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Abstract. An absorbing game is a repeated game where some action combi-
nations are absorbing, in the sense that whenever they are played, there is a
positive probability that the game terminates, and the players receive some
terminal payoff at every future stage.

We prove that every multi-player absorbing game admits a correlated
equilibrium payoff. In other words, for every ¢ > 0 there exists a probability
distribution p, over the space of pure strategy profiles that satisfies the fol-
lowing. With probability at least 1 — ¢, if a pure strategy profile is chosen ac-
cording to p. and each player is informed of his pure strategy, no player can
profit more than ¢ in any sufficiently long game by deviating from the recom-
mended strategy.

Key words: Stochastic games, Absorbing games, correlated equilibrium uni-
form equilibrium, public signalling

1. Introduction

There are many ways to formulate the notion of Nash equilibrium in undis-
counted stochastic games. The strongest of these is uniform e-equilibrium. A
strategy profile is a uniform ¢-equilibrium if for any » sufficiently large, no
player could increase his expected average payoff in the first n periods by more
than ¢ by deviating. A payoff vector is a uniform equilibrium payoff if it is the
limit (as ¢ goes to 0) of the payoffs that correspond to a sequence of uniform e-
equilibrium strategy profiles. Arguments in favor of this formulation of Nash
equilibria can be found in Aumann and Maschler (1995).

¥ We thank Jerome Renault and an anonymous referee who identified several inaccuracies in a
previous version of the paper, and suggested ways to overcome them.
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Existence of uniform equilibrium payoffs in multi-player undiscounted sto-
chastic games while suspected is still not proven. Progress on this question has
been slow and hard won. A major step was made by Mertens and Neyman
(1981) who proved that every two-player zero-sum stochastic game admits a
uniform value. Subsequently Vrieze and Thuijsman (1989) proved the existence
of a uniform equilibrium payoff in two-player non zero-sum absorbing games.
A decade and a half after the paper by Mertens and Neyman, Vieille (2000a,b)
proved the existence of a uniform equilibrium payoff in two-player non zero-
sum stochastic games. The argument is arduous and extending it to more than
two players appears difficult. Some progress in this direction is described in
Solan (1999) where existence of uniform equilibrium payoffs is established for
three-player absorbing games, and in Solan and Vieille (2001b) where existence
of uniform equilibrium payoffs is established for a class of multi-player quit-
ting games.

While Nash equilibrium is the most popular solution concept for a game
it is not the only one. For games in strategic form, Aumann (1974) proposes
the notion of correlated equilibria, which are probability distributions over the
space of strategy profiles, such that if a strategy profile is chosen according to
this distribution, no player can profit by not following the strategy chosen for
him.

For finite games in strategic form, correlated equilibria have a number of
appealing properties. They are computationally tractable. Existence is verified
by checking a system of linear inequalities rather than a fixed point. The set of
correlated equilibria is closed and convex. Aumann (1987) argues that it is the
solution concept consistent with the Bayesian perspective on decision making.
Nor does one need to assume that the correlation device is a deux et machina
in the game. In Foster and Vohra (1998) it is argued that players can use the
history of past plays as a correlation device. Finally, our colleague Roger
Myerson has been quoted as saying:

‘If there is intelligent life on other planets, in a majority of them, they
would have discovered correlated equilibrium before Nash equilibrium.’

An equivalent formulation of correlated equilibria for games in strategic
form is to consider an extended game that includes a correlation device. The
device chooses a signal for each player before start of play, and reveals to
each player the signal chosen for him. The game then proceeds as before, but
each player may base his choice of strategy on the signal he received. In this
formulation, a uniform correlated ¢-equilibrium is a uniform e-equilibrium in
an extended game. A uniform correlated equilibrium payoff is a limit, as ¢
goes to 0, of the payoffs that correspond to a sequence of uniform correlated &-
equilibria. It is this form of correlated equilibrium that is the focus of the
paper.

An absorbing game is a repeated game where some of the action combi-
nations are absorbing, in the sense that whenever they are played, the game
terminates with positive probability, and the players receive some terminal
payoff at every future stage. We show that every absorbing game admits a
uniform correlated equilibrium payoff.! The proof uses the ideas in Solan

! This generalizes Solan and Vohra (2001) which considers quitting games, a special case of ab-
sorbing games.
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(1999). First an auxiliary game is defined with non-absorbing payoffs that
differ from those in the original game. Then we consider the limit of dis-
counted stationary equilibria in this auxiliary game. The asymptotic proper-
ties of this sequence suggest the form that a uniform correlated equilibrium
must take.

Another generalization of correlated equilibrium for sequential games in-
volves a correlation device that sends to each player a signal before the start of
each round. The signals can depend on the history of past signals but not on
past play. This way the correlation device is independent of the play. In con-
trast with the problem of existence of uniform equilibrium payoffs, existence
of a uniform correlated equilibrium of this kind was proved for every multi-
player stochastic game with finitely many states and actions by Solan and
Vieille (2001a).

Another related result is Nowak (1994), which studies multi-player sto-
chastic games with measurable state space, compact action spaces and the
average payoff criterion, that satisfy the assumption of uniform geometric er-
godicity. Nowak proves in this model the existence of stationary correlated
equilibrium with public signalling; that is, at every stage all players observe
a public signal, which is drawn at every stage according to the same distri-
bution.

There are two additional aspects in the paper that may interest the reader.
First, the approach that we take in solving the problem is a development of
the approach introduced in Solan (1999), of studying the asymptotic behavior
of a sequence of discounted equilibrium in a modified game. Solan (1999) de-
fined the daily payoff of each player in the auxiliary game as the minimum
between his original daily payoff and his min-max level. This definition is
not sufficient for our purposes, and we have to see what are the necessary
properties needed for the approach to work. Thus, the proof here illumi-
nates the properties of the modified payoff function that are required for this
approach.

Second, some of the results we prove here can be used in the study of
equilibria in multi-player stochastic games (see the results in section 9.2).

We start in section 2 with some examples that illustrate the main ideas the
proof relies on. We then provide the model and the main result in section 3. In
section 4 we present some preliminary results; we study how players can use
their actions to transmit information, and we claim that in every absorbing
game there exists a mixed action profile that satisfies one of a set of desirable
properties. In the following four sections we prove that if those desirable
properties hold, the game admits a correlated equilibrium payoff. The proof of
the claim appears in section 9.

2. Examples and main ideas

We provide a series of examples that illustrate the main ideas of the proof.

A quitting game is a sequential game where each player has two actions: to
quit (Q) or to continue (C). The game continues as long as all players decide
to continue. The moment any player decides to quit, the game terminates. The
terminal payoff depends on the subset of players that quit at the terminating
stage. If the game continues forever, the payoff to the players is some fixed
payoff vector. Quitting games are a special case of absorbing games.
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2.1. Example 1

Consider first, the following three-player quitting game that was studied by
Flesch et al. (1997).

C 0
C 0 C 0
C | 0,00 |01,3* 3,0,1% | 1,1,0%
0 |1,3,0¢]| 1,0,1* 0,1,1* | 0,0,0*

In this game player 1 chooses a row, player 2 a column, and player 3 a
matrix. Every absorbing entry, which corresponds to at least one player quit-
ting, is denoted with an asterisk. Flesch et al. prove that the following profile
is a uniform equilibrium.

+ At stage 3n + 1, the players play (% C+ % 0,C, C).
- At stage 3n + 2, the players play (C,1C+10,C).
- At stage 3n + 3, the players play (C,C,3C+10).

Here n =0, 1,.... The corresponding uniform equilibrium payoffis (1,2, 1).

In a quitting game each pure strategy can be associated with an element
te Nu {00} that specifies the first period in which the player quits. If 1 = oo,
it means that the player never quits. A profile of pure strategies would be a
tuple (a1, a», a3) where g; is the period in which player j quits.

The uniform equilibrium that Flesch et al. identify corresponds to a prob-
ability distribution p = pt) ® p® ® p©® over the space of pure strategy pro-
files given by

p(l>(3n+l):1/2n Vn:0,1,2,...,i:l,2,3.

Note that neither this distribution nor the uniform equilibrium payoff are
symmetric. In fact, Flesch et al. prove that the game possesses no symmetric
uniform equilibrium payoff, even though the payoff matrix is symmetric.

The probability distribution p that is defined by

p(l,00,00) =p(o0,1,0) =p(w0,0,1)=1/3 (1)
is a uniform correlated equilibrium with payoff

(4/3.4/3.4/3) = 5 (1.3.0) +3(0.1.3) + 5 (3.0.1)

Our interpretation of the equilibrium is that a correlation device chooses
one of the players uniformly at random (the chosen one) and is told to quit in
the first stage. The other two players are told never to quit. Suppose player 1 is
informed that he was chosen. Notice that if player 1 alone disobeys the in-
structions by never quitting his payoff will be 0. If player 1 quits at some later
stage, this does not increase his payoff.

Consider now a player not chosen, say, player 3. He does not know the
identity of the chosen one; its as likely to be player 1 as it is player 2. So, if he
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follows his instructions to play C, his expected payoff will be 1.5. On the other
hand, if player 3 quits in the first round, his expected payoff will be 1/2. He
cannot know whether he can profit by deviating and quitting at the first stage,
and therefore he should not deviate.

The construction described above is sensitive to two things. The first is the
incentives that the chosen player has to not quitting at stage 1. The second is
the payoff to an unchosen player from two players quitting at the same stage.
If this were large enough, in our example above, player 3 would want to quit
at the first stage.

The second of these can be accomodated by masking the stage at which the
chosen player quits. For example, the chosen player is told to quit in each
stage with probability ¢ > 0. Now player 3 is ignorant of who the first player is
to quit as well as the stage at which they will quit. In fact with high probability
any stage that player 3 chooses to quit in, he will be the only player to be
quitting. The joint probability distribution p consistent with this formulation
is:

p(l’Z7OO,OO) :p(OO,I’Z7OO):p(OO,OO,}’l):E(l—E)n_l/S Vn e N. (2)
Dissuading the chosen player from quitting at a stage other than that pre-

scribed by the device, or continuing indefinitely, is more difficult. The next
example shows that this is a real possibility.

2.2. Example 2

Consider a slight modification of Example 1, where only the non-absorbing
payoffs are changed.

C 0
C 0 C 0
C | 2,2,0 |0,1,3* 3,0,1% | 1,1,0%
0 | 1,3,0%|1,0,1% 0,1,1* | 0,0,0*

The correlated equilibrium proposed for the first example does not apply
here. Players 1 and 2 get higher payoffs in the non-absorbing entry. Thus, if
player 1 is the chosen one, why should he quit? The other two players don’t
know that he is the chosen one. To deal with this possibility we will ensure
that one of the unchosen players can punish player 1 for his deviation. The
idea is to instruct the unchosen players to play C for a certain number of
rounds and then play Q. To force compliance by player 1, the payoff to player
1 by continuing forever should be at most 1.

In this example each player i has a single punisher — a player j # i that by
quitting yields player i a low payoff. Player 1 is the punisher of player 3,
player 2 is the punisher of player 1 and player 3 is the punisher of 2. A simple
modification of the previous equilibrium scheme suggests itself: the device
chooses a player uniformly at random to quit at the first stage, and informs his
punisher that he should quit at the second stage if the chosen one has not quit
at the first stage.
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The flaws are obvious. First, the punisher knows who the chosen one is,
and might profit by quitting on the first period too. This problem does not
arise in this example. Second, the player who is neither the chosen one nor the
punisher receives some information too. If player 3 is neither the chosen one
nor the punisher, he can deduce that player 1 is the chosen one. Therefore
player 3 would rather quit at the first stage.

To avoid these flaws the device must inform the punisher while masking
the identity of the chosen one. One way of doing this is described below.

Define the following joint probability distribution over the space of pure
strategy profiles. A player i is chosen with the uniform distribution. W.l.o.g.
assume that player 1 is the chosen one. Denote by (n,n,,n3) a pure strat-
egy profile. Since player 1 is the chosen one, n; is uniformly distributed in
{1,..., M}, where M > 1/&>. Player 2 is the punisher of 1, so n; is uniformly
distributed in {M + 1,...,2M}. Finally, n3 = n, + 1.

Let us verify that with high probability no player can profit by not quitting
at the stage recommended by the device.

The chosen player knows that he was chosen, since his quitting stage is at
most M, whereas the quitting stages of the other two exceed M. If the chosen
player does not quit, he will be punished and get 0. Moreover, the probability
he will correctly guess the quitting stage of his punisher is low. Hence he has
no reason to disobey the recommendation. With high probability the punisher
and the third player received a signal in {M + 1,...,2M}. In this case, the
conditional probability that each is a punisher is 1/2, so they have no reason
to deviate also. Thus, this joint probability distribution is a uniform correlated
e-equilibrium, provided ¢ is sufficiently small.

2.3. Example 3

Absorbing games can be viewed as quitting games where the players have
more than one ‘quitting’ action and more than one ‘continue action’. Thus a
player may be able to punish two different players with different ‘quitting’
actions. For example, player i punishes player j; with a quitting action Q; and
he punishes player j, with a quitting action Q,. If the correlation device in-
structs him to use Q) instead of Q,, he is in a position to infer the identity of
the chosen one. This problem is solved by assuming that the game is generic,
i.e. the payoffs in all the entries are different. We then consider only punishing
actions which maximize the payoff of the punisher amongst his quitting ac-
tions. When a player has two continue actions then, by playing one or the
other continue actions in various stages, he can send public signals to the other
players. This feature can be used to construct a correlated equilibrium differ-
ent from the one constructed before. This is illustrated in our next example.
We modify example 2 by adding one more action, C,, for player 1.

C 0

C 0 C 0
C 2,2,0 | 0,1,3% 3,0,1% | 1,1,0%
0 | 1,3,0¢] 1,0,1* 0,1,1* | 0,0,0*

G 2,2,0 | 0,4,4* 0,4,4* | 0,4,4*
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Any correlated equilibrium payoff of Example 2 is also a correlated equi-
librium payoff here. We use this example to illustrate the use of public sig-
nalling in constructing correlated equilibria.

To describe the correlated equilibrium profiles it will be convenient to use a
correlation device that sends signals to the players in an arbitrary signal space.
It is easily verified that the signal space that we use is equivalent to the space
of strategy profiles.

Since there are only 3 players, the construction below could be simplified,
but we present the construction for an arbitrary number of players.

The correlation device does the following.

1. The device chooses a player i uniformly at random. This player is informed
that he should quit in the first M stages, where M € N is sufficiently large.

2. The device chooses a verification key v, uniformly from the set {1,..., M}.

3. The device chooses an encryption key k&, uniformly from the set {1,..., M}.

4. Each player j # i receives v.

5. If i # 1, player 1 receives k, and all other players receive k + i mod M.
The players play as follows in the first M stages.

6. Each player j # i continues in all M stages.

7. Player i chooses at random a stage 1€ {1,2,..., M}. He continues in all

stages but 7, and quits at stage .
If no player quit in the first M stages, the identity of i is revealed.

8. If i # 1, player 1 publicly announces v. Recall that player 1 knows v if and
only if he was not chosen.

One possible way for player 1 to publicly announce an integer v e {1,..., M}
requires M? stages and is described below. Players 2 and 3 play C in all the
M? stages. Player 1 plays C, in one of the stages (v — 1)M, ..., vM — 1, and
C in all other M? — 1 stages.

If player 1 chooses the stage in which he plays C, at random, and if M is
sufficiently large, no player can profit too much by deviating. If M is suffi-
ciently large, the chance that player 1 can correctly guess v when he is the
chosen one is arbitrarily small.

Call v’ the actual message sent by player 1. If v’ # v, player 1 is declared
the deviator, and is punished. If v’ = v, with high probability player 1 is not
the chosen one. The play then proceeds as follows.

9. If i # 1 player 1 publicly announces k.

Now all players except player 1 can calculate the identity of the chosen
one. Note that when there are only three players, once player 1 has correctly
announced v, player j # 7, | can deduce the identity of the chosen one.

Now that the identity of the chosen one was revealed, he should be pun-
ished by his punisher.

10. In one of the next M stages, the punisher j;, provided j; # 1, quits, and
punishes player i.
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11. If after M stages no one has punished the chosen one, player 1 deduces
that he is the punisher, so he quits in one of the subsequent M stages.

3. The model and the main result
In this section we introduce notation and state the main result.

Definition 3.1. A multi-player absorbing game G is given by (I, (A", r',u’)
where:

i617w)

« 1 is a non-empty finite set of players.

« A" is a non-empty finite set of actions available for player i. Let A = X e A'.
r': A — R foriel. Foreveryae A, r(a) is the daily (non-absorbing) payoff
for player i.

*w:A—[0,1]. For every a€ A, w(a) is the probability the game is absorbed
if the action combination a is played by the players.

u': 4 — R for iel. Given the game was absorbed by action combination
a e A, u'(a) is the constant payoff player i receives at every future stage.

The game is played as follows. At every stage n e N each player i e[
chooses, independently of his opponents, an action a’ € A’. The action com-
bination a, = (a),.; determines a daily payoff r(a,) and a probability of ab-
sorption w(a,). With probability 1 — w(a,) the game continues to the next
stage, and with probability w(a,) the game is absorbed, and the players re-
ceive the absorbing payoff u(a,) at every future stage. We assume standard
monitoring and perfect recall, so at every stage all the moves played upto that
stage are known to all players.

For every finite set K, 4(K) is the set of all probability distributions over
K. For every ye A(K) and every k € K, u[k] is the probability of k under .
For every subset K’ of K, u[K'] = Zke x #[k]. We identify each k € K with
the probability distribution in 4(K) that gives weight 1 to k.

Denote X' = A4(A") and X = X7 X', the set of mixed-action profiles. For
every subset L < I of players, we denote AL = X;cp A" and AL = X4 A
Each action a' € A" is identified with the probability distribution in X’ that
gives weight 1 to a'.

Let H, = A" be the space of all histories of length n, and H = ( J
the space of all finite histories.

A (behavioral) strategy for player i is a function ¢’ : H — X'. A profile
is a vector of strategies, one for each player. A stationary strategy can be
identified with an element x’ € X', and a stationary profile with a vector
x = (x');.; € X. The mixed extension of w to X is still denoted by w. A mixed
action profile x € X will be called absorbing if w(x) > 0 and non-absorbing
otherwise. For every x € X, every a € 4 and every i € I, x'[a'] is the per-stage
probability to play a’ according to x’, and x[a] = [],.; x'[a] is the per-stage
probability that action combination « is played under x.

A strategy o' of player i is pure if ¢'(h) € A’ for every finite history 4 € H.
A profile ¢ = (¢') is pure if each ¢’ is pure. Let & " denote the space of pure
strategies of player i, and & = X;c; %" the space of pure strategy profiles.

We endow % with the o-algebra generated by finite cylinders: for
every n and every vector of actions a’ = (a(h)) € (47)#VH12 7 the set

H, be

n>=0
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{6’ e 9" |a'(h) =a'(h),Yhe Hyu---u H,} is measurable. . is endowed with
the product g-algebra.

Every profile ¢ induces a probability measure over the space of infinite
plays. We denote by E, the corresponding expectation operator. In particular,
every profile o defines an expected payoff during the first n stages:

n(0) = By | - (r{a) + rlan) -+ r(ag) + Locn(n — O)ulan)) .

where 6 denotes the absorption stage.

Definition 3.2. Let ¢ > 0. A payoff vector y € R isa ( uniform) correlated e-
equilibrium payoff if there exists a positive integer ny € N and a probability
measure p, over & such that for every player iel and every measurable
function [ : ' — S,

E, i) =y —e>E,[(a', f(c")] —2&, VYn=>ny.

The probability measure p; is a (uniform) correlated c-equilibrium.

A payoff vector y € R is a (uniform) correlated equilibrium payoff if it is
the limit, as € goes to 0, of correlated e-equilibrium payoffs.

The payoff vector y € R is a (uniform) equilibrium payoff if it is a corre-
lated equilibrium payoff, and for every & > 0 the probability measure p. is a
product measure p, = ®i I pl, where each pl is a probability measure over & I

Intuitively, a probability measure p, over & is a correlated ¢-equilibrium if
there is only a small probability under p, that given the pure strategy chosen
for him, a player can profit a lot by disobeying the recommendation.

The main result of the paper is:

Theorem 3.3. Every multi-player absorbing game admits a correlated equilib-
rium payoff.

We assume w.l.o.g. that 0 < r, u < 1, and that every player has at least two
actions: |47| > 2 for every i € I. Since payoffs are bounded, if for every ¢ > 0
there exists a correlated ¢-equilibrium then a correlated equilibrium payoff ex-
ists. Moreover, if p is a correlated e-equilibrium for some absorbing game, it is
a correlated 3e-equilibrium for any game where the payoffs differ by at most e.
In particular, we may assume w.l.o.g. that the function u is generic; that is, for
every player i € I and every two action combinations a,b € 4, u'(a) # u'(b).

As every three player absorbing game admits an equilibrium payoff, we as-
sume throughout the paper that |I| > 3 (we will only use the fact that |I| > 3).

3.1. Correlation devices

It will be more convenient to consider an equivalent formulation of correlated
equilibria using correlation devices.

Definition 3.4. A4 correlation device is a pair & = (S, p) where S = X1 S’ is a
measurable space of signals and p € A(S) is a probability distribution.
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Given a correlation device we define an extended game G(2) as follows. A
signal s = (s'),., € S is chosen according to p (which is common knowledge).
Each player i is informed of s’. The game now proceeds as the original game,
but each player can use his private signal to choose an action at every stage.

In this formulation, y is a correlated e-equilibrium payoff of G if and only
if there is a probability distribution p over % such that y is an g-equilibrium
payoff of G(2), where & = (%, p). This formulation is more general than the
one we presented above, but it is more convenient to work with. In our con-
struction, the signal space S is (equivalent to) the space of pure strategy pro-
files 7.

The information available to each player i at stage n is an element of
S’ x H,_1. Thus, a strategy for player i in the extended game is a function
o' S"x H — X!. All previous definitions (e.g. profiles, induced payoff) can
be analogously defined for the extended game.

4. Preliminaries

4.1. On exits and individual rationality

Definition 4.1. The real number v’ € R is the (uniform) min-max value of player
i if for every &> 0 there exists a positive integer no € N such that for every
profile c™' there exists a strategy o' of player i that satisfies:

yé(a_i?‘ji) >0l —¢ Vn>n,

and there is a profile o, of I\{i} such that for every strategy ' of player i,
yi(o ey <vi4e Yn=ng.

The profile a;i is an e-min-max punishment profile against player i.

Thus, players 7\{i} can reduce the payoff of i to v’, but they cannot reduce it
any more.

Existence of the min-max value was proved by Mertens and Neyman
(1981) for two-player stochastic games, and by Neyman (2002) for multi-
player stochastic games. Moreover, Neyman (2002) proves that the min-max
value is the limit, as the discount factor goes to zero, of the discounted min-
max values.

Remark: In our construction, a deviator is punished with the min-max value
and not the max-min value. There are two reasons for that. First, we would
like to reduce the amount of correlation needed by the players. Second, results
that are proven here might be useful in the study of equilibrium payoffs in
multi-player stochastic games.

The multi-linear extension of r to X is still denoted by r. Define an exten-
sion of u to X by

u'(x) = Z x[alw(a)u'(a)/w(x)

aeA

whenever w(x) > 0, and u’(x) = 0 otherwise. Note that w(x)u’(x) is multi-
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linear, but u’ is not multi-linear; it is the expected absorbing payoff if the
players play the mixed action x (given absorption occurs with positive proba-
bility).

Definition 4.2. Let y € RY be a payoff vector. A mixed action combination x is
individually rational for y if y' > v’ for all for i € I and for every action a' € A',

yi > u"(x*",a").

Usually, deviations can be followed by punishment with the min-max level,
hence one gets a stronger definition of individual rationality (see Solan (1999)).
In our context players may not know the identity of the deviator, hence the
deviator may deviate several times without being detected.

In absorbing games it is sometimes the case that absorption requires co-
ordinated action on the part of a group of two or more players. For every
non-absorbing mixed action x € X we will be interested in the minimal sub-
sets of players who can force the game to be absorbed with positive proba-
bility. In other words sets L = I and vectors of actions a € A* such that
w(x~ L, a®) > 0, but w(x~L',a") = 0 for every proper subset L’ of L.

Definition 4.3. Let x € X be a non-absorbing profile. An exit (w.r.t. x) is a vector
a e A" such that () @ < L = I, (i) w(x L, a") > 0, and (i) w(xL",a*") = 0
for every proper subset L' of L.

If L = {i}, a singleton, denote the exit simply by a’, and call it a unilateral exit
of player i. If |L| > 2 the exit is a joint exit. Denote by E(x) the set of all exits
w.r.t. x.

4.2. Signalling

Since players do not have an explicit signalling device, they rely on their strat-
egy choices to signal information. To construct an equilibrium where players
will signal to each other one must ensure that no player has the incentive to
deviate during a signalling phase.

Definition 4.4. Let x € X be a non-absorbing profile. Player i€ I is a signaller
w.r.t. x if either (i) |supp(x')| =2, or (ii) there is a'¢ supp(x') such that
w(x",a")=0

We claim that if i is a signaller w.r.t. x then for every finite message set M
and every ¢ > 0 there exists a vector of strategies of player i, ' = (d,,),,c 1> @
positive integer ny and a partition 2 = (Py,),, ., of Hy, such that

* |lal,(h) — x'||, < & for every finite history / with length at most ry and every
meM.
* Peigi (Pn) > 1 — ¢ foreveryme M.
« w(x~',a! (h)) = 0 for every finite history / with length at most n.
Thus, the players can associate with each message a unique set of non-
absorbing histories. If the realized history at stage ng is h € H,,, and if P, is
the unique element in Z that contains /4, all players understand that message
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m was sent. The first condition is needed to make deviations during the sig-
nalling phase non-profitable. The second condition ensures that with high
probability m was the message the signaller intended to transmit. The third
condition ensures that if all players follow the signalling mechanism, absorp-
tion does not occur during the signalling phase.

To prove the claim, fix an ¢ > 0. Choose n; > 1/¢* and ny = |M|n;.

If (i) in Definition 4.4 holds, let y' € X' such that ¢/2 < ||x’ — /|| < ¢ and
supp(x’) = supp(y’). If (i) in Definition 4.4 holds, let y’ = (1 —)x’ +%a’.
Define g/, as follows. At all stages (m — 1)n; <j < mn, play »’, and at all
other stages play x’.*

The definition of P,, is as follows. P,, contains all histories / such that the
average of the realized play of player i at stages (m — L)ny,...,mn; — 1 is &/4-
close to y’, and for every I # m, the average of the realized play of player i
at stages (I — D)ny,...,Iny — 1 is ¢/4-close to x. If ny is sufficiently large the
second condition holds. The histories that are not in any P,, have low proba-
bility under every a,,, hence can be included in any of the sets in the partition.

Note that o}, depends on the message set M, as well as on x’ and &. M, x'
and ¢ also determine the number of periods nj required to transmit a message.
From now on, whenever we specify in a profile that a signaller i sends a mes-
sage m, we mean that player i plays for ny stages the strategy o/, and any
other player j # i plays the mixed action x/. It will be clear from the context
which mixed action profile x is to be used.

During the signalling period, players who are not signallers may deviate in
two ways. Either they can alter the frequency with which they play actions in
supp(x?), or they can play actions outside supp(x’). The second type of devi-
ation is detected immediately and can be punished with the min-max value. If
x is individually rational for the expected payoff of the players conditioned on
the message sent, this type of deviation can be deterred. The first type of de-
viation does not change the message that is sent, since 2 depends only on the
actions of the signaller.

We conclude this section with a definition of weak-signallers:

Definition 4.5. Let x be a non-absorbing profile that admits one signaller iy. A
player iy # iy is a weak-signaller w.r.t. x if he is not a signaller, and there exist
a" € A" and a™ ¢ supp(x™?) such that w(x " a") = w(x "2 a",a”) = 0.

Since i, is not a signaller w.r.t. x, w(x™2, a) > 0.

A weak-signaller cannot transmit information, since he is not a signaller.
However, as we show later, with the help of the signaller he can transmit in-
formation.

4.3. Classification of non-absorbing profiles

Here we divide non-absorbing stationary profiles into four groups, according
to the way information can be transmitted.

2 Lotteries made at each stage are independent of the outcome of previous lotteries.

3 In Example 3 we used a different mechanism for signalling: Player 1 had an action a' ¢ supp(x')
such that w(x~!,a') = 0, and he played that action at most once during some pre-specified time
interval to transmit information. Since we do not know how to replicate this construction if (i) in
Definition 4.4 is satisfied, we chose the present construction.
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Definition 4.6. A non-absorbing profile x is isolated if it admits no signallers. It
is semi-isolated if it admits exactly one signaller, but no weak signallers. It is
weak if it admits exactly one signaller and at least one weak signaller.

No appellation is assigned to non-absorbing profiles that admit at least two
signallers. We refer to isolated profiles also as isolated actions, to emphasize
that they are pure action combinations. If x is semi-isolated, and if player i is
the unique signaller it admits, we say that i is the signaller at x.

For example, consider the following two-player absorbing games where
each player has 2 actions, and only the absorbing structure is given (an aster-
isked entry means that the probability of absorption is positive, and a non-
asterisked entry means that the probability of absorption is 0):

Game 1 Game 2 Game 3
L R L R L R
T * T T
B * | % B * | % B *

In game 1, (7, L) is an isolated profile. In game 2, any convex combina-
tion of (7, L) and (7, R) is semi-isolated. In game 3, (7, L) and (B, R) are
weak, as is any convex combination of (7, L) and (7, R) which gives posi-
tive probability to (7', L), and any convex combination of (7, R) and (B, R)
which gives positive probability to (B, R). The profile (7', R) admits two sig-
nallers.

It is easy to see that the support of any isolated action is disjoint from the
support of any semi-isolated or weak profile, and that the support of any semi-
isolated profile is disjoint from the support of any weak profile.

If x and y are semi-isolated, then either supp(x) and supp(y) are disjoint,
or they have the same signaller, and any convex combination fx 4+ (1 — )y is
also semi-isolated. In particular, there are disjoint sets By, ..., Bx that form the
maximal supports of semi-isolated profiles: the support of any semi-isolated
profile is contained in some By, and for each k there is some semi-isolated
profile whose support is Bx. We call each set B; a maximal semi-isolated set.
In game 2, K =1 and B, = {(T,L),(T,R)}.

If x is non-absorbing and E(x) contains a joint exit, then x admits at least
two signallers. If x is isolated, semi-isolated or weak, E(x) includes only uni-
lateral exits.

4.4. The punishment level

In this section we define the punishment level of player i at a mixed action
profile x. Roughly speaking, this is the lowest payoff players I'\{i} can inflict
on player i when everyone is supposed to follow mainly x.

For every non absorbing profile x, denote

= ma ‘(x" a"). 3
4 (X) a"eA"|w(x)§"‘a")>0u (x - ) ( )
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By convention, the maximum over an empty set is —oo. This is the best ab-
sorbing payoff player i can get if players 7\{i} play x~/. Let b(x) be an action
that maximizes the expression in (3). It is arbitrary if g (x) = —o0.

Note that b7(x) is independent of x’. Moreover, since the game is genenc
if x~' is a pure action then b’(x) is uniquely determined. Thus, if x is semi-
isolated with signaller i then b(x) is uniquely determined.

Define for every isolated action or semi-isolated profile x the punishment
level (by absorption) player j can inflict on player i by

u'(a™,b’/(a)) X = a is an isolated action
pj(x) = u'(x7,bI(x)) X is semi-isolated with signaller j
ming; .. u'(x7,d’) xis semi-isolated with signaller not j

If x is semi-isolated with signaller j, and there is no action d/ € A7 such that
w(x7,d’) >0, pi(x) = +o0.

In our constructlon on the equlhbrlum path, if a player uses a unilateral
exit, he uses an exit that maximizes his absorbing payoff. In particular, if x is
isolated, or semi-isolated with signaller j, the only unilateral exit player j may
use is b/(x). The definition of p;(x) captures the idea that if x is isolated, or
semi-isolated with signaller j, thien player j does not know the 1dent1ty of the
deviator, hence only the action b/(x) can be used for punishment. If x is semi-
isolated With signaller not j, then our mechanism will reveal the identity of the
deviator to j, hence j can choose the action that punishes the deviator the
most.

Define the punishment level (by absorption) of player i at x by

p'(x) = rjn;glp,( x). (4)

This definition captures the idea that one can choose (through an appropriate
definition of a correlation device) the player who punishes the deviator the
most.

Player i is punishable at x if p’(x) < g(x). In this case, let ji(x) be the
punisher of player i at x; that is, a player j that attains the minimum in the
right hand side of (4). Observe that since there are at least three players, and
since each player has at least two actions, p’(x) is always finite (for isolated
or semi-isolated x).

The next Lemma claims that for every maximal semi-isolated set B and
every i € I, the function p’ : A(By) — [0, 1] is quasi-concave.

Lemma 4.7. Let By be a maximal semi-isolated set, and let i be the signaller at
By.. Then the function p' : A(By) — [0, 1] is quasi-concave.

Proof: Since the minimum of quasi-concave functions is quasi-concave, it is
sufficient to prove that for every j # i and every d’ ¢ supp(x/), the function
f: A(Bi) — [0,1] defined by f(x) = u'(x7,d’) is quasi-concave. Since the
ratio of two linear functions is quasi-concave, the result follows. ]

Corollary 4.8. Let By be a maximal semi-isolated set, and let i be the signaller at
By.. There exists a concave function p' : X' — [0, 1] that satisfies: (i) p'(x) = v’
when x € A(By) and p'(x) > v', and (ii) p'(x) < v’ otherwise.
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Proof: Let C = {xe4(B)|p'(x) >v'}. By Lemma 4.7 the function p' is

quasi-concave, hence C is convex. Since payoffs are non negative, the functlon
pi(x) =v" x (1 —d(x,C)), where d(x, C) is the Euclidean distance between x
and C, satisfies the requirements. [ ]

Our next goal is to combine the punishment level and the daily payoff
function to a single continuous concave function.

Lemma 4.9. For every i €I there exists a continuous function X —[0,1]
that is concave in x' for every fixed x™' € X', and that satisfies:

P (x) x is isolated
P (x) x is semi-isolated with signaller not i

F(x) = . . o . (5)

pi(x) x is semi-isolated with signaller i
rnrn{ i(x),v"}  x is weak or admits two signallers

Proof: Fix a player i € I. Let By = A be the set of all isolated actions, and
Bg.1 = A be the set of all non absorbing action profiles that are neither
isolated nor contained in any maximal semi-isolated set. For every k =
0,1,...,K+1, let B, be the projection of By on A~ ":

B'={a'ed|({a"} x A" n By # I}

Define B, = B;' x A'. Observe that the sets B/, k =0,1,...,K + 1 are dis-
joint, and therefore soare B, k=0,1,... ., K+ 1.

We first define the function 7 only for mixed action profiles x such that
supp(x) € By, for some k. We then extend 7' to all X.

Let x be a mixed action profile such that supp(x) = By, for some k =
0,1,...,K + 1. Define

pi(xi,ph k=0,(x",y") e B

pi(x7% yh) 1<k <K,(x" y)eB,
Fi(x) = and i is not the signaller at By (6)
pi(x) 1 <k < K,xe€ By,iis the signaller at By

min{r’(x),v'} k=K+1,x€B,.

Observe that (6) agrees with (5) for every mixed action profile x such that

supp(x U f0 Bk, and that for every k and every fixed xe A(B"), the
functron F(x~7,x") is concave in x'.

We now extend 7 to X. Forevery xe X andevery k =0,1,..., K+ 1, let
mi : X — A(By,) be the projection function:

me(x)]a) = Va € By,

The projection is defined arbitrarily if x[B;] =0. Note that since B; =
B x A, x[B;] = x"'[B;']. Note also that 7}(m(x)) is already defined for
every x such that x[B;] > 0.
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Fix 6 €(0,1/2). Since the sets By, k=0,1,...,K + 1, are disjoint, and
since & < 1/2, if x~'[B;/] >0 and x ’[ 71 > 0 then k = I. Define for every
xeX

K+1 vi[B _
=3 i B L),

Observe that at most one term in this summation is non zero.
The extended function # is a sum of finitely many contmuous functions,
hence continuous, and it clearly agrees with (5) on A (By). For every

fixed x' e X, i }>l_5w

5 is independent of x', hence 7/(x7", x")
is concave in x'.

4.5. A classification result

For every x € X and every probability distribution u € 4(E(x)) we define the
expected absorbing payoff given by u to be

W)= 3 ettt bt [ S sttt at)
a eE >v)

aleE(x)
Recall that if E(x) contains joint exits then x admits two signallers.

Proposition 4.10. For every absorbing game there is a mixed action profile
x € X and a probability distribution y € A(E(x)) that satisfy one of the follow-
ing conditions.

1. x is absorbing, x is individually rational for u(x), and u'(x) = u'(x™", a’) for
every player i and every action a' € supp(x') such that w(x~' a’) > 0.

2. x is non absorbing, and x is individually rational for r(x).

3. x is non absorbing, supp(u) contains a single exit, which is unilateral, and x
is individually rational for u(p).

4. (a) x is non absorbing, (b) x is individually rational for u(u), (c) for every
player i, if a' € supp(u), then u'(x~',a') = g'(x) > v', and one of the fol-
lowing conditions holds:

d) (i) x is isolated, and (ii) for every player i € I, u[E(x) n A'] > 0 implies
that i is a punishable player at x.
d’) (i) x is semi-isolated with signaller iy, and (ii) for every player i # iy,
UE(x) N A'] > 0 imply that i is a punishable player at x.
d") x is either weak, or admits at least two signallers.

Since the proof of this Proposition is involved, it is deferred to Section 9.

It is well known that if condition 1 (resp. 2, 3) holds, then u(x) (resp. r(x),
u(4)) is an equilibrium payoff. Thus, given Proposition 4.10, to prove Theo-
rem 3.3 it suffices to show that if 4 holds, the game admits a correlated equi-
librium payoff. Moreover, we will see that in this case, u(u) is a correlated
equilibrium payoff.
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In the next section we sketch the construction of equilibrium payoffs in the
first three cases. In the following three sections we show how to construct a
correlated equilibrium payoff if the three cases (4.d), (4.d"), (4.d") that appear
in condition 4 Proposition 4.10 hold.

5. Cases 1, 2 and 3

If either one of the first three cases of Proposition 4.10 hold, an equilibrium
payoff exists. We will construct for each of the cases an e-equilibrium profile;
namely, a correlated e-equilibrium with a trivial correlation device that sends
no messages. The construction is known and standard, and the interested
reader is referred to Vrieze and Thuijsman (1989), Solan (1999) or Vieille
(2000b) for more details.

Assume that the conditions of Case 1 are satisfied. The players play the
stationary profile x, and monitor their opponents for deviations. If the players
follow the stationary profile x the expected payoff is u(x). There are deviations
of two types: (i) player i may play an action not in supp(x?), and (i) player i
may alter the frequency in which he plays actions in supp(x’). Deviations of
the first type are detected immediately, and can be punished at the min-max
level. Since x is individually rational for u(x), such deviations are not profit-
able. Deviations of the second type cannot be detected immediately, but since
u'(x) = u'(x',a’) whenever w(x~',a’) > 0 and a' € supp(x’), those deviations
are not profitable as well. Player i may nevertheless profit if there exists y’ € X'
such that (a) supp(y’) = supp(x?), (b) w(x~", ") =0, and (c) ri(x7, y’) >
u’(x). Indeed, instead of playing the mixed action x' at each stage, he plays
the mixed action y’. To deter this type of deviations, players should verify at
each stage n that the distribution of the realized actions of each player i up to
stage n is approximately x'. The first player to fail this test, is punished at his
min-max level.

Assume that the conditions of Case 2 are satisfied. The players play as in
Case 1 the stationary profile x, and monitor their opponents for deviations. If
the players follow the stationary profile x the expected payoff is r(x). The two
types of deviations mentioned for Case 1 apply here too, and they can be de-
terred as above.

Assume that the conditions of Case 3 are satisfied. Let a’ be the
unique unilateral exit in supp(u). The players play the stationary profile
(x~1, (1 — n)x" + na'), where > 0 is sufficiently small, while monitoring their
opponents for deviations. If the players follow this profile the game will be
eventually absorbed, and the expected average payoff is u(u). Deviations are
deterred as in the previous two cases.*

6. Case 4.d: Isolated actions
In this section we consider case 4.d of Proposition 4.10. Thus, we assume that

X = a is isolated.

4 Actually, u(u) is an equilibrium payoff even when the unique exit in supp(u) is a joint exit. As
this case is covered by case 4.d”, we do not solve it here.
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Recall that b(a) is the unique action of player i that maximizes the ex-
pression u'(a~',d") over d' # a', that player i is punishable at a if g'(a) =
u'(a',b(a)) = min;,;u’(a/,b/(a)) = p'(a), and that player ji;(a) is the pun-
isher of 7 at a.

The next lemma follows from Solan and Vohra (2001, section 4.2). Since
the game is generic, this Lemma resolves case 4.d.

Lemma 6.1. If there is a probability distribution v e A(I) that satisfies (i)
v[i] > 0 implies that i is punishable at a, and (ii) >, _,; v[ilu/(a™',b(a)) = g’ (a)
for every j € I, then the game admits a correlated equilibrium payoff.

Sketch of Proof: Fix &> 0. Assume first that w(a=' b'(a)) =1 for every
player i.
Define the following mechanism, where M € N is sufficiently large.

A quitter i is chosen according to v.

Player i receives a positive integer d, uniformly distributed in {1,2,..., M}.

. The punisher of 7 at @, player j = j;(a) receives the positive integer M + d’,
where d’ is uniformly distributed in {1,2,..., M}.

4. Each other player i’ # i, j receives the positive integer M +d’ + 1.

w =

Define now the following strategy o’ for each player i:

« If you received the signal ¢ (which is a positive integer), play a’ in all stages
but stage ¢, in which you play b'(a).

It is easy to check that if the players follow the strategy profile ¢ = (")
then the expected payoffis >, _; v[iju(a™,b'(a)).

We now verify that if M is sufficiently large, no player can gain too much
by deviating.

First, if M is sufficiently large, the probability a player correctly guesses d
(if he is not i) or d’ (if he is i) is low. Since player i is punishable, he cannot
profit to much by deviating.

Second, if M is sufficiently large, then, with high probability, no player
j # i knows whether he is the punisher or not. Therefore, if a player j # i
plays some action b/ # a’ before stage d, js expected payoff is

w(a”, b)) <u/(a”,b/(a) < g’(a) < Zv[i]u-/(a_i,bi(a)).

iel

In particular, no player j # i can gain too much by deviating.

If wi(a™',b(a)) is strictly less than 1, even if the ‘designated quitter’ plays
the action b'(a) at stage d the game can continue. Once he plays (), his
identity is revealed to everyone. Since some players may get a low payof if the
game is actually terminated by the designated quitter, a new designated quit-
ter must be chosen. As signals are sent only before start of play, this player
needs to know in advance that, if the game is not terminated by the first
quitter, he should do the job.

Thus, in this case the correlation device chooses an infinite sequence of
quitters and punishers, which are chosen independently according to the pro-
cedure explained above, so that every player receives an infinite sequence of
positive integers.
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The players play in rounds; at round k, if the game was not already ab-
sorbed, the players play as explained above using the kth signal from the in-
finite sequence.

If some player i plays the action b’(a) in one of the first M stages of the
round, everyone treat him as if he was the designated quitter, and continue to
the next round. Note that if i is not the kth designated quitter, only the kth
designated quitter knows of i’s deviation, but he has no way to transmit this
information to the other players.>

If no player i played the action b’(a) in the first M stages of the round, the
identity of the punisher j is revealed at the punishment stage. From that stage
on, the punisher plays (1 —#n)a’ + b/ (a), where 5 > 0 is sufficiently small,
while all other players play a /. The punisher punishes with small probability
at every stage, to mask the punishment stage.

One can verify that if 7 is small compared to min;cy w(a™*,b%(a)) > 0, this
mechanism is a correlated ¢-equilibrium. [ |

7. Case 4.d": Semi-isolated profiles

In this section we consider case 4.d" of Proposition 4.10, and prove that u(u) is
a correlated equilibrium payoff.

Since x is semi-isolated, u is supported by unilateral exits. Let ¢ > 0 be
sufficiently small, and let iy be the signaller at x.

We define the following mechanism, that is performed in rounds, and de-
pends on the parameters 7 € (0, 1), K, K> € N.

Coordination phase

1. The correlation device chooses for every # € N an element Y; € {0} U E(x),
where P(Y, =0) =1 —# and P(Y, = a') = yu[a’]. Define for every t € N

L0 Yi=0
"Tli Y,edl

2. For every ¢t € N and every a' € E(x), the device chooses an integer k,(a’) €

{1,2,..., K>} according to the uniform distribution.

Each player i € I receives, for every ¢ such that i, = i, both Y, and k,(Y,).

Each player i € I such that i # i, receives {k,(a’),j # i, € N}.

For every ¢t € N the device chooses a verification key v, € {1,2,..., K>},

and an encryption key ¢, € {1,2,...,|I|} according to the uniform distri-

bution.

6. The signaller iy receives the sequence {¢;, # € N}, and, for every ¢ such that
i; # Iy, he receives v, as well.

7. Each player i # iy receives {v;,# € N}, and {e, + i; mod |I|, 7 € N}.

8. All choices of the device are done independently.

whs W

If i, # 0 then player i, has to use the exit Y, at the ¢th round. If i; = 0, no
player will use any unilateral exit.

5 At the cost of a more complicated correlation device one can ensure that this type of deviation is
not profitable. For more details, see the construction in section 7.
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The mechanism proceeds in rounds. Each round consists of two phases, a
quitting phase, which lasts for K, stages, and a revelation phase. We now ex-
plain the structure of round .

Quitting Phase

9. For K, stages each player i # i, plays x'.
10. If i, # 0, player i, chooses a stage to € {k:(Y;), k:/(Y; + 1),... k(Y + K1)}
according to the uniform distribution. He plays Y; at stage #, of the round,
and x" at all other stages.

If this mechanism is followed then the expected payoff if ¥, # 0 is u(y). If 7 is
sufficiently small, the expected payoff of every player j # i along the round,
given his information, is approximately u(u).

There are four types of deviations possible from this procedure. (i) Player i,
may play an action a’ # Y,. (ii) Player i, may not play the action Y at all. (iii)
Player i/, may play (at least) twice the action Y;. (iv) Player i # i, may play
some action a'.

Let us see which of those deviations can be detected by the players. Since
player i, does not know k,(a’) for a # Y,, while players i # i, do know it,
the chances that player i, can correctly guess k,(a) are small, provided K, is
much large than K;. Deviation (i) can therefore be detected with high proba-
bility. For the same reason, deviation (iv) can be detected with high proba-
bility. Deviation (iii) can be detected once player i, plays Y; for the second
time. Since x is individually rational for u(u), these three types of deviations
are not profitable, provided a deviator is punished by his min-max level upon
deviation.

To deter deviation (ii), the identity of i, should be revealed, so that he can
be punished. If no player used any unilateral exits in the first K, stages of
round ¢, a revelation phase takes place.

Revelation + Punishment phase
11. The signaller iy publicly transmits v, and e,.

By transmitting v,, the signaller iy proves that he is not i;; if K5 is sufficiently
large than the chance that he can correctly guess v, is low. After the revelation
phase, all players but player iy know the identity of i, (unless iy = i,, in which
case iy is also aware of that). If i, is the deviator, he can be punished at his
min-max level. If i, # iy and the punisher of i; is j # iy, then player j has to
punish .

12. If the punisher j of i, is not i, for 1/n? stages player | plays
(1 —n)x/ +nd’, where d/ € A/ is the action that minimizes u (x I.al)
among all actions @’ such that w(x~,a’) > 0 and n is sufficiently small In
those stages, player iy plays x%, and every player j' # j, iy, plays x/'.

This ends the description of round ¢.

% Whenever we refer to a non-integer number s of stages, it should be understood as the smallest
integer larger than s.
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Absorption need not occur during the last 1/&> stages of the round for
three reasons: (i) Player i, was supposed to be punished, but by the luck of the
draw, player j did not punish him. This event occurs with low probability,
provided # is sufficiently small. (ii) , = 0, and no player was supposed to be
punished. (iii) Player iy is the punisher of player i,.

In the first two cases the players continue to the next round. However, if i
is the punisher of i;, then iy should play his punishing action. Recall that the
punishing action of iy is 5 (x), so that, if all other players never use a unilat-
eral exit, iy will eventually play 5% (x), thereby punishing i,, without knowing
who i, is. Thus, if i is the punisher of i,, in all subsequent rounds each player
Jj' # iy stops following the above procedure, and plays the mixed action x/".

The only complication that may arise is if i is the punisher of #,, but
ulb™(x)] = 0. Observe that if the players follow the above mechanism then
absorption eventually occurs, and the expected payoff is u(x). Thus, if for
1/5? subsequent rounds no player has used any exit in E(x), player iy under-
stands that he is the punisher, and plays at every subsequent stage the mixed
action (1 —77)x + nb™(x).”

It is straightforward to verify that no player can profit too much by devi-
ating, provided # is chosen sufficiently small and K; and K, sufficiently large.

8. Case 4.d”: Other non-absorbing profiles

In this section we deal with weak profiles and non-absorbing profiles that ad-
mit at least two signallers. In these cases the identity of the chosen one can be
revealed to every player, so that he can be punished with his min-max level,
rather than by single punishments. We will prove that u(u) is a correlated
equilibrium payoff.

8.1. x admits at least two signallers

In this section we assume that x admits at least two signallers. In particular,
E(x) may contain joint exits.

It is well known (see, e.g. Vieille (2000b) or Solan (1999)) that joint exits
can be controlled by the players. To control unilateral exits the device chooses
whether any player should use a unilateral exit, and if so who it is. The sig-
nallers will then reveal the identity of the chosen player. Since there are at
least two signallers, the identity is revealed to everyone, and if the chosen
player does not use a unilateral exit, he can be punished. If one of the signal-
lers misreports, the report of the other signaller is still consistent with the re-
alized play. So such a deviation can be detected by the players.

Our construction here is similar to the one presented in Case 4.d’. We de-
scribe here only the relevant changes.

Let i} and i, be two distinct signallers. The coordination phase is similar to
that presented in Case 4.d’, with the following exception. The device chooses a
verification key and an encryption key independently for the two signallers at

7 It can be shown that if u[h™(x)] = 0 then there is a player j # iy who can punish i,, so that this
case essentially need not arise.
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every stage. The verification and encryption keys are handled in an analogous
way to that in Case 4.d".

Let 6 € (0,¢) be sufficiently small. For every a’ e supp(u) define d(at) =
(Oulat] fw(x—E,at))" M.

Define a strategy o' in rounds. Recall that K; and K, are two sufficiently
large integers. The first K, stages of the round are devoted to unilateral exits
in E(x) nsupp(u), as done in Case 4.d". Let E’ be the set of all joint exits in
E(x) nsupp(u). Each one of the following |E’| stages corresponds to one joint
exit a in E’. At the stage that corresponds to the joint exit a’ each player
i ¢ L plays x', and each player i € L plays (1 —&(a’))x’ + d(a*)a’.

In the revelation phase both signallers execute step 11 as described in Case
4.4’

If the players follow o = (¢') then the game will eventually be absorbed.
Moreover, provided that J is sufficiently small, there exists # € (0, ) such that
the probability that the game is absorbed through the exit akL" IS approxi-
mately ,u[a,fk], thereby the expected payoff for the players is approximately
u(p).

There are several ways players may deviate from this procedure. (i) A
player could play an action that has probability 0 under this procedure. Such
a deviation is detected immediately, and can be punished at the min-max
level. By condition 4.b of Proposition 4.10 such a deviation is not profitable.
(ii) Player i may play an action a’ € supp(u) when he is not supposed to, or
not play it when he is supposed to. If i deviates in this way, and the game is
not terminated, his deviation is detected after the revelation phase, and can be
punished at the min-max level. As in (i), it is not profitable. (iii) Player i may
alter the frequency with which he plays different actions in supp(x’), or with
which he perturbs to ] in stages that correspond to a joint exit. To deter this
kind of deviations, we add standard statistical tests (see, e.g., Solan (1999) or
Vieille (2000b)). (iv) A signaller, say i1, can signal an incorrect signal at some
round. Since he does not know v/, for a/ # Y,, if he sends an incorrect verifi-
cation key, this key does not correspond to the key the other players possess,
and his deviation can be identified. If he sends an incorrect encryption key,
trying to frame an innocent player, the report of the other signaller coincides
with the realized play. Thus this deviation is detectable as well.

8.2. xis weak

In this section we assume that x is weak; that is, x admits one signaller iy and
at least one weak signaller 7;. Since x is weak, E(x) contains only unilateral
exits.

We will see that the identity of the designated quitter can be revealed to
everyone. The construction is similar to the construction presented in section
7. The signaller iy can reveal the identity of the designated quitter to everyone.
However, iy will be ignorant of the identity of the designated quitter. We
then append a phase in which the weak signaller reveals the identity of the
designated quitter to iy. Afterwards, the designated quitter is punished by
his min-max value. Here we will explain how the weak signaller 7}, with the
help of the signaller, reveals the identity of the designated quitter to the sig-
naller.

Fix ¢ > 0. Let a® € A and a™ ¢ supp(x™) be two actions that satisfy
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w(x™, a®) = w(x"" a a") = 0.

The device chooses |I| different numbers 7 <1, <--- <1 in the range
{1,..., T} with the uniform distribution,® where T is sufficiently large so that
P(1;) < T —1/e) > 1 — &. To each member of {iy, i1 } who is not the designated
quitter, the device sends these numbers.

Next, the revelation phase is modified. After player iy sends the verification
key and the encryption key, player iy either reveals that he is the designated
quitter, or reveals the identity of the designated quitter i to every player j # i.
Player i; now has to reveal the identity of the designated quitter to iy, assum-
ing iy is not the deviator.

For simplicity, number the following T stages by {1,2,...,T}. In those
stages the players play as follows.

« Each player j # iy, i plays x/.

« If iy is not the designated quitter, he plays a® at every stage t;, k =
1,2,...,|I|. At all other stages he plays x".

- If i is not the designated quitter, he plays a’ at stage #;, and x™ at all other
stages.

Since w(x™,a") = w(x~™ a® a") = 0, if the players follow the revelation
phase the game is not absorbed.

If 7; is not the designated quitter, he knows 7y, . .., 7 and therefore reveals
the identity of the designated quitter to #y. If, on the other hand, #; is the des-
ignated quitter, he does not know 11,..., 7. If he ever plays the action a",
with high probability it will be in a stage different than ¢,...,7;, and his
identity as the designated quitter be revealed. If he never plays the action a'!,
he is declared the deviator.

It is easy to verify that no player can profit too much by any type of devi-
ation.

9. Proof of Proposition 4.10

The goal of this section is to prove Proposition 4.10. Our approach is similar
in spirit to that of Solan (1999). We first introduce an auxiliary game that is
‘close’ in some sense to the original absorbing game. By studying the asymp-
totic behavior of a sequence of discounted equilibria of the auxiliary game, we
establish the existence of a mixed action x and a probability distribution over
E(x) that satisfy one of the sufficient conditions listed in Proposition 4.10.

9.1. Definition of an auxiliary game
In Solan (1999) an auxiliary game is defined by changing the non-absorbing

payoff of the original game. For every discount factor 4 € (0,1) the auxiliary
game is shown to admit a stationary A-discounted equilibrium x,. Moreover,

8 That is, every increasing sequence of || numbers in this range has the same probability to be
chosen.
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the limit of the A-discounted min-max values of the auxiliary game is equal to
the min-max value of the original game. It is then proved that if there is no
uniform g-equilibrium where the players play the limit stationary strategy
xo = lim;_,o x; and statistically check for deviations of their opponents, then
there exists a probability distribution x over the exits E(xg) such that x is
individually rational for u(u). We cannot apply this result directly to our case
since we require the u to satisfy an additional punishability condition. Never-
theless it is still possible to execute something similar.

For every discount factor A € (0, 1) we define an auxiliary discounted game

G, (7). The payoff to player i in G,(7) associated with a strategy profile o is:

=E, (/L f:(l — ﬂ.)nil(lngﬂii(xn) + 1n>9”i(x9))>
n=1

where 7 is given by Lemma 4.9, x, is the mixed-action prescribed by ¢ at
stage n, and 6 is the stage of absorption. That is, the absorbing game with
non-absorbing payoff 7, but at stage n if the game is not yet absorbed, instead
of getting the payoff r(a,) the players get the payoff 7(x,).

Lemma 9.1. The game G)(¥) admits a stationary equilibrium.

Proof: By Lemma 4.9, for every player i € I the function 7' is continuous and
concave in x' for every fixed x " € X .

It is well known (see, e.g., Vrieze and Thuijsman (1989) or Solan (1999))
that for every player i, every discount factor A€ (0,1) and every stationary
profile x

(7)

Since the denominator is strictly positive, 7! is continuous.

We now show that for every player iel and every fixed x e X,
the function 7(x ™/, x) : X " — [0, 1] is quasi-concave; that is, for every c & R
the set {x'eX'|7{(x",x’) >c} is convex. Let x~ e X~ oxtyle X!
pel0,1] and ceR be fixed. Denote x—(x ixh), y=(x" ,y) and z=
px+ (1 —p)y. We assume that 3:(x),7:(y) > ¢, and prove that 7; (z)>c.
By assumption, A7’ (x) > ¢(A+ (1 — )w(x)) — (1 — Hh)w(x)u'(x) and AF'(y) >
c(A+ (1 =Dw(y) — (1 —2)w(p)u'(y). By the multi-linearity of w and wu,
and the concavity of 7/(x™',-), AF'(z) > c(A+ (1 = A)w(z)) — (1 — HYw(z)u'(z).
By (7), 71(2) > c.

By Theorem 4.4.1 in Mertens, Sorin and Zamir (1994), the game G, (7)
admits a stationary equilibrium, as desired. |

By Lemma 9.1 for every discount factor A the game G, (¥) admits a sta-
tionary equilibrium x;. 7,(x;) is the corresponding discounted equilibrium
payoff. By taking a subsequence, we assume w.l.o.g. that the limits xy =
lim,_ x, and j, = lim,_7,(x;) exist, and that for every i € I, the support,
supp(x}), is independent of 4. In the sequel we will assume using the same
reasoning that other limits we take exist.
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Recall that for every discount factor A € (0,1) and every profile x
7(x) = a(x)F(x) + (1 — 2 (x))u(x),

where a;(x) = A/(A + (1 = )w(x)). We define «p = lim;_o o, (x;).

Note that if y is an absorbing profile and (y;) are stationary profiles such
that y; — y then lim; o o;(y;) = 0 and lim; o 7,(y:) = u(y).

For every exit a’ € E(x¢) define

xla*) =TT «ila’) T *ilx)-
ieL i¢L

This is the per-stage probability that the game is absorbed through a’ if the
players play x,. x; induces a probability distribution over E(xy) as follows:

wlat] = w(xit, ab)lat / S gt bh b,
bLeE(xo)

This is the conditional probability that the game is absorbed by the exit a’
when the players follow x;, given that an exit in E(x) is used.
We define for every a’ € E(xo)

tola®] = }12(1) wlat].

Then g, is a probability distribution over E(xp).
One can verify that (Solan 1999, Lemma 6.6)

lim u'(v) = 3 latlu'(xt ab) = ().

o al e E(x)
It follows that
Yo = %oF(xo) + (1 — ao)u(pp). (8)

‘We first prove that if player i has some action «’ that is absorbing against
Xy, then his absorbing payoff by using a' cannot exceed 7.

Lemma 9.2. If a' € A’ satisfies w(x;",a’) > 0 then u'(x;",a’) < 7.
Proof: Since w(xy',a’) > 0 it follows that lim;_ o;(x;",a’) = 0. Therefore
o= liin% 7i(x;) = }lm0 710 a) = u'(xy', a). [ |

Lemma 9.3. Let i € I. If xg is either isolated or semi-isolated with signaller not
i, then 3y = p'(xo0). In particular, if ag < 0 then u'(uy) = 7.

Proof: We prove the result when xj is isolated. The proof when xj is semi-
isolated with signaller not i is similar.
By the definition of 7, #'(xo) = p'(xo). If op = 1, the result follows by (8).
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If a9 <1 then p, is supported by unilateral exits. By the definition of
the punishment level, u (xo’ ,b/(x0)) = p'(xo) for every j#i. Recall that
70 =1lim;_o 7 (x;) = lim;_¢ 4 (x;", x{). By (8), the right hand side is a convex

combination of #(xo) and u'(x,’,b/(xo)), j # i. The first claim follows. The
second claim now follows by (8). [ |

In the rest of the section we study the asymptotic properties of the sequence
(X2);0-

9.2. The limit of the discounted equilibrium payoffs
In the present section we compare various quantities to the min-max value.

Lemma 9.4. For every isolated action a and every player iel,
max{p‘(a),g'(a)} = v'.

Proof: Consider the following profile of players I\{i}:

1. Each player k € I\{i, ji(a)} plays a.
2. Player ji(a), the punisher of i at a, plays (1 —#5)a/@ 4 b/ (a), where
ne(0,1).

The best that player i can do against that profile is (up to #) max{p‘(a),g'(a)}.
Thus, players 7\ {i} can bound the payoff of i from above by max{p‘(a), g’(a)},
and therefore his min-max value cannot exceed that number. [ ]

A similar argument proves the following.

Lemma 9.5. For every semi-isolated profile x with signaller iy, and every player
i # iy, max{p'(x),g'(x)} =v".

Lemma 9.6. Let B = Xc; B' be the support of a maximal semi-isolated profile
with szgnaller io. Assume that g (x) < v for any semi-isolated x such that
supp(x) < B.° Denote by a™™ the unique action combination of I\{iy} in B.
Then

max  min{r®(a ", y"), p(a~", yP)} > v".
i e A(B0)

Before proving the Lemma, we define the max-min value, and recall a re-
sult due to Neyman (2002). The real number v’ is the max-min value of player
i if for every ¢ > 0 there exists a positive integer np € N and a strategy o' of

player i such that y! (67", 0") > v’ — ¢ for every profile ¢=' and every n > ny,
and for every strategy ' of player i there is a profile ¢~/ of players I\{i} such
that y! (o~ )>v—£foreveryn>n0

Neyman (2002) proves that in a two player zero-sum stochastic games with
finitely many states and actions, if each player is restricted to use strategies

° Recall that g®(x) depends only on x~, and is independent of x™.
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such that the mixed action chosen at every stage is in some fixed convex,
compact and semi-algebraic subset of the set of mixed actions, then the min-
max value and the max-min value coincide.

Proof: Let ¢ = max,, ¢ 4oy min{r(a", y*), p*(a=", y)}.

Fix d,% > 0 sufficiently small. Let G’ be a game similar to G, but (i) in G’
every player i # iy can only use strategies that at every stage choose the
action a’ with probability at least 1 — #, and (ii) for every action combination
b~ e A= if there are at least two distinct players j in I\{ip} such that
b/ # a’ then w(b=™ b®) =1 and u (b~ b") =2 for every b € A".'° That
is, if at least two players in I\{ip} play an action that differs from that in-
dicated by a~, the game is absorbed, and the absorbing payoff of player i is
high.

Let 4 be the max-min value of player iy in G’.

We will show that ¢ > @ > v™, thereby proving the result.

We first show that @ > v/,

By collapsing players I\{i} into a single player and using Neyman (2002),
the max-min value of player iy in G’, is equal to the min-max value of player i,
in G’, provided players I\{ip} can correlate their actions. In particular, there
exists a correlated profile T such that (i) at every stage, each T chooses a with
probability at least (1 — 17)‘”_1 > 1— ||, and (ii) for every strategy o of
player iy, the expected payoff of player iy under (g, 77) is at most 2 + 7 in
every sufficiently long game.

Since if at least two players j in I\{iy} play an action different than a/ the
game is absorbed, and the absorbing payoff is 2, which is strictly more than
4" + 7, there exists a profile 7 that satisfies (i) and (ii), and such that the
overall probability that at some stage more than one player j # iy plays an
action different than a/ is 0.

We now define a non-correlated profile T~ that approximates 77, For
every finite history A, every player i # iy and every d " a', define 7 (h)[d | =
0 (h)[a"0, dT; that is, player i plays d' with the same probability that
( —hio gt should have occurred according to 7%, We set 7/(h)[a'] =

S g BB = 1~ [T,

Observe that under 77 at every stage each action d’ # a/ is played with
probability at most |/|5. In particular, under 7 the overall probability that
at some stage at least two players j # iy play an action other than a/ is at
most #|1|21/1=1.

It follows that by playing 7% in G’ (though this profile is not permissible
in G’), players I\{ip} bound the payoff of iy from above by @ + Kz, where
K > 0 is some constant.

Since in G payoffs do not exceed the payoffs in G', by playing 7 in G
players I\{io} bound the payofl of iy from above by i + Kp. Since # is
arbitrary, 2 > v,

We now prove that ¢ > @%.

Let o be any strategy of player iy in G’, and define the process (x/), n
as the mixed action played by player i, at stage n. To simplify the proof,
we assume that ¢ never chooses actions that are not in B: for every
a' ¢ B and every mixed action x~® such that x[a’] > 1 — 5 for every i # i,

1% The absorbing payoff of players I\{iy} is irrelevant.
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w(x*"0 x©) >0 and, if # and J are sufficiently small, u®(x " x") <
g™ (x) +J < v < @, so that such actions can only reduce the expected payoff
of player i.

We will now define a strategy profile 7 such that the expected payoff
to player iy under (¢,77%) is below c¢. By the simplifying assumption, the
value of x is in A(B") a.s. By the definition of ¢, either r(a x) < ¢ or
pe(a™, x’O) < ¢ (or both).

If r"’( —io X’O) < ¢, each player i # iy plays a’.

If plo( ~in x’O) < ¢, denote by j the punisher of iy at x, and let d’/ # a’
satisfy u/(a ~in.J , X0 df) p(a~,x). Player j plays (1 —n)a’ + nd’, while
each player i # io, j plays a’.

Thus, under (¢%,77), at every stage, either the game is absorbed with
probability 0, and the non absorbing payoff is at most ¢, or the game is ab-
sorbed with probability bounded away from 0, and the expected absorbing
payoff is at most c.

It follows that the expected payoff of player iy under (¢, 77) is at most
¢+ 0 in every sufficiently long game, as desired. [ ]

Lemma 9.7. 5] > v’ for every player i€ I.

One way of proving the lemma would be to show that for every 4 € (0, 1)
the min-max value of player i in G;(F), vi(F), exists and lim;_.o v} H(F) = ol
This would yield a stronger result than needed. This approach is taken in
Solan (1999) where 7 was defined as min{r’,v'}, and it was proven that
lim_ v{(min{r,v}) = v". Since p’ is incomparable to v, we cannot invoke
Solan’s result to prove the Lemma.

Proof: Fix a player i € 1. In the sequel we use the fact that x, converge to a
limit xo, and that 5§ = lim;_o 7} (x;).

We have four cases, that correspond to isolated actions, semi-isolated ac-
tions with signaller 7, semi-isolated actions with a signaller that is not i, and a
case that deals with all other possibilities.

Assume that there exists ' € A’ such thata = (x;", a 3 a') is an isolated profile.
By Lemma 9.2, 7 > ¢'(a). Lemma 9.3 implies that ) > p’(a). The result fol-
lows by Lemma 9.4.

Assume that there exists a’ € A" such that (x;,a') is a semi-isolated profile
with 31gnaller which is not i. Similar arguments, using Lemma 9.5, show that
yi> .

’ Assume that there exists a’ € A such that x = (x;’,a') is a semi-isolated
profile with s1gnaller i. If g'(x) > v’ the result follows by Lemma 9.2. Assume
then that g'(x) < v'.

By Lemma 9.6 there is y' e A(B') such that pi(a”’, y’) > v, so that
Fi(a™", y") = v and u (a7, y',d’) > v’ for every j # i and every d’ # a’. In
particular, by (8),

o =lim 7(x;) > lim 74 (x;", »') > v
J—0 10

Last, assume that there is no action a’ e 4’ such that one of the first
three cases hold. If there exists an action a’ € A" such that w(xy’,a’) > 0 and
u'(xg',a’) > v’ the result follows by Lemma 9.2.
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Otherwise, by the definition of the min-max value, the set Di =
{a"e A" | w(x; " a') = 0 is not empty. For each j # i set D/ = supp(xo)

Fix #,0 > 0 sufficiently small. The functions 7 and r are continuous over
X. Moreover, 7= min{r,v} on D= Xjcs A(Df) Hence, if # is sufficiently
small, 7#/(x) > min{r/(x),v’} —J for every je I and every x € X such that
d(x, D) < 5. It follows from Solan (1999, Eq. (30)) that for every 4 sufficiently
small there e;xists x! esupp(Di) such that 7(x;’,x%) > v’ —2d. Therefore
70 > limy_o 7 (x;", x") > v’ — 24. Since J is arbltrary, the result follows. M

9.3. Asymptotic analysis

In the present section we prove that x, satisfies one of the conditions of Propo-
sition 4.10.

The following corollary follows easily from the definition of individual
rationality and Lemmas 9.7 and 9.2.

Corollary 9.8. x is individually rational for j,.
Lemma 9.9. If x is absorbing then condition 1 in Proposition 4.10 holds.

Proof: Since x is absorbing, J, = u(xp). By Corollary 9.8, x is individually
rational for 3, = u(xo).
By Lemma 9.2, for every playerie [,

wi(xo) = 3 xblalwlxg’ @ () w(on) < u(xo),

aled’
hence u'(x~',a") = u'(xo) whenever a' € supp(x}) with w(xy’,a’) > 0. ]

Lemma 9.10. If oy = 1 then either condition 2 or condition 3 of Proposition 4.10
hold.

Proof: Since oy = 1, 3, = F(xp) and X is non-absorbing. By Corollary 9.8, x
is individually rational for 7, = 7(xp). We have three cases:

1. xp = ais an isolated action.
2. X is a semi-isolated profile.
3. None of the first two cases hold.

Consider the last case first. We show that condition 2 of Proposition 4.10
holds.

By the definition of ', 75 = F(xo) = min{r'(xo), v’} < r'(xo) foreveryieI.
By Corollary 9.8 xy is individually rational for r(xy), as desired.

Assume now that xo = a is an isolated action. We show that condition 3
of Proposition 4.10 holds, with supp(u) = b/(a), for any j € I.

By the definition of 7 at isolated actions, by Corollary 9.8 and Lemma
9.2, pi(a) = F'(a) = 5§ = g'(a) for every i € I. But this implies that for every
j#i, u'(a”,b/(a)) = p'(a) > g'(a). By Lemma 9.4, u'(a™,b/(a)) > v' for
every i, j € I. The claim follows.



120 E. Solan, R. V. Vohra

Assume now that x( is a semi-isolated profile with signaller i;. We show
that condition 3 of Proposition 4.10 holds, with supp(u) = b/(a), for any
J # io.

By Lemma 9.2 and the definition of 7'(xo), ¢’(x0) < 74 = F (xo) p'(xo) <
u'(xy”,b/(xy)) for every i # iy and every j # i. By Lemma 9.5 p’(xy) > v’ for
every i # iy. For player iy we have, by Lemma 9.7, v < y’“ = F(xp), so that
by the definition of 7 (xp), o = i (x0) = v, Since 7 (xo) P (xp), it fol-
lows that p”(xo) > v®. This implies, by Lemma 9.2, that g"(x)) <7, =
v < p(xp) < u(x,’,b/(x0)) for each j # iy. As in the case of isolated ac-
tions, the claim follows. ]

Assume now that x( is non-absorbing, but oy < 1. We prove that condition
4 of Proposition 4.10 holds. Since oy < 1, x, is absorbing for every A suffi-
ciently small.

If player i has a unilateral exit ' that receives a positive probability under
o, then his absorbing payoff by using it is 7.

Lemma 9.11. If a’ € E(x)) and pyla’] > 0 then u'(xy',a') = 5{ > v

The lemma is proved in Solan (1999, proof of Theorem 4.5, Step 8). Note
thatif a’ € E(xo) then w(x;’,a’) > 0, and that by Lemma 9.2, u’(x;", a’) < .
Since the function 7 is not mu1t1 linear this lemma is not an immediate conse-
quence of Lemma 9.2 and (8).

Lemmas 9.11 and 9.2 imply that condition 4.c in Proposition 4.10 holds.

Lemma 9.12. If x, is non-absorbing and neither isolated nor semi-isolated, and
o < 1 then condition 4.b in Proposition 4.10 holds.

Proof: Since xy is neither isolated nor semi-isolated, it is either weak or admits
two signallers.
By Corollary 9.8 it is sufficient to show that u ( o) = Vo for every ie 1.
Since xo is neither isolated nor semi-isolated, #'(xp) < v’ < 7), and in par-
ticular (8) implies that u(z) > 7§ > v', as desired.

We now confine our attention to the case when xy = « is an isolated action,
or Xy is a semi-isolated action. Recall that in these cases E(xp) includes only
unilateral exits.

Lemma 9.13. If xo = a is an isolated action and o < 1 then conditions 4.b and
4.d.ii in Proposition 4.10 hold.

Proof: Condition 4.b holds by (8), Corollary 9.8 and Lemma 9.3.

Since E(x() contains only unilateral exits, and since the game is generic,
Lemma 9.11 implies that if b’ is a unilateral exit of player i w.r.t. a and
Uo[b'] > 0 then b' = b'(a). By Lemmas 9.11 and 9.3, if yy[b(a)] > 0 then i is
punishable. ]

Lemma 9.14. If x is a semi-isolated profile and o. < 1 then conditions 4.b and
4.d'.ii in Proposition 4.10 hold.

Proof: Let iy be the unique signaller at xo. The proof that condition 4.d"”
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holds, as well as the proof that u'(u) > 7} for i # iy, is similar to the proof
provided in Lemma 9.13. ' ‘

To see that u™(u) > 77, use (8), Lemma 9.7 and the fact that 7 (xo) < v".

[ |
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