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lution of binary stars. MODEST (Modeling Dense Stellar
systems)! is one of such efforts to develop a simulation
code, or a loosely coupled collection of codes, to handle
complex systems.
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Glossary

A stochastic game A repeated interaction between sev-
eral participants in which the underlying state of the
environment changes stochastically, and it depends on
the decisions of the participants.

A strategy A rule that dictates how a participant in an in-
teraction makes his decisions as a function of the ob-
served behavior of the other participants and of the
evolution of the environment.

Evaluation of stage payoffs The way that a participant in
a repeated interaction evaluates the stream of stage
payoffs that he receives (or stage costs that he pays)
along the interaction.

An equilibrium A collection of strategies, one for each
player, such that each player maximizes (or minimizes,
in case of stage costs) his evaluation of stage payofts
given the strategies of the other players.

A correlated equilibrium An equilibrium in an extended
game in which at the outset of the game each player re-
ceives a private signal, and the vector of private signals
is chosen according to a known joint probability dis-
tribution. In the extended game, a strategy of a player
depends, in addition to past play, on the signal he re-
ceived.

Definition of the Subject

Stochastic games, first introduced by Shapley [60], model
dynamic interactions in which the environment changes
in response to the behavior of the players. Formally,
a stochastic gameisatuple G = (N, S, (A;, Aj, ui)ien, q)
where

e Nisa set of players.

e Sisa state space. If S is uncountable, it is supplemented
with a o-algebra of measurable sets.

e For every player i € N, A; is a set of actions for that
player, and A;: S — A; is a set-valued (measurable)
function that assigns to each state s € S the set of ac-
tions A;(s) that are available to player i in state s. If
A, is uncountable, it is supplemented with a o -algebra
of measurable sets. Denote SA = {(s,a): s € S,a =



Stochastic Games

8699

(ai)ien,a; € Ai(s) Vi € N}. This is the set of all pos-
sible action profiles.

e For every player i € N, u;: SA — R is a (measurable)
stage payoff function for player i.

e g: SA — A(S) is a (measurable) transition function,
where A(S) is the space of probability distributions
over S.

The game starts at an initial state s!, and is played as fol-
lows. At each stage t € N, each player i € N chooses an ac-
tion a} € A;(s"), receives the stage payoff u;(s’, a’), where

a' = (a})ien, and the game moves to a new state s'*!
that is chosen according to the probability distribution
q(- | s, a").

A few comments are in order.

1. A stochastic game lasts infinitely many stages. How-
ever, the model also captures finite interactions (of
length t), by assuming the play moves, at stage ¢, to
an absorbing state with payoft 0 to all players.

2. In particular, by setting t = 1, we see that stochastic
games are a generalization of matrix games (games in
normal formgames in normal form), which are played
only once.

3. Stochastic games are also a generalization of repeated
games, in which the players play the same matrix game
over and over again. Indeed, a repeated game is equiv-
alent to a stochastic game with a single state.

4. Stopping games are also a special case of stochastic
games. In these games every player has two actions
in all states, continue and quit. as long as all players
choose continue the stage payoft is 0; once at least one
player chooses quit the game moves to an absorbing
state.

5. Markov decision problems (see, e.g., [49]) are sto-
chastic games with a single player.

6. The transition function g governs the evolution of the
game. It depends on the actions of all players and on
the current state, so that all the players influence the
evolution of the game.

7. The payoft function u; of player i depends on the cur-
rent state as well as on the actions chosen by all play-
ers. Thus, a player’s payoft depends not only on that
player’s choice, but also on the behavior of the other
players.

8. Though we refer to the functions (u;);en as “stage
payoffs”, with the implicit assumption that each player
tries to maximize his payoff, in some applications
these functions describe a stage cost, and then the im-
plicit assumption is that each player tries to minimize
his cost.

9. The action of a player at a given stage affects both
his stage payoff and the evolution of the state vari-
able, thereby affecting his future payoffs. These two,
sometimes contradicting effects make the optimiza-
tion problem of the players quite intricate, and the
analysis of the game challenging.

10. The players receive a stage payoft at each stage. So far
we did not mention how the players evaluate the infi-
nite stream of stage payoffs that they receive, nor did
we say what is their information at each stage: Do they
observe the current state? Do they observe the actions
of the other players? These issues will be discussed
later.

11. The actions that are available to the players at each
stage, the payoff functions, and the transition func-
tion, all depend on the current state, and not on past
play (that is, past states that the game visited, and
past actions that the players chose). This assumption is
without loss of generality. Indeed, suppose that the ac-
tions available to the players at each stage, the payoff
functions, and the transition function, all depend on
past play, as well as on the current state. For every ¢ €
N let H; be the set of all possible histories of length t,
that s, all sequences of the form (s!, a!, s, a2, ..., s%),
where sk € § for everyk = 2,3,...,t, ak = (af.‘),-eN
and af.‘ is an available action to player i at stage k, for
every k = 1,2, ..., t — 1. Then the game is equivalent
to a game with state space H := | J,cn Hy, in which
the state variable captures past play, and the state at
stage f lies in Hy. In the new game, the sets of available
actions, the payoft function, and the transition func-
tion, depend on the current state rather than on all

past play.

The interested reader is referred to [20,42,72] for further
reading on stochastic games. We now provide a few appli-
cations.

Example 1 (Capital Accumulation ([7,18,19,34,45])) Two
(or more) agents jointly own a natural resource or a pro-
ductive asset; at every period they have to decide the
amount of the resource to consume. The amount that is
not consumed grows by a known (or an unknown) frac-
tion. Such a situation occurs, e.g., in fishery: Fishermen
from various countries fish in the same area, and each
country sets a quota for its fishermen. Here the state vari-
able is the current amount of resource, the action set is the
amount of resource to be exploited in the current period,
and the transition is influenced by the decisions of all the
players, as well as possibly by the random growth of the
resource.
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Example 2 (Taxation ([14,48])) A government sets a tax
rate at every period. Each citizen decides at every period
how much to work, and, from the total amount of money
he or she has, how much to consume; the rest is saved for
the next period, and grows by a known interest rate. Here
the state is the amount of savings each citizen has, the stage
payoff of a citizen depends on the amount of money that
he consumed, on the amount of free time he has, and on
the total amount of tax that the government collected. The
stage payoff of the government may be the average stage
payoff of the citizens, the amount of tax collected, or a mix-
ture of the two.

Example 3 (Communication Network [58]) A single-cell
system with one receiver and multiple uplink transmit-
ters share a single, slotted, synchronous classical colli-
sion channel. Assume that all transmitted packets have the
same length, and require one time unit, which is equal to
one time slot, for transmission. Whenever a collision oc-
curs, the users attempt to retransmit their packets in sub-
sequent slots to resolve collision for reliable communica-
tion.

Here a state lists all relevant data for a given stage: e. g.,
the number of packets waiting at each transmitter, or the
length of time each has been waiting to be transmitted. The
players are the transmitters, and the action of each trans-
mitter is which packet to transmit, if any. The stage cost
may depend on the number of time slots that the trans-
mitted packet waited, on the number of packets that have
not been transmitted at that period, and possibly on ad-
ditional variables. The transition depends on the actions
chosen by the players, but it has a stochastic component,
which captures the number of new packets that arrive at
the various transmitters during every time slot.

Example 4 (Queues [1]) Individuals that require service
have to choose whether to be served by a private slow ser-
vice provider, or by a powerful public service provider.
This situation arises, e.g., when jobs can be executed on
either a slow personal computer or a fast mainframe. Here
a state lists the current load of the public and private ser-
vice providers, and the cost is the time to be served.

The importance of stochastic games stems from the wide
range of applications they encompass. Many repeated in-
teractions can be recast as stochastic games; the wide range
of theoretical results that have been obtained provide in-
sights that can help in analyzing specific situations and
suggesting proper behavior to the participants. In certain
classes of games algorithms that have been developed may
be used to calculate such behavior.

Strategies, Evaluations and Equilibria

So far we have not described the information that the
players have at each stage. In most of the chapter we as-
sume that the players have complete information of past
play; that is, at each stage ¢, they know the sequence
stoal,s?,a%, ..., st of states that were visited in the past
(including the current state) and the actions that were cho-
sen by all players. This assumption is too strong for most
applications, and in the sequel we will mention the conse-
quences of its relaxation.

Since the players observe past play, a pure strat-
egy for player i is a (measurable) function o; that as-
signs to every finite history (s',al,s%, a%, ..., s") anaction
oi(st,al,s?, a2, ..., s") € A;(s"), with the interpretation
that, at stage ¢, if the finite history (sh, al,s2,a%,...,sh)
occurred, player i plays the action oi(st,al,s%, a%, ..., sh).
If the player does not know the complete history, then
a strategy for player i is a function that assigns to every
possible information set, an action that is available to the
player when the player has this information. A mixed strat-
egy for player i is a probability distribution over the set of
his pure strategies. The space of mixed strategies of player i
is denoted by o;.

A simple class of strategies is the class of station-
ary strategies; a strategy o; for player i is stationary if
oi(st,al,s%, a%, ..., s) depends only on the current state
s', and not on past play s', al,s?, a2, ..., a'"1. A station-
ary strategy of player i can be identified with an element
X = (xs)ses € Xses A(A;(s)), with the interpretation that
player i plays the mixed action x; whenever the current
state is s. Denote by X; = x;esA(A;(s)) the space of sta-
tionary strategies of player i.

There are three common ways to evaluate the infinite
stream of payoffs that the players receive in a stochastic
game: The finite-horizon evaluation, in which a player con-
siders the average payoff during the first T stages, the dis-
counted evaluation, in which a player considers the dis-
counted sum of his stage payofls, and the limsup evalua-
tion, in which a player considers the limsup of his long-run
average payoffs. We now formally define these evaluations.

Every profile 0 = (0;);en of mixed strategies, together
with the initial state, induces a probability distribution
P;, o over the space of infinite plays Hoo := SAN. We de-
note the corresponding expectation operator by E;, .

Definition 5 Let o be a profile of mixed strategies. For
every finite horizon T € N, the T-stage payoff under o for
player i is

T
1
yi (s1,0) = Eq o [? D uils', at)} :

t=1
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For every discount factor A € (0, 1], the A-discounted pay-
off under o for player i is

o0
yi’l(sl,o) =Eq ¢ |:)t Z(l — ) (s, at):| .
t=1

The limsup payoff under o for player i is

T
. 1
y°(s1,0) == Eg, o |:h;nsup T Zui(5t7 at):| .

—00 =1

The T-stage payoff captures the situation in which the in-
teraction lasts exactly T stages. The A-discounted evalua-
tion captures the situation in which the game lasts “many”
stages, and the player discounts stage payoffs - it is bet-
ter to receive $1 today than tomorrow. The limsup payoft
also captures the situation in which the game lasts “many”
stages, but here the player does not discount his payofts,
and the payoff at each given stage is insignificant as com-
pared to the payoff in all other stages. Equivalently, one
could consider the liminf payoft in which the player con-
siders the liminf of the long-run average payoffs.

As usual, an equilibrium is a vector of strategies such
that no player can profit by a unilateral deviation. For ev-
ery player i and every strategy profile 0 = (0;);en we de-
note the strategy profile of all other players, except player i,
by o—; = (GJ)J7é’

Definition 6 Let ¢ > 0. A profile of strategies o isa T-
stage g-equilibrium if

yiGi,0) >yl 0l0-) —e,
Vs; € S,Vie N,Vo! € X; .

It is a A-discounted e-equilibrium if

yrs1.0) = yHs1.0l o) — ¢,
Vs; € S,Vie N,Vo, € X; .

It is a limsup e-equilibrium if

yGs1,0) > yP(sy,00,0-) — ¢,
Vsy € S,Vie N,Vo, € X; .

The payoft that corresponds to an e-equilibrium, that
is, either one of the quantities )/T(Sl,O'), yl(sl,o) and
y*°(s1,0), is called an e-equilibrium payoff at the initial
state sy.

As we will see below, when both state and action spaces are
finite, a T-stage and a A-discounted 0-equilibrium exist.

However, when the state or action spaces are infinite such
a 0-equilibrium may fail to exist, yet e-equilibria may exist
for every e > 0.

As the length of the game T varies, or as the discount
factor A varies, the equilibrium strategy profile varies as
well. A strategy profile that is an ¢-equilibrium for every T
sufficiently large and for every A sufficiently small is called
a uniform g-equilibrium.

Definition 7 Let ¢ > 0. A strategy profile o is a uni-
form e-equilibrium if there are Ty € N and Ao € (0,1)
such that for every T > T the strategy profile o is
a T-stage e-equilibrium, and for every A € (0, A¢) it is
a A-discounted e-equilibrium.

If for every € > 0 the game has a (T-stage, A-discounted,
limsup or uniform) e-equilibrium with corresponding
payoff g¢, then any accumulation point of (g¢)e>0 as & goes
to 0 is a (T-stage, A-discounted, limsup or uniform) equi-
librium payoff.

Zero-Sum Games

A two-player stochastic game is zero-sum if u;(s,a) +
uy(s, a) = 0 for every (s, a) € SA. As in matrix games, ev-
ery two-player zero-sum stochastic game admits at most
one equilibrium payoff at every initial state s;, which is
termed the value of the game at s;. Each player’s strat-
egy which is part of an g-equilibrium is termed e-optimal.
The definition of e-equilibrium implies that an e-optimal
strategy guarantees the value up to &; for example, in
the T-stage evaluation, if o} is an e-optimal strategy of
player 1, then for every strategy of player 2 we have

T T
vi (s1,01,02) = v (s1) — €,

where vT(sy) is the T-stage value at s;.

In his seminal work, Shapley [60] presented the model
of two-player zero-sum stochastic games with finite state
and actions spaces, and proved the following.

Theorem 8 [60] For every two-player zero-sum stochastic
game, the A-discounted value at every initial state exists.
Moreover, both players have A-discounted 0-optimal sta-
tionary strategies.

Proof LetV be the space of all functions v: S — R. For
every v € V define a zero-sum matrix game G2 (v) as fol-
lows:

o The action spaces of the two players are A} (s) and A, (s)
respectively.
o The payoff function (that player 2 pays player 1) is

Aui(s,a)+(1—=21) Z q(s’ | s, a)v(s') .

s’es
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The game G*(v) captures the situation in which, after
the first stage, the game terminates with a terminal pay-
off v(s), where s’ is the state reached after stage 1. Define
an operator ¢: V — V as follows:

¢ (v) = val(G2 (v))

where val(Gf(v)) is the value of the matrix game Gf(v).
Since the value operator is non-expansive, it follows that
the operator ¢ is contracting: ||[¢(v) — ¢(W)||eo < (1 —
A)||v — w|| o> so that this operator has a unique fixed point
7. One can show that the fixed point is the value of the
stochastic game, and every strategy o; of player i in which
he plays, after each finite history (sY,al,s%,a%,...,shH,
an optimal mixed action in the matrix game Gﬁ (?A), is
a A-discounted 0-optimal strategy in the stochastic game.

o

Example 9 Consider the following two-player zero-sum
game with three states, s¢, s; and s,; each entry of the ma-
trix indicates the payoff that player 2 (the column player)
pays player 1 (the row player, the payoff is in the middle),
and the transitions (which are deterministic, and are de-
noted at the top-right corner).

L R . .
T [0 |15t
P e e B T ~
1s 0 s State s; State sg
State S

The states sy and s; are absorbing: Once the play
reaches one of these states it never leaves it. State s, is
non-absorbing. Stochastic games with a single non-ab-
sorbing state are called absorbing games. For every v =
(vo,v1,v2) € V = R3 the game Gé(v) is the following
matrix game:

L R
T |Q=Av; A+(0 =)
B [A4+1—-v|(1—L)wy
The game Gfl
L L
T [A+0=wv| T [Q-w]
The game Gfl The game Gfo

The unique fixed point of the operator val(G*) must sat-
isfy

~ 2~ PR
e vy = val(G{ (V)), so that v, =¥ = 0;
o V1 =val(Gl (), s0thatv} =7, =1

oV, = Val(Gf1 (¥)). By Theorem 8 both players have
a stationary A-discounted 0-optimal strategy. Denote
by x (resp. y) a mixed action for player 1 (resp. player 2)
that is part of a A-discounted 0-optimal strategy at the
state s,. Since we know that in the fixed point vo = 0
and v; = 1,7, must be the unique solution of

v=y1-n+0-y) =y,

so that ’v\fz =7, = (1—+A)/(1—1). The 0-optimal
strategy of player 2 at state s is y = v, = (1 — «/X)/
(I — A), and the 0-optimal strategy of player 1, x =
¥, = (1 — v/A)/(1 — A), can be found by finding his
0-optimal strategy in sz ).

Bewley and Kohlberg [11] proved that when the state and
action spaces are finite, the function A — v2, that assigns
to every state s and every discount factor A the A-dis-
counted value at the initial state s, is a Puiseux function,
that is, it has a representation vf =3 arAMM that
is valid for every A € (0, A¢) for some Ay > 0, where M
is a natural number, K is a non-negative integer, and
(a k)io: x are real numbers. In particular, the function
A+ v} is monotone in a neighborhood of 0, and its limit
as A goes to 0 exists. This result turned out to be crucial in
subsequent study on games with finitely many states and
actions.

Shapley’s work has been extended to general state and
action spaces; for a recent survey see [46]. The tools devel-
oped in [46], together with a dynamic programming ar-
gument, prove that under proper conditions on the payoff
function and on the transitions the two-player zero-sum
stochastic game has a T-stage value.

Maitra and Sudderth [35] proved that the limsup
value exists in a very general setup. Their proof follows
closely that of Martin [36] for the determinacy of Black-
well games.

The study of the uniform value emanated from an ex-
ample, called the “Big Match”, due to Gillette [28], that was
solved by Blackwell and Ferguson [13].

Example 10 Consider the following stochastic game with
two absorbing states and one non-absorbing state.

L R L L
T |0 s2 1 s%
T |1 st | T |0 s0 |
B 1 st 0 s°
State s; State sg
State s,

Suppose the initial state is s,. As long as player 1
plays T the play remains at s;; once he plays B the play
moves to either sy or sy, and is effectively terminated. By
finding the fixed point of the operator ¢ one can show
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that the discounted value at the initial state s, is %, and
a A-discounted stationary 0-optimal strategy for player 2
is! [%(L), 1(R)]. Indeed, if player 1 plays T then the ex-
pected stage payoft is % and play remains at s, while if
player 1 plays B then the game moves to an absorbing state,
and the expected stage payoff from that stage onwards is %
In particular, this strategy guarantees % for player 2 both
in the limsup evaluation and uniformly. A A-discounted
0-optimal strategy for player 1 is [ 7 (T), H_LA(B)].

What can player 1 guarantee in the limsup evalua-
tion and uniformly? If player 1 plays the stationary strat-
egy [x(T), (1 — x)(B)] that plays at each stage the action T
with probability x and the action B with probability 1 — x,
then player 2 has a reply that ensures that the limsup pay-
off is 0: If x = 1 and player 2 always plays L, the payoff
is 0 at each stage; if x < 1 and player 2 always plays R,
the payoff is 1 until the play moves to s, and then it is
0 forever. Since player 1 plays the action B with probabil-
ity 1 — x > 0 at each stage, the distribution of the stage in
which play moves to sg is geometric. Therefore, the lim-
sup payoff is 0, and if A is sufficiently small, the discounted
payoff is close to 0.

One can verify that if player 1 uses a bounded-recall
strategy, that is, a strategy that uses only the last k actions
that were played, player 2 has a reply that guarantees that
the limsup payoffis 0, and the discounted payoft is close to
0, provided A is close to 0. Thus, in the limsup payoft and
uniformly finite memory cannot guarantee more than 0 in
this game (see also [27]).

Intuitively, player 1 would like to condition the prob-
ability of playing T on the past behavior of player 2: If in
the past player 2 played the action L more often than the
action R, he would have liked to play T with higher prob-
ability; if in the past player 2 played the action R more
often than the action L, he would have liked to play B
with higher probability. Blackwell and Ferguson [13] con-
structed a family of good strategies {o{, M € N} for
player 1. The parameter M determines the amount that the
strategy guarantees: The strategy O’lM guarantees a limsup
payoff and a discounted payoft of %, provided the dis-
count factor is sufficiently low. In other words, player 1
cannot guarantee %, but he may guarantee an amount as
close to % as he wishes by choosing M to be sufficiently
large. The strategy oM is defined as follows: At stage t,
play B with probability m, where [; is the num-
ber of stages up to stage t in which player 2 played L, and
r¢ is the number of stages up to stage ¢ in which player 2
played R.

That is, at each stage player 2 plays L with probability % and R
with probability %

Since r; + I, =t —1 one has ry — [; = 2r; — (t — 1).
The quantity r; is the total payoft that player 1 received in
the first ¢ — 1 stages if player 1 played T in those stages
(and the game was not absorbed). Thus, this total payoft is
a linear function of the difference r; — I;. When presented
this way, the strategy 0 depends on that total payoff. Ob-
serve that as r; increases, r; — I; increases as well, and the
probability to play B decreases.

Mertens and Neyman [38] generalized the idea presented
at the end of Example 10 to stochastic games with finite
state and action spaces.?

Theorem 11 If the state and action spaces of a two-
player zero-sum stochastic game are finite, the game has
a uniform value V0 at every initial state s € S. Moreover,
V0 = limy v} = limr—eo v].

In their proof, Mertens and Neyman describe a uniform -
optimal strategy. In this strategy the player keeps a pa-
rameter, A;, which is a fictitious discount factor to use at
stage t. This parameter changes at each stage as a func-
tion of the stage payoff; if the stage payoff at stage ¢ is high
then A4 < Ay, whereas if the stage payoff at stage ¢ is
low then A;4; > A;. The intuition is as follows. As men-
tioned before, in stochastic games there are two forces that
influence the player’s behavior: He tries to get high stage
payoffs, while keeping future prospects high (by playing in
such a way that the next stage that is reached is favorable).
When considering the A-discounted payoft there is a clear
comparison between the importance of the two forces: The
weight of the stage payoff is A and the weight of future
prospects is 1 — A; the lower the discount factor, the more
weight is given to the future. When considering the uni-
form value (or the uniform equilibrium) the weight of the
stage payoft is 0. However, if the player never attempts to
receive a high stage payoft, the overall payoff in the game
will not be high. Therefore, the player has a fictitious dis-
count factor; if past payoffs are low and they do not meet
the expectation, player 1 increases the weight of the stage
payoff by increasing the fictitious discount factor; if past
payofls are high, player 1 increases the weight of the future
by lowering this fictitious discount factor.

Multi-Player Games

Takahashi [75] and Fink [21] extended Shapley’s [60] re-
sult to discounted equilibria in non-zero-sum games.

2Mertens and Neyman’s [38] result actually holds in every
stochastic game that satisfies a proper condition, which is always sat-
isfied when the state and action spaces are finite.
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Theorem 12 Every stochastic game with finite state and
action spaces has a A-discounted equilibrium in stationary
strategies.

Proof The proof utilizes Kakutani’s fixed point the-
orem [31]. Let M = max;;,|ui(s,a)| be a bound
on the absolute values of the payoffs. Set X =
XieN,ses (A(Ai(s)) x [-M, M]). A point x = (ijs,
xi‘fs)ie N,ses € X is a collection of one mixed action and
one payoff to each player at every state. For every v =
(vi)ien € [-M, MIN*S and every s € S define a matrix

game G (v) as follows:
o The action spaces of each player i is A;(s);
o The payoft to player i is
Aui(s,a) + (1 —A) Z q(s’ | s, a)vi(s') .
RSN
We define a set-valued function ¢ : X — X as follows.

e For every i € N and every s € S, ¢ is the set of
all best responses of player i to the strategy vector
X_js = (xj,s)j?g,- in the game Gf(v). That is,

(pfs(x, V) = {argmaxyigseA(Ai(S)) Ari(s, Yiss X—is)

+ (1 - A) Z q(S/ | S, Vi,s» x—i,s)Vi,s’} .

s’es

e Foreveryi € N andeverys € S, (pl.‘,/s(x, v) is the max-
imal payoff for player i in the game G*(v), when the
other players play x_;:

@ (e,v) = max [ Ar(s, yis.x—is) +(1—1)
Vi s€A(A(s)
x Y g’ | s,yi,s,x_i,s)vi,sf> :
s’es

The set-valued function ¢ has convex and non-empty val-
ues and its graph is closed, so that by Kakutani’s fixed
point theorem it has a fixed point. It turns out that every
fixed point of ¢ defines a A-discounted equilibrium in sta-
tionary strategies. U

This result has been extended to general state and action
spaces by various authors. These results assume a strong
continuity on either the payoff function or the transition
function, see, e. g., [39,44,62].

As in the case of zero-sum games, a dynamic pro-
gramming argument shows that under a strong continuity
assumption on the payoft function or on the transitions
a T-stage equilibrium exists.

Regarding the existence of the limsup equilibrium and
uniform equilibrium little is known. The most significant
result in this direction is Vieille [77,78], who proved that
every two-player stochastic game with finite state and ac-
tion spaces has a uniform e-equilibrium for every ¢ > 0.
This result has been proved for other classes of stochas-
tic games, see, e. g., [6,24,25,61,63,65,76]. Several influen-
tial works in this area are [22,32,71,79]. Most of the pa-
pers mentioned above rely on the vanishing discount fac-
tor approach, which constructs a uniform e-equilibrium
by studying a sequence of A-discounted equilibria as the
discount factor goes to 0.

For games with general state and action spaces, a lim-
sup equilibrium exists under an ergodicity assumption on
the transitions, see e. g. Nowak [44], Remark 4 and Jask-
iewicz and Nowak [30].

A game has perfect information if there are no simulta-
neous moves, and both players observe past play. Existence
of equilibrium in this case was proven by Mertens [37] in
a very general setup.

Correlated Equilibrium

The notion of correlated equilibrium was introduced by
Aumann [8,9], see also Forges » Correlated Equilibria and
Communication in Games. A correlated equilibrium is an
equilibrium of an extended game, in which each player re-
ceives at the outset of the game a private signal such that
the vector of signals is chosen according to a known joint
probability distribution. In repeated interactions, such as
in stochastic games, there are two natural notions of cor-
related equilibria: (a) each player receives one signal at the
outset of the game (normal-form correlated equilibrium);
(b) each player receives a signal at each stage (extensive-
form correlated equilibrium). It follows from Forges [26]
that when the state and action sets are finite, the set of
all correlated T-stage equilibrium payoffs (either normal-
form or extensive-form) is a polytope.

Nowak and Raghavan [47] proved the existence of an
extensive-form correlated discounted equilibrium under
weak conditions on the state and action spaces. In their
construction, the strategies of the players are stationary,
and so is the distribution according to which the signals
are chosen after each history; both depend only on the
current state, rather than on the whole past play. Roughly,
their approach is to apply Kakutani’s fixed point theorem
to the set-valued function that assigns to each game G? (v)
the set of all correlated equilibrium payoffs in this game,
which is convex and compact.

Solan and Vielle [66] proved the existence of an exten-
sive-form correlated uniform equilibrium payoft when the
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state and action spaces are finite. Their approach is to let
each player play his uniform optimal strategy in a zero-
sum game in which all other players try to minimize his
payoff. Existence of a normal-form correlated equilibrium
was proved for the class of absorbing games [68].

Solan [64] characterized the set of extensive-form cor-
related equilibrium payofts for general state and action
spaces and a general evaluation on the stage payoffs, and
provided a sufficient condition that ensures that the set
of normal-form correlated equilibrium payofts coincides
with the set of extensive-form correlated equilibrium pay-

offs.

Imperfect Monitoring

So far it has been assumed that at each stage the players
know the past play. There are cases in which this assump-
tion is too strong; in some cases players do not know the
complete description of the current state (Examples 3 and
4), and in others players do not fully observe the actions
of all other players (Examples 2, 3 and 4). For a most gen-
eral description of stochastic games see Mertens, see Chap-
ter IV in Sorin and Zamir [40] and Coulomb [17].

In the study of the discounted equilibrium, the T-stage
equilibrium or the limsup equilibrium, one may consider
the game as a one-shot game: The players simultaneously
choose strategies, and the payoft is either the discounted
payoff, the T-stage payoft or the limsup payoft. If the strat-
egy spaces of the players are compact (e. g., if the state and
action spaces are finite), and if the payoff is upper-semi-
continuous in each player’s strategy, keeping the strategies
of the other players fixed, then an equilibrium exists. This
approach can be used successfully for the discounted equi-
librium or the T-stage equilibrium under weak conditions
(see, e. g., [4]), and may be used for the limsup equilibrium
under a proper ergodicity condition.

Whenever there exists an equilibrium in stationary
strategies (e.g., a discounted equilibrium in games with
finitely many states and actions) the only information that
players need in order to follow the equilibrium strategies is
the current state. In particular, they need not observe past
actions of the other players. As we now show, in the “Big
Match” (Example 10) the limsup value and the uniform
value may fail to exist when each player does not observe
the past actions of the other player.

Example 13 (Example 10: Continued.) Assume that no

player observes the actions of the other player, and assume

that the initial state is s,. Player 2 can still guarantee %

in the limsup evaluation by playing the stationary strat-
egy [%(L), %(R)]. One can show that for every strategy of
player 2, player 1 has a reply such that the limsup payoft is

at least % In other words, infg, sup,, y>°(s2,01,02) = %

We now argue that sup,, infy, y°°(s2, 01, 02) = 0.Indeed,
fix astrategy o for player 1,and ¢ > 0. Let 8 be sufficiently
large such that the probability that under o; player 1
plays B for the first time after stage ¢ is at most €. Observe
that as ¢ increases, the probability that player 1 plays B for
the first time after stage t decreases to 0, so that such a 6 ex-
ists. Consider the following strategy o, of player 2: Play R
up to stage 6, and play L from stage ¢t + 1 and on. By the
definition of 0, either player 1 plays B before or at stage 6,
and then the game moves to sy, and the payoff is 0 at each
stage thereafter, or player 1 plays T at each stage, and then
the stage payoff after stage 6 is 0, or, with probability less
than ¢, player 1 plays B for the first time after stage 6, the
play moves to s;, and the payoff is 1 thereafter. Thus, the
limsup payoff is at most €. A similar analysis shows that

. A 1
infsup y”(sz,01,02) = 5,
(op} o1

sup inf lim Y*(s2.01.02) =0,
o 02 A—0

so that the uniform value does not exist as well.

This example shows that in general the limsup value and
the uniform value need not exist when the players do not
observe past play. Though in general the value (and there-
fore also an equilibrium) need not exist, in many classes
of stochastic games the value and an equilibrium do exist,
even in the presence of imperfect monitoring.

Rosenberg et al. [55] and Renault [54] showed that the
uniform value exists in the one player setup (Markov De-
cision Problem), in which the player receives partial in-
formation regarding the current state. Thus, a single de-
cision maker who faces a dynamic situation and does not
fully observe the state of the environment can play in such
a way that guarantees high payoff, provided the interaction
is sufficiently long or the discount factor is sufficiently low.

Altman et al. [5,6] and Flesch et al. [24] studied
stochastic games in which each player has a “private” state,
which only he can observe, and the state of the world is
composed of the vector of private states. Altman et al. [5,6]
studied the situation in which players do not observe the
actions of the other players, and Flesch et al. [24] studied
the situation in which players do observe each others pay-
offs. Such games arise naturally in wireless communica-
tion (see [5]); take for example several mobiles who pe-
riodically send information to a base station. The private
state of a mobile may depend, e.g., on its exact physical
environment, and it determines the power attenuation be-
tween the mobile and the base station. The throughput
(the amount of bits per second) that a mobile can send
to the base station depends on the power attenuations of
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all the mobiles. Finally, the stage payoft is the stage power
consumption.

Rosenberg et al. [57] studied the extreme case of two
player zero-sum games in which the players observe nei-
ther the current state nor the action of the other player,
and proved that the uniform value does exist in two classes
of games, which capture the behavior of certain commu-
nication protocols. Classes of games in which the actions
are observed but the state is not observed were studied,
e.g., by Sorin [69,70], Sorin and Zamir [74], Krausz and
Rieder [33], Flesch et al. [23], Rosenberg et al. [56], Re-
nault [52,53]. For additional results, see [16,73].

Algorithms

There are two kinds of algorithms: Those that terminate in
a finite number of steps, and those that iterate and approx-
imate solutions. Both kinds of algorithms were devised to
calculate the value and optimal strategies (or equilibria) in
stochastic games.

It is well known that the value of a two-player zero-
sum matrix game and optimal strategies for the two play-
ers can be calculated efficiently using a linear program.
Equilibria in two-player non-zero-sum games can be cal-
culated by the Lemke-Howson algorithm, which is usu-
ally efficient, however, its worst running time is exponen-
tial in the number of pure strategies of the players [59].
Unfortunately, to date there are no efficient algorithms to
calculate either the value in zero-sum stochastic games,
or equilibria in non-zero-sum games. Moreover, in Ex-
ample 9 the discounted value may be irrational for ratio-
nal discount factors, even though the data of the game
(payoffs and transitions) are rational, so it is not clear
whether linear programming methods can be used to cal-
culate the value of a stochastic game. Nevertheless, lin-
ear programming methods were used to calculate the dis-
counted and uniform value of several classes of stochas-
tic games, see [20,50]. Other methods that were used to
calculate the value or equilibria in discounted stochastic
games include fictitious play [80], value iterates, policy im-
provement, and general methods to find the maximum of
a function (see [20,51]), a homotopy method [29], and al-
gorithms to solve sentences in formal logic [15,67].

Additional and Future Directions

The research on stochastic games extends to additional
directions than those mentioned in earlier sections. We
mention a few here. Approximation of games with infinite
state and action spaces by finite games was discussed by
Whitt [81], and further developed by Nowak [43]. Stochas-
tic games in continuous time have also been studied, as

well as hybrid models that include both discrete and con-
tinuous aspects, see, e. g., [2,10].

Among the many directions of future research in this
area, we will mention here but a few. One challenging
question is the existence of a uniform equilibrium and
a limsup equilibrium in multi-player stochastic games
with finite state and action spaces. Another is the devel-
opment of efficient algorithms that calculate the value of
two-player zero-sum games. A third direction concerns
the identification of applications that can be recast in the
framework of stochastic games, and that can be success-
fully analyzed using the theoretical tools that the litera-
ture developed. Another problem that is of interest is the
characterization of approachable and excludable sets in
stochastic games with vector payoffs (see [12] for the pre-
sentation of matrix games with vector payofts, and [41] for
partial results regarding this problem).
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Glossary

Bessel process The Bessel process operates in d dimen-
sions and describes the radial distance r from the ori-
gin of a particle performing Brownian motion. The
random motion is governed by the Langevin equa-
tion dr/dt = «(d — 1)/2r + &, where (E€)(t) = k4(t).
For d < 2 the motion is recurrent, i. e., returns to the
origin; for d > 2 the motion goes off to infinity. In
SLE the Bessel process describes the transition between
simple curves and self-intersecting curves.

Brownian motion Brownian motion, By, is the scaling
limit of random walk. Brownian motion is plane-fill-
ing, has the fractal dimension D = 2, and is described
by the Langevin equation dB,/dt = n () =
8(t —s). By is characterized by i) the stationarity prop-
erty, B;+y — B; and By identical in distribution and
i) the independence property, By and Ba, indepen-
dent for At # At'. The correlations are given by



