has a continuous selection: there is a
continuous function f : X → Rm with f(x) ∈ F (x) for every x ∈ X.

Proof. We use induction on m. If m = 1 then the values of F are convex,
hence one can apply Michael’s selection theorem.

Assume now that m > 1. Let F1 : X ⇒ R be the projection of F to its
first coordinate:

F1(x) = {y1 ∈ R : (y1, y2, . . . , ym) ∈ F (x) for some (y2, . . . , ym) ∈ Rm−1}.
Define F2 : graph(F1) ⇒ Rm−1 by

F2(x, y1) := {(y2, . . . , ym) ∈ Rm−1 : (y1, y2, . . . , ym) ∈ F (x)}.
Since F1 and F2 have open graphs and monovex values, by the induction
hypothesis they have respective continuous selections f1 and f2. The func-
tion g : X → Rm defined by g(x) := (f1(x), f2(x, f1(x))) is a continuous
selection of F .

Definition 3.6. Let U ⊆ Rn be an open set, let ε : U → (0, 1] be a
continuous function, and let F : U ⇒ Rm be a set-valued function. The
ε-neighborhood of F is the set

Nε(F ) :=
⋃

(x,y)∈graph(F )

B((x, y), ε(x)) ⊆ Rn+m.
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The following result states that every set-valued function with a rela-
tively closed graph and compact monovex values can be approximated by a
set-valued function with an open graph and monovex values.

Lemma 3.7. Let U ⊆ Rn be an open set, let ε : U → (0, 1] be a continu-
ous function, and let F : U ⇒ Rm with relatively closed graph and compact
monovex values. There exists a set-valued function G : U ⇒ Rm with open
graph and monovex values satisfying graph(F ) ⊆ graph(G) ⊆ Nε(F ).

Proof. The proof is in several steps.

Step 1: Definitions.

Define η : U → {2−k : k ∈ N} by

η(x) := max{2−k : k ∈ N, 2−k ≤ ε(x)/10}.

This function is upper-semicontinuous: for every sequence (xk)k∈N ⊂ U that
converges to a limit x ∈ U we have lim supk→∞ η(xk) ≤ η(x). Given δ > 0,
let Gδ := P (δZm) be the collection of elementary m-dimensional boxes in
the lattice δZm. Define

F1(x) :=
⋃
{R ∈ Gη(x) : R ∩ F (x) 6= ∅}.

The set F1(x) contains F (x), it is a union of closed boxes, hence closed, and
it approximates F (x): d∞(F1(x), F (x)) ≤ η(x) ≤ ε(x)/10 for every x ∈ U .

Step 2: The set F1(x) is monovex for every x ∈ U .

Let x ∈ U and y, z ∈ F1(x). By the definition of F1, there are y′, z′ ∈ F (x)
and R,S ∈ Gη(x) such that y, y′ ∈ R and z, z′ ∈ S. Since F (x) is monovex,
there is a continuous monotone path γ′ that connects y′ to z′ within F (x).
We can assume that y′i ≤ z′i for every i = 1, . . . , n.

We now define a path γ:

(B1) If there is ai ∈ Z such that aiη(x) ≤ zi ≤ (ai + 1)η(x) and aiη(x) ≤
yi ≤ (ai + 1)η(x), set γi(t) := (1− t)yi + tzi.

(B2) Otherwise there is ai ∈ Z such that yi ≤ aiη(x) ≤ zi. We let γi(t) be
the projection of γ′i(t) to the line segment [yi, zi]:

γi(t) := min
{

max{γ′i(t), yi}, zi
}
.

The reader can verify that γ is contained in F1(x). However, γ(0) need not
be y and γ(1) need not be z. Indeed, for every i for which (B2) holds we
have γi(0) = max{yi, y′i} and γi(1) = min{zi, z′i}. Define then ỹ, z̃ ∈ F1(x)
by

ỹi :=

{
yi if (B1) holds,

max{yi, y′i} if (B2) holds,
(3.1)
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z̃i :=

{
zi if (B1) holds,

min{zi, z′i} if (B2) holds.
(3.2)

A monotone path in F1(x) that connects y and z is the concatenation of (a)
a monotone path that connects y and ỹ, (b) the path γ, and (c) a monotone
path that connects z̃ to z.

Step 3: For every x ∈ U there is δx ∈ (0, ε(x)/10) such that F1(y) ⊆
F1(x) and η(y) ≤ η(x) for every y ∈ B(x, δx).

Since η is upper-semicontinuous and its image is discrete, for every x ∈ U
there is δx > 0 such that η(y) ≤ η(x) for every y ∈ B(x, δx). We now prove
the analogous property for F1. If the property does not hold (4), then for
every k ∈ N there exists yk ∈ B(x, 1/k) such that F1(yk) 6⊆ F1(x). That
is, there is zk ∈ F1(yk) \ F1(x). Since zk ∈ F1(yk), the point zk belongs
to some box Rk of the lattice Gη(yk), and in particular there is a point
wk ∈ Rk ∩ F (yk). Since (i) F has a relatively closed graph and compact
values, (ii) the image of η is discrete, and (iii) η is locally bounded from
below, it follows that the number of boxes Rk that satisfy these properties
is finite, hence by taking a subsequence we can assume that (a) Rk = R
for every k ∈ N and (b) (wk)k∈N converges to some w ∈ Rn. In particular,
w ∈ R. Since the graph of F is relatively closed, w ∈ F (x)∩R. In particular,
F (x)∩R 6= ∅, and hence R ⊆ F1(x), which implies that zk ∈ F1(x) for every
k ∈ N, a contradiction.

Step 4: Definition of G.

For every x ∈ U define

Q(x) := {y ∈ U : x ∈ B(y, δy/2)}.

Thus, y ∈ Q(x) if x and y are close when the distance is measured by δy.
Note that x ∈ Q(x) for every x ∈ U , and therefore Q has nonempty values.
Define

G(x) :=
⋃

y∈Q(x)

(
F1(y) +B(~0, η(y))

)
, ∀x ∈ U.

We will prove that the set-valued function G satisfies the desired conditions.

Note that G(x) is a union of open sets, and hence it is open. In addition,
since x ∈ Q(x), we have G(x) ⊇ F1(x) ⊇ F (x), hence graph(G) ⊇ graph(F ).

Step 5: If y1, y2∈Q(x) then either (a) F1(y1)⊆F1(y2) and η(y1)≤η(y2),
or (b) F1(y1) ⊇ F1(y2) and η(y1) ≥ η(y2).

(4) The index k always refers to an element of a sequence. Thus, yk is the kth element
of a sequence, and not the kth coordinate of y.
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Let y1, y2 ∈ Q(x); we can assume that δy1 ≥ δy2 . Since x ∈ B(y1, δy1/2)∩
B(y2, δy2/2), we deduce that these balls intersect. In particular,

d∞(y1, y2) < δy1/2 + δy2/2 ≤ δy1 ,
which implies that y2 ∈ B(y1, δy1). By Step 3 this implies that F1(y1) ⊇
F1(y2) and η(y1) ≥ η(y2).

Step 6: The set G(x) is monovex for every x ∈ U .

Let z1, z2 ∈ G(x). Then there are y1, y2 ∈ Q(x) such that z1 ∈ F1(y1) +
B(~0, η(y1)) and z2 ∈ F1(y2)+B(~0, η(y2)). By Step 5 we can assume that z2 ∈
F1(y1) +B(~0, η(y1)). By Step 2 and Lemma 3.4 the set F1(y1) +B(~0, η(y1))
is monovex.

Step 7: The graph of G is an open subset of the 3
10ε-neighborhood of F .

By the definition of G,

graph(G) =
(⋃
y∈U

B(y, δy/2)× (F1(y) +B(~0, η(y)))
)
∩ (U × Rm).

It follows that graph(G) is open. Moreover, it is a subset of the (δy/2+2η(y))-
neighborhood of F . The claim follows since δy/2 + 2η(y) ≤ 3

10ε.

The following result implies Theorem 2.7.

Proposition 3.8. Every closed monovex set A ⊆ Rn is a retract of Rn:
there is a continuous function h : Rn → A which is the identity on A.

We now show that Proposition 3.8 implies Theorem 2.7. Indeed, fix
x0 ∈ Rn, and let h be the retraction of Proposition 3.8. The function h∗ :
A× [0, 1]→ A defined by

h∗(x, t) := h((1− t)x+ tx0)

is a homotopy between A and {h(x0)}, and so A is contractible, as claimed.

Proof of Proposition 3.8. We argue in several steps.

Step 1: Definitions.

The real-valued function x 7→ d∞(x,A) is continuous and positive for
x ∈ Rn \A. Define F : Rn \A⇒ A by

F (x) := A ∩B(x, d∞(x,A)).

The set F (x) contains all points in A that are closest to x. Since A is a closed
monovex set, and since the intersection of a monovex set and a ball in the
maximum norm is monovex, F has a relatively closed graph and compact
monovex values.

Set ε(x) := d∞(x,A)/10. By Lemma 3.7 there exists G : Rn \ A ⇒ Rn
with open graph and monovex values such that graph(G) ⊆ Nε(F ).
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Step 2: For every x ∈ Rn \A we have G(x) ⊆ B
(
x, 43d∞(x,A)

)
.

Let (x, z) ∈ graph(G). Since graph(G) ⊆ Nε(F ), there is (x′, z′) ∈
graph(F ) such that d∞(x′, x) < ε(x′) and d∞(z′, z) < ε(x′). Since z′ ∈
F (x′) = A ∩B(x′, d∞(x′, A)), it follows that d∞(z′, x′) = d∞(x′, A). By the
triangle inequality,

d∞(x,A) ≥ d∞(x′, A)− d∞(x, x′) > d∞(x′, A)− ε(x′)(3.3)

= d∞(x′, A)− d∞(x′, A)/10 = 9
10d∞(x′, A).

By the triangle inequality once again and (3.3) we obtain

d∞(z, x) ≤ d∞(z, z′) + d∞(z′, x′) + d∞(x′, x)

< 2ε(x′) + d∞(x′, A) = 12
10d∞(x′, A) ≤ 12

9 d∞(x,A),

as claimed.

Step 3: Definition of a function g.

By Michael’s selection theorem (Lemma 3.5), there is a continuous se-
lection g of G. Step 2 implies that

(3.4) d∞(g(x), x) ≤ 4
3d∞(x,A), ∀x ∈ Rn \A.

As a consequence, for every sequence (xk)k∈N that converges to a limit x ∈ A
we have limk→∞ d∞(g(xk), xk) = 0. In particular, g can be extended to a
continuous function from Rn to Rn that is the identity on A.

Since (x, g(x)) ∈ graph(G) and G lies in an ε-neighborhood of F , there
is (x′, y′) ∈ graph(F ) such that d∞(x, x′) < ε(x′) and d∞(g(x), y′) < ε(x′).
Since in particular y′ ∈ A, we deduce that

d∞(g(x), A) < ε(x′) = d∞(x′, A)/10 ≤ d∞(x,A)/9,

where the last inequality follows from (3.3).

Step 4: Definition of h.

Let g1 := g and gk := g ◦ gk−1 for k > 1. For every k ∈ N the function
gk is the identity on A and satisfies d∞(gk(x), A) ≤ d∞(x,A)/9k for every
x ∈ Rn \ A. Together with (3.4) we deduce that the functions (gk)k∈N con-
verge locally uniformly to some continuous function h, which is the desired
retraction.
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