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a b s t r a c t

It is known that the value function of a Markov decision process, as a function of the discount factor λ,
is the maximum of finitely many rational functions in λ. Moreover, each root of the denominators of the
rational functions either lies outside the unit ball in the complex plane, or is a unit rootwithmultiplicity 1.
We prove the converse of this result, namely, every function that is themaximumof finitelymany rational
functions in λ, satisfying the property that each root of the denominators of the rational functions either
lies outside the unit ball in the complex plane, or is a unit root with multiplicity 1, is the value function
of some Markov decision process. We thereby provide a characterization of the set of value functions of
Markov decision processes.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Markov decision processes (MDP for short) are a standard tool
for studying dynamic optimization problems. The discounted value
of such a problem is the maximal total discounted amount that
the decision maker can guarantee to himself. By Blackwell [1], the
function λ → vλ(s) that assigns the discounted value at the initial
state s to each discount factor λ is the maximum of finitely many
rational functions (with real coefficients). Standard arguments
show that the roots of the polynomial in the denominator of
these rational functions lie outside the unit ball in the complex
plane, or on the boundary of the unit ball, in which case they
have multiplicity 1. Using the theory of eigenvalues of stochastic
matrices one can show that the roots on the boundary of the unit
ball must be unit roots.

In this note we prove the converse result: every function λ →

vλ that is the maximum of finitely many rational functions such
that each root of the polynomials in the denominators either lies
outside the unit ball in the complex plane, or is a unit root with
multiplicity 1 is the value of some Markov decision process.

2. The model and the main theorem

Definition 1. A Markov decision process is a tuple (S, µ, A, r, q)
where
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• S is a nonempty finite set of states.
• µ ∈ ∆(S) is the distribution according to which the initial state

is chosen,where∆(X) is the set of probability distributions over
X , for every nonempty finite set X .

• A = (A(s))s∈S is the family of nonempty and finite sets of actions
available at each state s ∈ S. Denote SA := {(s, a) : s ∈ S, a ∈

A(s)}.
• r : SA → R is a payoff function.
• q : SA → ∆(S) is a transition function.

The process starts at an initial state s1 ∈ S, chosen according to
µ. It then evolves in discrete time: at every stage n ∈ N the process
is in a state sn ∈ S, the decisionmaker chooses an action an ∈ A(sn),
and a new state sn+1 is chosen according to q(· | sn, an).

A finite history is a sequence hn = (s1, a1, s2, a2, . . . , sn) ∈ H :=

∪
∞

k=0(SA)k ×S. A pure strategy is a function σ : H → ∪s∈S A(s) such
that σ(hn) ∈ A(sn) for every finite history hn = (s1, a1, . . . , sn),
and a behavior strategy is a function σ : H → ∪s∈S ∆(A(s)) such
that σ(hn) ∈ ∆(A(sn)) for every such finite history. In other words,
a behavior strategy σ assigns to every finite history a distribution
over the set of available actions, which we call a mixed action. The
set of behavior strategies is denotedB. A strategy is stationary if for
every finite history hn = (s1, a1, . . . , sn), the mixed action σ(hn) is
a function of sn and is independent of (s1, a1, . . . , an−1).

Every behavior strategy together with a prior distribution µ
over the state space induce a probability distribution Pµ,σ over
the space of infinite histories (SA)∞ (which is endowed with the
product σ -algebra). Expectation w.r.t. this probability distribution
is denoted Eµ,σ .
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For every discount factor λ ∈ [0, 1), the λ-discounted payoff is

γλ(µ, σ ) := Eµ,σ


∞
n=1

λn−1r(sn, an)


.

When µ is a probability measure that is concentrated on a single
state s we denote the λ-discounted payoff also by γ (s, σ ). The
λ-discounted value of the Markov decision process, with the prior
µ over the initial state is

vλ(µ) := sup
σ∈B

γλ(µ, σ ). (1)

A behavior strategy is λ-discounted optimal if it attains the
maximum in (1).

Denote by V the set of all functions λ → vλ(µ) that are the
value function of someMarkov decision process startingwith some
prior µ ∈ ∆(S). The goal of the present note is to characterize the
set V .

A Markov decision process is degenerate if |A(s)| = 1 for every
s ∈ S, that is, the decision maker makes no choices along the
process.WhenM is a degenerateMarkov decision process we omit
the reference to the action in the functions r and q. A degenerate
Markov decision process is thus a quadruple (S, µ, r, q), where S
is the state space, µ is a probability distribution over S, r : S → R,
and q(· | s) is a probability distribution over S for every state s ∈ S.

Denote by VD the set of all functions that are payoff functions
of some degenerateMarkov decision process and byMaxVD the set
of functions that are the maximum of a finite number of functions
in VD. By Blackwell [1] we have V = MaxVD.

Recall that a complex numberω ∈ C is a unit root if there exists
n ∈ N such that ωn

= 1.

Notation 1. (i) Denote by F the set of all rational functions P/Q
such that each root of Q is either (a) outside the unit ball, or (b) a
unit root with multiplicity 1.

(ii) Denote by MaxF the set of functions that are the maximum of a
finite number of functions in F .

The next proposition states that any function in V is the
maximum of a finite number of functions in F .

Proposition 1. VD ⊆ F , and consequently V ⊆ MaxF .

Proof. Fix a degenerateMDP. For every priorµ, and every discount
factor λ ∈ [0, 1), the vector (γλ(s1))s1∈S is the unique solution of a
system of |S| linear equations in λ:

γλ(s) = r(s) + λ

s′∈S

q(s′ | s)γλ(s′), ∀s ∈ S.

It follows that

γλ = (I − λQ)−1
· r,

where Q = (q(s′ | s))s,s′∈S . By Cramer’s rule, the function λ →

(I−λQ)−1 is a rational functionwhose denominator is det(I−λQ).
In particular, the roots of the denominator are the inverse of the
eigenvalues of Q. Since the denominator is independent of s, it is
also the denominator of γλ(µ) =


s∈S µ(s)γλ(s).

Denote the expected payoff at stage n by xn := Eµ[r(sn)], so that
γλ(µ) =


∞

n=1 xnλ
n−1. Since |xn| ≤ ∥r∥∞ := max(s,a)∈SA |r(s, a)|

for every n ∈ N, it follows that the denominator det(I − λQ) does
not have roots in the interior of the unit ball and that all its roots
that lie on the boundary of the unit ball have multiplicity 1. These
two observations hold since by the triangle inequality we have

|γλ(µ)| =

 ∞
n=1

xnλn−1

 ≤ ∥r∥∞

∞
n=1

|λ|
n−1

=
∥r∥∞

1 − |λ|
. (2)
If λ0 is a root of det(I − λQ) that lie in the interior of the unit ball,
then for the payoff function r ≡ 1 we would have that γλ0(µ) =

∞, which violates (2). Similarly, if λ0 is a root of det(I − λQ) with
multiplicity at least 2 that lies on the boundary of the unit ball, then
for the payoff function r ≡ 1 Eq. (2) is violated.

Moreover, by, Dmitriev and Dynkin [2] the roots that lie on the
boundary of the unit ball must be unit roots. �

The main result of this note is that the converse holds as well.

Theorem 1. VD ⊇ F , and consequently V = MaxF .

To avoid cumbersome notations we write f (λ) for the function
λ → f (λ). In particular, λf (λ)will denote the functionλ → λf (λ).

3. Characterizing the set VD

The following lemma lists several properties of the functions
implementable by degenerate Markov decision processes.

Lemma 1. For every f ∈ VD we have

(a) af (λ) ∈ VD for every a ∈ R.
(b) f (−λ) ∈ VD.
(c) λf (λ) ∈ VD.
(d) f (cλ) ∈ VD for every c ∈ [0, 1].
(e) f (λ) + g(λ) ∈ VD for every g ∈ VD.
(f) f (λn) ∈ VD for every n ∈ N.

Proof. Let Mf = (Sf , µf , rf , qf ) be a degenerate Markov decision
process whose value function is f .

To prove Part (a), we multiply all payoffs in Mf by a. Formally,
define a degenerate Markov decision process M ′

= (Sf , µf , r ′, qf )
that differs from M only in its payoff function: r ′(s) := arf (s) for
every s ∈ Sf . The reader can verify that the value function of M ′ is
af (λ).

To prove Part (b), multiply the payoff in even stages by −1.
Formally, letS be a copy of Sf ; for every state s ∈ Sf we denote
bys its copy in S. Define a degenerate Markov decision process
M ′

= (Sf ∪S, µf , r ′, q′)with initial distributionµf (whose support
is Sf ) that visits states inS in even stages and states in Sf in odd
stages as follows:

r ′(s) := rf (s), r ′(s) := −rf (s), ∀s ∈ Sf ,
q′(s′ | s) = q′(s′ |s) := qf (s′ | s), ∀s, s′ ∈ Sf ,
q′(s′ | s) = q′(s′ |s) := 0, ∀s, s′ ∈ Sf .

The reader can verify that the value function ofM ′ is f (−λ).
To prove part (c), add a state with payoff 0 from which the

transition probability to a state in Sf coincides with µ. Formally,
define a degenerate Markov decision process M ′

= (Sf ∪

{s∗}, µ′, r ′, q′) in which µ′ assigns probability 1 to s∗. r ′ coincides
with rf on Sf , while r ′(s∗) := 0. Finally, q′ coincides with qf on Sf ,
while at the state s∗, q′(· | s∗) := µ. The value function of M ′ is
λf (λ).

A state s ∈ S is absorbing if q(s | s, a) = 1 for every action a ∈

A(s). To prove part (d), consider the transition function that at ev-
ery stage, moves to an absorbing state with payoff 0 with probabil-
ity 1− c , and with probability c continues as inM . Formally, define
a degenerate Markov decision processM ′

= (Sf ∪ {s∗}, µ, r ′, q′) in
which µ coincides with µf , r ′ and q′ coincide with rf and qf on Sf ,
r ′(s∗) := 0, and q′(s∗ | s∗) := 1 (that is, s∗ is an absorbing state),
and

q′(s∗ | s) := 1 − c, q′(s′ | s) := cqf (s′ | s), ∀s, s′ ∈ Sf .

The value function ofM ′ at the initial state s1,f is f (cλ).
To prove Part (e), we show that (1/2)f + (1/2)g is inVD andwe

use part (a) with a = 2. The function (1/2)f + (1/2)g is the value
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Fig. 1. An example of two MDP’s.
Fig. 2. The degenerate MDP M .
function of the degenerate Markov decision process in which the
prior chooses with probability 1/2 one of two degenerate Markov
decision processes that implement f and g . Formally, let Mg =

(Sg , µg , rg , qg) be a degenerate Markov decision process whose
value function is g . Let M = (Sf ∪ Sg , µ′, r ′, q′) be the degenerate
Markov decision process whose state space consists of disjoint
copies of Sf and Sg , the functions r ′ (resp. q′) coincide with rf and rg
(resp. qf and qg ) of Sf (resp. Sg ), and the initial distribution is µ′

=

(1/2)µf + (1/2)µg . The value function ofM is (1/2)f + (1/2)g .
To prove Part (f), we space out the Markov decision process in a

way that stage k of the Markov decision process that implements f
becomes stage 1 + (k − 1)n, and the payoff in all other stages is 0.
Formally, let M ′

= (Sf × {1, 2, . . . , n}, µ′, r ′, q′) be a degenerate
Markov decision process where µ′

= µf and

q′((s, k + 1) | (s, k)) := 1 k ∈ {1, 2, . . . , n − 1}, s ∈ S,
q′(· | (s, n)) := qf (s) s ∈ S,
r ′((s, 1)) := rf (s) s ∈ S,
r ′((s, k)) := 0 k ∈ {2, 3, . . . , n}, s ∈ S.

The value function ofM ′ with the prior µ′ is f (λn). �

In the following lemma and later in the paper, whenever we
refer to a polynomial we mean a polynomial with real coefficients.

Lemma 2. (a) Every polynomial P is in VD and if f ∈ VD, then P · f
is also in VD.

(b) Let P and Q be two polynomials. If 1/Q ∈ VD then P/Q ∈ VD. In
particular, if Q ′ divides Q and 1/Q ∈ VD then 1/Q ′

∈ VD.
(c) If Q is a polynomial whose roots are all unit roots of multiplicity 1,

then 1
Q ∈ VD.

Proof. Part (a) follows from Lemma 1(a,c,e) and the observation
that any constant function a is in VD, which holds since the
constant function a is the value function of the degenerate Markov
decision process that starts with a state whose payoff is a and
continues to an absorbing state whose payoff is 0.

Part (b) follows from Part (a).
We turn to prove Part (c). The degenerate Markov decision
process with a single state in which the payoff is 1 yields payoff
1/(1− λ), and therefore 1/(1− λ) ∈ VD. By Lemma 1(f) it follows
that 1/(1 − λn) ∈ VD, for every n ∈ N. Let n be large enough such
that Q divides 1 − λn. The result now follows by Part (b) of this
lemma. �

To complete the proof of Theorem 1 we characterize the
polynomials Q that satisfy 1/Q ∈ VD. To this end we need the
following property of VD.

Lemma 3. If f , g ∈ VD then f (λ)g(λc) ∈ VD for every c ∈ (0, 1).

The lemma holds for c = 0 and does not hold for c = 1. Indeed,
for c = 0 we have by Lemma 1(a) f (λ)g(λc) = g(0)f (λ) ∈ VD;
for c = 1 we already saw that 1/(1 − λ) ∈ VD while Theorem 1
implies that 1/(1 − λ)2 ∉ VD.

Proof. The proof of Lemma 3 is the most intricate part of the proof
of Theorem 1.We start with an example, that will help us illustrate
the formal definition of the degenerate MDP that implements
f (λ)g(λc).

Let Mf and Mg be the degenerate Markov decision processes
that are depicted in Fig. 1 with the initial distributions µf (sf ) = 1
and µg(s1,g) = 1, in which the payoff at each state appears in a
square next to the state. Denote by f and g the value functions of
Mf and Mg , respectively.

Consider the degenerate Markov decision process M depicted
in Fig. 2, where c ∈ (0, 1) and the initial state is s1,g . The MDP M
is composed of one copy ofMg , and for every state in Sg it contains
one copy ofMf . It starts at s1,g , the initial state ofMg . Then, at every
stage, with probability c it continues as inMg , and with probability
(1 − c) it moves to a copy of Mf . In case a transition to a copy
of Mf occurs, the new state is chosen according to the transitions
qf (· | sf ). This induces a distribution similar to that of the second
stage ofMf .

The payoff in each of the copies ofMf is the product of the payoff
in Mf times the payoff of the state in Mg that has been assigned to
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that copy. The payoff in each state sg ∈ Sg is (1− c)rg(sg) times the
expected payoff in the first stage ofMf .

Thus, each state in sg ∈ Sg serves three purposes (see Fig. 2).
First, it is a regular state in the copy ofMg . Second, once a transition
from Mg to a copy of Mf occurs (at each stage it occurs with
probability (1 − c)), it serves as the first stage in Mf . Finally, once
a transition from sg to a copy of Mf occurs, the payoffs in the copy
are set to the product of the original payoffs inMf times rg(sg).

We now turn to the formal construction of M . Let f , g ∈ VD
and let Mf = (Sf , µf , rf , qf ) (resp. Mg = (Sg , µg , rg , qg)) be the
degenerate Markov decision process that implements f (resp. g).
Define the following degenerate Markov decision process M =

(S, µ, r, q):

• The set of states is S = (Sg × Sf ) ∪ Sg . In words, the set of states
contains a copy of Sg , and for each state sg ∈ Sg it contains a
copy of Sf .

• The initial distribution is µg :

µ(sg) = µg(sg), ∀sg ∈ Sg ,
µ(sg , sf ) = 0, ∀(sg , sf ) ∈ Sg × Sf .

• The transition is as follows:
– In each copy of Sf , the transition is the same as the transition

in Mf :
q((sg , s′f ) | (sg , sf )) := qf (s′f | sf ), ∀sg ∈ Sg , sf , s′f ∈ Sf ,

q((s′g , s
′

f ) | (sg , sf )) := 0, ∀sg ≠ s′g ∈ Sg , sf , s′f ∈ Sf .
– In the copy of Sg , with probability c the transition is as inMg ,

and with probability (1 − c) it is as in Mf starting with the
initial distribution µf :
q(s′g | sg) := cqg(s′g | sg), ∀sg , s′g ∈ Sg ,

q((sg , sf ) | sg) := (1 − c)

s′f ∈Sf

µ(s′f )qf (sf | s′f ),

∀sg ∈ Sg , sf ∈ Sf ,
q((s′g , sf ) | sg) := 0 ∀sg ≠ s′g ∈ Sg , sf ∈ Sf .

• The payoff function is as follows:

r(sg) := (1 − c)rg(sg)

sf ∈Sf

µf (sf )rf (sf ), ∀sg ∈ Sg ,

r(sg , sf ) := rg(sg)rf (sf ), ∀sg ∈ Sg , sf ∈ Sf .

We will now calculate the value function ofM . Denote by

Eµf [rf ] :=


sf ∈Sf

µf (sf )rf (sf )

the expected payoff in Mf at the first stage and by R the expected
payoff in Mf from the second stage and on. Then f (λ) = Eµf [rf ] +

λR.
At every stage, with probability c the process remains in Sg and

with probability (1 − c) the process leaves this set. In particular,
the probability that at stage n the process is still in Sg is cn−1,
in which case (a) the payoff is (1 − c)rg(sn)Eµf [rf ], and (b) with
probability (1− c) the process moves to a copy ofMf , and the total
discounted payoff from stage n + 1 and on is R. It follows that the
total discounted payoff is

E


∞
n=1

cn−1λn−1(1 − c)rg(sn)Eµf (rf ) + (1 − c)λrg(sn)R


= E


(1 − c)

∞
n=1

cn−1λn−1rg(sn)f (λ)


= (1 − c)g(cλ)f (λ).

The result follows by Lemma 1(a). �
Lemma 4. Let ω ∈ C be a complex number that lies outside the unit
ball.

(a) If ω ∈ C \ R then 1
(ω−λ)(ω−λ)

∈ VD, where ω is the conjugate of
ω.

(b) If ω ∈ R then 1/(ω − λ) ∈ VD.

Proof. We start by proving part (a). For every complex number
ω ∈ C \ R that lies outside the unit ball there are three natural
numbers k < l < m and three nonnegative reals α1, α2, α3 that
sum up to 1 such that 1 = α1ω

k
+ α2ω

l
+ α3ω

m. Indeed, denote
the convex hull of a nonempty set X ⊆ Rn by convX . Since ω is
not a real number, there is k ∈ N such that the imaginary part
of ωk is negative. It follows that the origin is in the interior of
conv{ωk, ω−k, 1}, and bymultiplying these three terms byωk+1 we
obtain that the origin is also in conv{ω, ωk+1, ω2k+1

}. Therefore,
the set E := conv{ωk

: k ∈ N} contains an open ball around the
origin and it contains ωE. Since |ω| > 1, this implies that E is the
whole plane, and in particular contains 1.

Consider the degenerate Markov decision process that is
depicted in Fig. 3. That is, the set of states is Sf := {s1, s2, . . . , sm},
the payoff function is

r(sm) := 1, r(sj) := 0, 1 ≤ j < m,

and the transition function is

q(sm−k+1 | sm) := α1, q(sm−l+1 | sm) := α2,

q(s1 | sm) := α3,

q(sj+1 | sj) = 1, 1 ≤ j < m.

The discounted value satisfies

vλ(sj) = λvλ(sj+1), 0 ≤ j < m,

vλ(sm) = 1 + λ

α1vλ(sm−k+1) + α2vλ(sm−l+1) + α3vλ(s1)


.

It follows that at the initial state is sm,

vλ(sm) =
1

1−α1λk−α2λl−α3λm
.

Hence, this function is in VD. Since ω is one of the roots of the
denominator, by Lemma 2(b) we obtain that 1

(ω−λ)(ω−λ)
∈ VD, as

desired.
We turn to prove part (b). Let ω be a real number with ω > 1.

As mentioned in the proof of Lemma 2, 1/(1 − λ) ∈ VD. By
Lemma 1(d), 1/(1 − λ/ω) ∈ VD, and by Lemma 1(a), 1/(ω − λ) ∈

VD. By Lemma 1(a,b), 1/(−ω−λ) ∈ VD, which complete the proof
of part (b). �

We are finally ready to prove Theorem 1.

Proof of Theorem 1. Let Q ≠ 0 be a polynomial with real coef-
ficients whose roots are either outside the unit ball or unit roots
with multiplicity 1. To complete the proof of Theorem 1 we prove
that 1/Q ∈ VD. Denote by Ω1 the set of all roots of Q that are unit
roots, byΩ2 the set of all roots ofQ that lie outside the unit ball and
have a positive imaginary part, and by Ω3 the set of all real roots
of Q that lie outside the unit ball. If some roots have multiplicity
larger than 1, then they appear several times in Ω2 or Ω3.

For i = 1, 3 denote Qi :=


ω∈Ωi
(ω − λ) and set Q2 :=

ω∈Ω2
(ω − λ)(ω − λ); when Ωi = ∅ we set Qi = 1. Note that

Q = Q1 ·Q2 ·Q3. IfΩ1 ≠ ∅, then by Lemma2(c)we have 1/Q1 ∈ VD.
Otherwise Q1 = 1, in which case, 1/Q1 ∈ VD by Lemma 2(a).

Fix ω ∈ Ω2 and let c ∈ R be such that 1 < c < |ω|. Since
ω/c lies outside the unit ball, Lemma 4(a) implies that gω(λ) :=

1
( ω
c −λ)( ω

c −λ)
is in VD. By Lemma 3, gω( 1

c · λ) ·
1
Q1

=
c2

(ω−λ)(ω−λ)
·

1
Q1

∈ VD. By Lemma 1(a), 1
(ω−λ)(ω−λ)

·
1
Q1

∈ VD. Applying succes-
sively this argument for the remaining roots inΩ2, one obtains that
1
Q2

·
1
Q1

∈ VD.



E. Lehrer et al. / Operations Research Letters 44 (2016) 587–591 591
Fig. 3. The degenerate MDP in the proof of Lemma 4.
To complete the proof we apply a similar idea to ω ∈ Ω3. Fix
ω ∈ Ω3 and let c ∈ R be such that 1 < c < |ω|. By Lemma 4(b),

1
ω
c −λ

∈ VD and again by Lemmas 1 and 3(a), 1
(ω−λ)

·
1
Q2

·
1
Q1

∈ VD.
By iterating this argument for every ω ∈ Ω3 one obtains that
1
Q3

·
1
Q2

·
1
Q1

∈ VD, as desired. �

4. Final remarks

4.1. MDP’s with an initial state

The set V contains all value functions of MDP’s in which
the state at the first stage is chosen according to a probability
distribution µ. One can wonder whether the set of implementable
value functions shrinks if one restricts attention to MDP’s in which
the first stage is given; that is, µ assigns probability 1 to one state.
The answer is negative: the value function of anyMDP inwhich the
initial state is chosen according to a probability distribution (prior)
can be obtained as the value function of anMDP inwhich the initial
state is deterministic. Indeed, let M be an MDP with a prior. One
can construct anMDPM ′ by adding toM an initial state s′ in which
the payoff is the expected payoff at the first stage of M and the
transitions are the expected transitions after the first stage ofM .

4.2. The size of the MDP that implements a given value function

A colleague who read our paper came up with an alternative
proof that uses algebraic tools. The advantage of our proof is that
it is constructive. Unfortunately our method requires prohibitively
largeMDP’s to implement functions inV . Denote by size(f ) the size
of the smallestMDPneeded to implement f as a value function. Our
results provide upper bounds on size(f ):

• If all roots of Q are unit roots with multiplicity 1, then
size(1/Q ) ≤ (n + 1)2, where n is sufficiently large so that Q
divides 1 − λn.

• If ω is a real number outside the unit ball, then size(1/(λ −

ω)) ≤ 2, and one of the states in the implementing MDP is an
absorbing state with payoff 0.
• Ifω ∈ C\R lies outside the unit ball, then size( 1
(λ−ω)(λ−ω)

) ≤ m,
where m is sufficiently large so that 1 ∈ conv{ω, ω2, . . . , ωm

}.
• If f ∈ V and P is a polynomial, then size(P · f ) ≤ 1 + size(f ) ×

(deg(P) + 1).
• If f , g ∈ V then size(f (λ)g(cλ)) ≤ size(g) × (size(f ) + 1).
• If f1, . . . , fK ∈ VD then size(maxk=1,...,K fk) ≤ 1+

K
k=1 size(fk).

Moreover, there is an MDP that implements the function
maxk=1,...,K fk in which the number of actions in all but one
state is 1, and the number of actions in the initial state
is K .

Suppose that P/Q ∈ VD and define the sets of roots (Ωi)
3
i=1

and the polynomials (Qi)
3
i=1 as in the proof of Theorem 1. Denote

Ω2 = {ω1, ω2, . . . , ωL} and for every l, 1 ≤ l ≤ L, denote
ml := size( 1

(λ−ωl)(λ−ωl)
). Then

size(P/Q ) ≤ (deg(P) + 1) ×

1 + (((((n + 1)2 + |Ω3|

+ 1)m1 + 1)m2 + 1)m3 + 1) · · ·mL

,

where n is large enough so that Q1 divides 1 − λn. An interesting
open problem is the identification of the smallest MDP that can
implement any given function in V .
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