
Available online at www.sciencedirect.com
ScienceDirect

Journal of Economic Theory 163 (2016) 342–364

www.elsevier.com/locate/jet

Bounded computational capacity equilibrium ✩

Penélope Hernández a, Eilon Solan b

a ERI-CES and Departamento de Análisis Económico, Universidad de Valencia, Campus de Los Naranjos s/n,
46022 Valencia, Spain

b Department of Statistics and Operations Research, School of Mathematical Sciences, Tel Aviv University,
Tel Aviv 6997800, Israel

Received 5 September 2010; final version received 24 June 2015; accepted 13 February 2016

Available online 20 February 2016

Abstract

A celebrated result of Abreu and Rubinstein (1988) states that in repeated games, when the players are
restricted to playing strategies that can be implemented by finite automata and they have lexicographic
preferences, the set of equilibrium payoffs is a strict subset of the set of feasible and individually rational
payoffs. In this paper we explore the limitations of this result. We prove that if memory size is costly and
players can use mixed automata, then a folk theorem obtains and the set of equilibrium payoffs is once
again the set of feasible and individually rational payoffs. Our result emphasizes the role of memory cost
and of mixing when players have bounded computational power.
© 2016 Elsevier Inc. All rights reserved.

JEL classification: C72; C73

Keywords: Bounded rationality; Automata; Complexity; Infinitely repeated games; Equilibrium

✩ This work was conducted while the second author was visiting Universidad de Valencia. The first author thanks both
the Spanish Ministry of Science and Technology and the European Feder Founds for financial support under project
ECO2013-46550-R and Generalitat Valenciana PROMETEOII/2014/054. The second author thanks the Departamento
de Análisis Económico at Universidad de Valencia for the hospitality during his visit. The authors thank Elchanan Ben
Porath, Ehud Kalai, Ehud Lehrer, two anonymous referees, and the Associate Editor for their useful suggestions. The
work of Solan was partially supported by ISF grants 212/09 and 323/13 and by the Google Inter-university center for
Electronic Markets and Auctions.

E-mail addresses: Penelope.Hernandez@uv.es (P. Hernández), eilons@post.tau.ac.il (E. Solan).
http://dx.doi.org/10.1016/j.jet.2016.02.007
0022-0531/© 2016 Elsevier Inc. All rights reserved.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.jet.2016.02.007
http://www.elsevier.com/locate/jet
mailto:Penelope.Hernandez@uv.es
mailto:eilons@post.tau.ac.il
http://dx.doi.org/10.1016/j.jet.2016.02.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jet.2016.02.007&domain=pdf

P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364 343
1. Introduction

The literature on repeated games usually assumes that players have unlimited computational
capacity or unbounded rationality. Since in practice this assumption does not hold, it is important
to study whether and how its absence affects the predictions of the theory.

One common way of modeling players with bounded rationality is by restricting them to
strategies that can be implemented by finite state machines, also called finite automata. The
game theoretic literature on repeated games played by finite automata can be roughly divided
into two categories. One backed by an extensive literature (e.g., Kalai, 1990, Ben Porath, 1993,
Piccione, 1992, Piccione and Rubinstein, 1993, Neyman 1985, 1997, 1998, Neyman and Okada
1999, 2000a, 2000b, Zemel, 1989) that studies games where the memory size of the two players
is determined exogenously, so that each player can deviate only to strategies with the given
memory size. In the other, Rubinstein (1986), Abreu and Rubinstein (1988), and Banks and
Sundaram (1990) study games where the players have lexicographic preferences: each player
tries to maximize her payoff, and subject to that she tries to minimize her memory size. Thus,
it is assumed that memory is free, and a player would deviate to a significantly more complex
strategy if that would increase her profit by one cent. Abreu and Rubinstein (1988) proved that
in this case, the set of equilibrium payoffs in two-player games is generally a strict subset of the
set of feasible and individually rational payoffs. In fact, it is the set of feasible and individually
rational payoffs that can be generated by a coordinated play; that is, a sequence of action pairs
in which there is a one-to-one mapping between Player 1’s actions and Player 2’s actions. For
example, in the Prisoner’s Dilemma that appears in Fig. 1, where each player has two actions,
C and D, this set is the union of the two line segments (3, 3) − (1, 1) and (3, 1) − (1, 3).

To obtain their result, Abreu and Rubinstein (1988) make two implicit assumptions: (a) mem-
ory is costless, and (b) players can use only pure automata. Removing assumption (a) while
keeping assumption (b) does not change the set of equilibrium payoffs. Indeed, since the pref-
erence of the players is lexicographic, no player can profit by deviating to a larger automaton
when memory is costless, so a fortiori she has no profitable deviation when memory is costly.
The construction in Abreu and Rubinstein (1988) ensures that a deviation to a smaller automaton
yields the deviator a payoff which is close to her min-max value in pure strategies. Therefore, as
soon as memory cost is sufficiently small, there is no profitable deviation to a smaller memory as
well. We do not know whether and how the set of equilibrium payoffs changes when removing
assumption (b) and keeping assumption (a).

Our goal in this paper is to show that if one removes both assumptions (a) and (b), then the
result of Abreu and Rubinstein (1988) fails to hold. We will show that if memory is costly (yet
memory cost goes to 0) and players can use mixed strategies, then a folk theorem obtains, and
the set of equilibrium payoffs includes the set of feasible and individually rational payoffs (w.r.t.
the min-max value in pure strategies). We assume for simplicity that the players have additive
utility: the utility of a player is the difference between her long-run average payoff and the cost
of her computational power.

We thus present a new equilibrium concept that is relevant when memory size matters and each
player’s set of pure strategies is the set of finite automata. For a given positive real number c, we
say that the vector x ∈ R

2 is a c-Bounded Computational Capacity equilibrium payoff (hereafter,
BCC for short) if it is an equilibrium payoff when the utility of each player is the difference
between her long-run average payoff, and c times the size of its finite state machine.

344 P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364
Fig. 1. The Prisoner’s Dilemma: the payoff matrix, the feasible and individually rational payoffs (the dark quadrilat-
eral W), and the payoffs that correspond to coordinated play (the two thick lines).

A payoff vector x ∈ R
2 is a BCC equilibrium payoff if it is the limit, as c goes to 0, of

c-bounded computational capacity equilibrium payoffs, and the cost of the machines used along
the sequence converges to 0.

Interestingly, the definition does not imply that the set of BCC equilibrium payoffs is a subset,
nor a superset, of the set of Nash equilibrium payoffs in mixed strategy of the one-shot game.

Our main result is a folk theorem: in two-player games, every feasible and individually ra-
tional (w.r.t. the min-max value in pure strategies) payoff vector is a BCC equilibrium payoff in
mixed strategies of the one-shot game.

Our proof is constructive. The equilibrium play in the BCC equilibrium that we construct is
composed of three phases. The first phase, that is played only once along the equilibrium path, is
a punishment phase; in this phase each player plays a strategy that punishes the other player, that
is, an action that attains the min-max value in pure strategies of the opponent. As in Abreu and
Rubinstein (1988), it is crucial to have the punishment phase on the equilibrium path; otherwise,
players can use smaller machines that cannot implement punishment, thereby reducing their
computation cost. However, if a machine cannot implement punishment, there is nothing that
will deter the other player from deviating. The second phase, called the babbling phase, is also
played only once along the equilibrium path. In this phase the players play a predetermined
sequence of action pairs. In the third phase, called the regular phase, the players repeatedly play
a predetermined periodic sequence of action pairs that approximates the desired target payoff. To
implement this phase, the players will use states that were used in the babbling phase. We call
those states “reused states”. The identity of the reused states is chosen at random at the outset of
the game. The role of the babbling phase is twofold. First, it enables one to embed the regular
phase within it; second, its structure is designed to simplify complexity calculations. It is long
enough to ensure that to learn the states that the other player uses to implement the regular phase,
a player needs a much larger automaton than the one that she currently uses. In our construction,
the automaton that each player uses is not a best response to the automaton that the other player
uses when memory cost is 0. In fact, players forgo a possible profit because to achieve this profit
they need to significantly increase their memory, which is too costly.

Even though the definition of a BCC equilibrium is theoretically appealing, to prove the folk
theorem we use outrageously large automata. For example, the size of the automata that we
construct to approximate a target payoff vector by 0.01 is about (100)3.

Our result highlights the difference between lexicographic preferences (as in Abreu and
Rubinstein, 1988) and positive albeit low memory cost. When players have lexicographic pref-
erences, they are willing to increase the memory size that they use for the profit of one cent. In
particular, if the opponent’s automaton reuses some states, and the knowledge of the identity of
those reused states is beneficial to the player, then to learn the identity of these states the player

P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364 345
is willing to significantly increase her memory size. When the memory cost is positive, such an
increase may not be beneficial. This observation is the key to our construction.

The rest of the paper is organized as follows. Section 2 presents the model and the main result.
The proof in the particular case of the Prisoner’s Dilemma is presented in Section 3. Comments
and open problems appear in Section 4. In the Online Appendix (Hernández and Solan, 2016)
we indicate how the proof for the Prisoner’s Dilemma should be altered to fit general two-player
games.

2. The model and the main result

In this section we define the model, including the concepts of automata, repeated games, and
strategies implementable by automata, we describe our solution concept of Bounded Computa-
tional Capacity equilibrium, and we state the main result.

2.1. Repeated games

A two-player repeated game is given by (1) two finite action sets A1 and A2 for the two
players, and (2) two payoff functions u1 : A1 × A2 → R and u2 : A1 × A2 → R for the two
players.

The game is played as follows. At each stage t ∈ N, each player i ∈ {1, 2} chooses an action
at
i ∈ Ai and receives the stage payoff ui(a

t
1, a

t
2). The goal of each player is to maximize her

long-run average payoff limt→∞ 1
t

∑t
j=1 ui(a

j

1 , aj

2), where {(aj

1 , aj

2), j ∈ N} is the sequence of
action pairs that were chosen by the players along the game.1

The set of feasible payoff vectors is

F := conv{u(a), a ∈A1 ×A2}.
A pure strategy of player i is a function that assigns an action in Ai to every finite history h ∈
∪∞

t=0(A1 ×A2)
t . A mixed strategy of player i is a probability distribution over pure strategies.

2.2. Automata

A common way to model a decision maker with bounded computational capacity is as an
automaton, which is a finite state machine whose output depends on its current state, and whose
evolution depends on the current state and on its input (see, e.g., Neyman, 1985 and Rubinstein,
1986). Formally, an automaton P is given by (1) a finite state space Q, (2) a finite set I of
inputs, (3) a finite set O of outputs, (4) an output function f : Q → O , (5) a transition function
g : Q × I → Q, and (6) an initial state q∗ ∈ Q.

Denote by qt the automaton’s state at stage t . The automaton starts in state q1 = q∗, and at
every stage t ∈ N, as a function of the current state qt and the current input it , the output of the
automaton ot = f (qt) is determined, and the automaton moves to a new state qt+1 = g(qt , it).

The size of an automaton P , denoted by |P |, is the number of states in Q. Below we will use
strategies that can be implemented by automata; in this case the size of the automaton measures
the complexity of the strategy.

1 In general this limit need not exist. Our solution concept will take care of this issue.

346 P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364
2.3. Strategies implemented by automata

Fix a player i ∈ {1, 2}. An automaton P , whose set of inputs is the set of actions of player 3 − i

and set of outputs is the set of actions of player i, that is, I =A3−i and O =Ai , can implement a
pure strategy of player i. Indeed, at every stage t , the strategy plays the action f (qt), and the new
state of the automaton qt+1 = g(qt , at

3−i) depends on its current state qt and on the action at
3−i

that the other player played at stage t . For i = 1, 2, we denote an automaton that implements a
strategy of player i by Pi . We denote by Pm

i the set of all automata with m states that implement
pure strategies of player i.

When the players use arbitrary strategies, the long-run average payoff needs not exist. How-
ever, when both players use strategies that can be implemented by automata, say P1 and P2 of
sizes p1 and p2 respectively, the evolution of the automata follows a (deterministic) Markov
chain with p1 × p2 states, and therefore the long-run average payoff exists. We denote this aver-
age payoff by γ (P1, P2) ∈ R

2.
A mixed automaton M is a probability distribution over pure automata.2 A mixed automaton

corresponds to the situation in which the automaton that is used is not known, and there is a
belief over which automaton is used. A mixed automaton defines a mixed strategy: at the outset
of the game, a pure automaton is chosen according to the probability distribution given by the
mixed automaton, and the strategy that the pure automaton defines is executed. We will use only
mixed automata whose support is pure automata of a given size m.

When both players use mixed strategies that can be implemented by mixed automata, the
expected long-run average payoff exists; it is the expectation of the long-run average payoff of
the pure automata that the players play:

γ (M1,M2) := EM1,M2[γ (P1,P2)].

2.4. Bounded computational capacity equilibrium

In the present paper we study games where the utility function of each player takes into
account the complexity of the strategy that she uses.

Definition 1. Let c > 0. A pair of mixed automata (M1, M2) is a c-BCC equilibrium, if it is a
Nash equilibrium for the utility functions Uc

i (M1, M2) := γi(M1, M2) − c|Mi |, for i ∈ {1, 2}.

If the game has an equilibrium in pure strategies, then the pair of pure automata (P1, P2),
both with size 1, which repeatedly play the equilibrium actions of the two players, is a c-BCC
equilibrium, for every c > 0.

The min-max value of player i in pure strategies is

vi := min
a3−i∈A3−i

max
ai∈Ai

ui(ai, a3−i).

An action a3−i that attains the minimum is termed a punishing action of player 3 − i. The set of
strictly individually rational payoff vectors (relative to the min-max value in pure strategies) is

V := {
x = (x1, x2) ∈ R

2 : x1 > v1, x2 > v2
}
.

2 To emphasize the distinction between automata and mixed automata, we call the former pure automata.

P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364 347
To get rid of the dependency of the constant c we define the concept of a BCC equilibrium
payoff. A payoff vector x is a BCC equilibrium payoff if it is the limit, as c goes to 0, of payoffs
that correspond to c-BCC equilibria.

Definition 2. A payoff vector x = (x1, x2) is a BCC equilibrium payoff if for every c > 0
there is a c-BCC equilibrium (M1(c), M2(c)) such that limc→0 γ (M1(c), M2(c)) = x and
limc→0 c|Mi(c)| = 0 for i = 1, 2.

Every pure equilibrium payoff is a BCC equilibrium payoff (implemented by automata of
size 1). Using Abreu and Rubinstein’s (1988) proof, one can show that any strictly individu-
ally rational payoff (relative to the min-max value in pure strategies) that can be generated by
coordinated play is a BCC equilibrium payoff. For the formal statement, assume w.l.o.g. that
|A1| ≤ |A2|.

Theorem 3. (See Abreu and Rubinstein, 1988.) Let σ : A1 → A2 be a one-to-one function. Then
any payoff vector x in the convex hull of {u(a1, σ(a1)), a1 ∈A1} that satisfies xi > vi for i = 1, 2
is a BCC equilibrium payoff.

2.5. The main result

Our main result is the following folk theorem, which states that every feasible and strictly
individually rational payoff vector is a BCC equilibrium payoff.

Theorem 4. If the set F ∩ V has a nonempty interior, then every vector in F ∩ V is a BCC
equilibrium payoff.

Theorem 4 is not a characterization of the set of BCC equilibrium payoffs, because it does
not rule out the possibility that a feasible payoff that is not individually rational (relative to the
min-max value in pure strategies) is a BCC equilibrium payoff. That is, we do not know whether
threats of punishments by a mixed strategy in the one-shot game can be implemented in a BCC
equilibrium.

Theorem 4 stands in sharp contrast to the main message of Abreu and Rubinstein (1988)
where it is proved that lexicographic preferences, which are equivalent to an infinitesimal cost
function c, imply that in equilibrium players follow coordinated play, so that the set of equilib-
rium payoffs is often strictly smaller than the set of feasible and individually rational payoffs. Our
study shows that the result of Abreu and Rubinstein (1988) hinges on two assumptions: (a) mem-
ory is costless, and (b) the players use only pure automata. Once we assume that memory is costly
and that players may use mixed automata, the set of equilibrium payoffs dramatically changes.

2.6. A detour to Abreu and Rubinstein (1988)

Abreu and Rubinstein (1988) study repeated games in which players have lexicographic pref-
erences and can use only pure automata. They consider both the undiscounted game and the
discounted game with a discount factor that is close to 1. A pair of pure automata is an equilib-
rium if (a) no player can profit by deviating to any other pure automaton, and (b) a player who
deviates to a smaller automaton loses.

348 P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364
Abreu and Rubinstein (1988) prove that the set of equilibrium payoffs is the set of feasible
and individually rational payoff vectors that can be generated by a coordinated play.

In the Prisoner’s Dilemma (see Fig. 1) the min-max level of each player is 1, and the punishing
action of each player is D. The set of feasible and (weakly) individually rational payoffs is the
quadrilateral W with extreme points (1, 1), (1, 3 2

3), (3, 3) and (3 2
3 , 1) (see Fig. 1). The result

of Abreu and Rubinstein implies that the set of equilibrium payoffs is the union of the two line
segments (1, 1) − (3, 3) and (1, 3) − (3, 1).

The argument leading to the result of Abreu and Rubinstein’s (1988) are the following.

1. When Player 1 uses an automaton with m states, Player 2’s optimization problem reduces to
a Markov decision problem with m states, and therefore Player 2’s best response is an au-
tomaton with at most m states. This implies that in an equilibrium both players use automata
of the same size.

2. Each player’s equilibrium automaton uses distinct states until it completes one cycle of its
states. This follows from a result that says that if the states of one player that are used in any
two periods t and t ′ of equilibrium play are identical, then the average payoff of the opponent
between stages t to t ′ coincides with the average payoff from t ′ onwards, and therefore also
the average payoff from t onwards.3 Therefore if the cycle starts before all the states for both
player are used, each player could modify her machine to skip the stages between stages t
and t ′, thereby lowering the size of her automaton without affecting the long-run average
payoff.

3. If in stage t the automaton Pi plays the same action it plays in stage t ′, then in stage t the
automaton P3−i plays the same action it plays in stage t ′. Indeed, by Point 2, the automaton
Pi uses different states in stages t and t ′, and these two states are not used in other stages
along the cycle. If the automaton P3−i plays differently in stages t and t ′, then player i can
lower the size of her automaton by using the same state in stages t and t ′, and letting the
action of player 3 − i control the transition out of this state.

Abreu and Rubinstein’s equilibrium construction is as follows.

• The players start by implementing a punishment phase: both players play the action D for a
large number of stages. The states used for this phase are all distinct. Moreover those states
are used only at the beginning of the equilibrium play.

• A cycle of action pairs, which is called the regular phase, is repeated. The states used in
the cycle are distinct from those used during the punishment phase, and are used infinitely
many times. Each of those states leads to the first state in the punishment phase if it detects
a deviation. The action pairs of the cycle form a coordinated play. This implies that there
exists a one-to-one relationship between the action set of Players 1 and 2 in equilibrium.

3. An example

In this section we present and explain the proof of Theorem 4 in the context of the Prisoner’s
Dilemma. This construction will be formalized in Appendix B and extended to any game in the
Online Appendix.

3 This result is Lemma 2, page 1268, in Abreu and Rubinstein (1988).

P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364 349
Consider the Prisoner’s Dilemma game that appears in Fig. 1. We show how to implement the
payoff vector x = (7

6 , 19
6) as a BCC equilibrium payoff. This vector can be written as a convex

combination of three vectors in the payoff matrix, for example,

(7
6 , 19

6) = 1
6 (1,1) + 2

6 (3,3) + 3
6 (0,4). (1)

The construction depends on a natural number k, that will determine the size of the automata
that the players use. This number gets larger as (a) the memory cost decreases, and (b) the target
payoff vector x and the actual payoff on the equilibrium path become closer.

The equilibrium play will consist of three phases, as follows.

• A punishment phase that consists of k3 times playing (D, D):

Q∗ := k3 × (D,D).

• A babbling phase that consists of 2k blocks of length k followed by one block of length
k + 1: in odd blocks (except the last one) the players play k times (C, C); in even blocks
they play k times (D, D); and in the last block the players play k + 1 times (C, C).

B∗ :=
k∑

n=1

(
k × (C,C) + k × (D,D)

) + (k + 1) × (C,C).

• A regular phase in which the players repeatedly play actions along which the average payoff
is the target payoff x.

R∗ := 1 × (D,D) + 2 × (C,C) + 3 × (C,D).

Formally, the equilibrium play path ω∗ is

ω∗ := Q∗ + B∗ +
∞∑

n=1

R∗

= k3 × (D,D)︸ ︷︷ ︸
Punishment

+
k∑

n=1

(
k × (C,C) + k × (D,D)

) + (k + 1) × (C,C)

︸ ︷︷ ︸
Babbling

+
∞∑

n=1

R∗

︸ ︷︷ ︸
Regular

. (2)

To implement other feasible and individually rational payoff vectors x as BCC equilibria we
change the regular phase to contain a cycle of action pairs whose average payoff is close to x.

The roles of the three phases are as follows.

• As in Abreu and Rubinstein (1988), the punishment phase ensures that punishment is on the
equilibrium path. Because the players minimize their automaton size, subject to maximiz-
ing their payoff, if the punishment phase was off the equilibrium path, players could save
states by not implementing it. But if a player cannot implement punishment, the other player
may safely deviate, knowing that she will not be punished. In our construction, detectable
deviations of the other player will lead the automaton to restart and reimplement ω∗, thereby
initiating a long punishment phase. The length of the punishment phase, k3, is much larger
than the length of the babbling phase to ensure that the punishment is severe.

350 P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364
Fig. 2. An implementation of ω1.

• The babbling phase serves two purposes. First, because it is coordinated, it is not difficult
to calculate the complexity of ω∗ for each player i, that is, the size of the minimal pure
automaton of player i that can implement player i’s part in ω∗, given that the other player,
player 3 − i, plays her part in ω∗. This implies in particular that if a player deviates to
a smaller automaton than the one that we will construct, while the other player does not
deviate, then there will be a stage in which that player’s play deviates from ω∗.
Second, the states that implement the babbling phase will be reused to implement the regular
phase. The identity of the states that are reused will be chosen at random; this is the place
where we rely on our usage of mixed automata. In our construction, any deviation in a state
that is not reused to implement the regular phase starts a punishment phase. This implies that
to profit by a deviation, the player needs to know which states are reused in his opponent’s
automaton. Since the reused states are chosen at random, learning which states are reused
requires a huge automaton, which, due to the memory cost, is too costly.

• On the equilibrium path the regular play will be played repeatedly, so that the long-run
average payoff will be the average payoff along R∗, which is (7

6 , 19
6).

We say that a pure automaton Pi of player i is compatible with the play ω∗ (or that the play
ω∗ is compatible with the automaton Pi) if, when the other player 3 − i plays her part in ω∗, the
automaton generates the play of player i in ω∗. We will later show that the size of the smallest
automaton of Player 1 (resp. Player 2) that is compatible with ω∗ is k3 + 2k2 + k + 1 (resp.
k3 + 2k2 + k + 4), see Corollary 7 (resp. Corollary 8) below.

We now present an automaton for Player 1 with size k3 + 2k2 + k + 1 that is compatible with
ω∗. Denote the states of the automaton that we construct by Q = {1, 2, · · · , k3 + 2k2 + k + 1}.
The punishment and babbling phases, whose total length is k3 + 2k2 + k + 1, are

ω1 = k3 × (D,D) +
k∑

n=1

(
k × (C,C) + k × (D,D)

) + (k + 1) × (C,C).

The length of these phases is similar to the size of the automaton that we construct. A naive
implementation is to have one state for each action of Player 1 in ω1: state q ∈ Q will implement
the q’th action pair in ω1. This implementation is illustrated in Fig. 2, where the initial state is
the dotted circle to the left, the white squares correspond to states where the action played is D,
and the black circles correspond to states where the action played is C.

It is left to implement the regular phase R∗, in which Player 1 plays once D and 5 times C.
One way to do this is as follows (see Fig. 3): When Player 1’s automaton is in its last state,
state k3 + 2k2 + k + 1, and Player 2 plays C, Player 1’s automaton moves to the last state of the
first D-block in the Babbling phase. If Player 2 does not deviate, then the play in the next six
stages will indeed be 1 × (D, D) + 2 × (C, C) + 3 × (C, D). In the fifth stage of the following
C-block we add a transition that ensures that the regular phase will be repeated: When Player 1’s
automaton is in the fifth stage of the second C-block and Player 2 plays D, Player 1’s automaton
moves to the last stage of the first D-block. Thus, three states in Player 1’s automaton accept both
actions of Player 2: the third, the fourth, and the fifth states of the second C-block. The third and

P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364 351
Fig. 3. Implementation of the regular phase.

fourth states lead deterministically to the following state, and the fifth state either continues to the
sixth state of the second C-block (if Player 2 plays C) or restarts the regular phase (if Player 2
plays D). We call these three states accept-all states. In Fig. 3, the three accept-all states are
denoted by triangles.

To ensure that deviations of Player 2 are not profitable, we set all transitions that were not
determined so far to initiate a punishment phase, by making Player 1’s automaton move to the
first state.

Analogously we will define an automaton for Player 2 with k3 + 2k2 + k + 4 states that is
compatible with ω∗. Because the equilibrium play is not a coordinated play, by Abreu and Rubin-
stein (1988) Player 2 has a profitable deviation. Indeed, Player 2 may skip most of the babbling
phase, thereby she reduces the number of states in her automaton while still implementing the
same targeted payoff. This can be done as follows. Player 2 uses an automaton with k3 + 2k + 5
states. These states implement naively Player 2’s part in the sequence

k3 × (D,D) + k × (C,C) + k × (D,D) + 2 × (C,C) + 3 × (C,D),

and from the last state the automaton moves to the last state of the D-block.4

To be able to execute the deviation described in the previous paragraph, Player 2 must know
the identity of the accept-all states in Player 1’s automaton.5 To make this deviation unprofitable
Player 1 has to mask the identity of these states.

To achieve this goal, we note that the automaton that we described is only one automaton
for Player 1 that is compatible with ω∗. Instead of using the last state of the first D-block and
the first five states of the second C-block to implement the regular phase, we could have used
the last state of the j ’th D-block and the first five states of the (j + 1)’th C-block for 1 ≤ j ≤
k − 1. More generally,6 we could have used the last state of the j ’th D-block, the first three
states of the (j + 1)’th C-block, and two additional states in the (j + 1)’th C-block, say, states
number h1 and h2 (see Fig. 4). The accept-all states would be the third, h1, and h2 states of the
(j + 1)’th C-block. When Player 1’s automaton is in the first accept-all state (the third state of
the (j + 1)’th C-block) and Player 2 plays D, the automaton will move to the h1’th state of the
(j + 1)’th C-block; when Player 1’s automaton is in the h1’th state of the (j + 1)’th C-block
and Player 2 plays D, the automaton will move to the h2’th state of the (j + 1)’th C-block; and
when Player 1’s automaton is in the h2’th state of the (j + 1)’th C-block and Player 2 plays D,
the automaton will move to the last state of the j ’th D-block, thereby start a new cycle of the
regular phase.

Recognizing that there are many pure automata for Player 1 that are compatible with ω∗, we
define a mixed automaton for Player 1, which chooses one of these pure automata at random.

4 Player 2 could deviate to an even smaller automaton to implement this deviation.
5 In the construction that we described, it is sufficient for Player 2 to know the identity of the third accept-all state.
6 There are additional pure automata for Player 1 that implement ω∗ . We will not use them in our construction.

352 P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364
Fig. 4. The j ’th D-block and the (j + 1)’th C-block in P1.

This ensures that Player 2 will not know the identity of the accept-all states of the realized pure
automaton of Player 1.

Similarly, we will define a collection of pure automata for Player 2 with k3 +2k2 +k+4 states
that implements Player 2’s part of the play ω∗ that reuse different states, and a mixed automaton
for Player 2 in which the reused states are chosen randomly.

Can Player 2 profit by deviating from her part of ω∗ when she faces the mixed automaton
of Player 1? The answer is positive: she could enumerate over the three parameters that were
chosen at random, namely, j , h1, and h2, and for each possible values of these parameters check
whether they are the actual values chosen by Player 1.

The only way in which Player 2 can check whether j = j∗, h1 = h∗
1, and h2 = h∗

2 is to
play D in states number h1 and h2 of the (j + 1)’th C-block, and observe the actions that
Player 1 plays in the following stages. If the parameters of Player 1’s realized pure automaton
are not (j∗, h∗

1, h
∗
2), then its automaton will restart, initiating a punishment phase of length k3. We

will show below that for each triplet (j∗, h∗
1, h

∗
2) on which Player 2 enumerates, her automaton

must devote distinct k3 states to pass the punishment phase (Lemma 15 below). Once Player 2
identified the correct triplet (j∗, h∗

1, h
∗
2), she can use this information to increase her average

payoff.
If memory were costless, such a deviation would be profitable: When memory is costly this

is not necessarily the case. In our construction, the number of pure automata in the support of
Player 1’s mixed automaton is O(k). Therefore, to learn the parameters (j, h1, h2) that Player 1
uses with a nonnegligible probability, say ε, Player 2 needs an automaton of size O(εk4), whose
cost is O(cεk4), where c is the cost of each memory cell. Since payoffs are bounded, such a
deviation leads to a profit of O(ε). The size of Player 2’s automaton that we described above
is O(k3). Consequently, if c = O(k−3.5), the cost of the automaton of Player 2, whose size
is k3 + 2k2 + k + 4, vanishes as k goes to infinity, while the cost of the automaton that with
a nonnegligible probability learns the parameters (j, h1, h2) goes to infinity. This implies that
Player 2 cannot profit by deviating to a larger automaton for certain memory cost.

The discussion in the previous paragraph implies that the two mixed automata that we con-
struct are not best response to each other when memory is costless; They are best response to
each other when the memory cost is c = O(k−3.5).

4. Comments and open problems

4.1. The discounted game

One could study variations of the definition of BCC equilibrium when using the discounted
payoff instead of the long-run average payoff.

Given c > 0 and a discount factor λ ∈ (0, 1), a pair of mixed automata (M1, M2) is a
(c, λ)-BCC equilibrium payoff if it is a Nash equilibrium for the utility functions Uc,λ

(M1, M2) =
i

P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364 353
γ λ
i (M1, M2) − c|Mi | for i = 1, 2, where γ λ

i (M1, M2) is the λ-discounted payoff of player
i when the players use the mixed automata (M1, M2). A vector x ∈ R

2 is a BCC equilib-
rium payoff if it is the limit, as c goes to 0 and λ goes to 1, of payoffs that correspond to
(c, λ)-BCC equilibria. That is, there is a sequence (cn)n∈N and (λn)n∈N that converge to 0 and
1, respectively, and for each n there is a (cn, λn)-BCC equilibrium (Mcn,λn

1 , Mcn,λn

2), such that
limn→∞ γ λ(M

cn,λn

1 , Mcn,λn

2) = x and limn→∞ cn|Mcn,λn

i | = 0 for i = 1, 2.
Our folk theorem holds for this concept, with the same construction.

4.2. A more general definition of a BCC equilibrium

The definition of the concept of c-BCC equilibrium assumes that the utility of each player is
additive, and that the memory cost is linear in the memory size. There are applications where the
utility function Ui has a different form.

• Players may disregard the memory cost, but be bounded by the size of memory that they
use.

Ui(M1,M2) =
{

γi(M1,M2) |Mi | ≤ ki,

−∞ |Mi | > ki.

This situation occurs, e.g., when players are willing to invest huge amounts of money even if
the profit is low, but the available technology does not allow them to increase their memory
size beyond some limit. Such a situation may occur, e.g., in the area of code breaking, where
countries invest large sums of money to be able to increase the number of other countries’
codes that they break, yet they are bounded by technological advances.

• Memory is costly, yet players do not save money by reducing their memory size. That is,
a pair of mixed automata (M1, M2) is a c-BCC equilibrium if for each player i ∈ {1, 2}
and for every pure automaton Pi ∈ supp(Mi) one has γi(Mi, M3−i) = γi(Pi, M3−i), and, if
|Pi | > |Mi |, one has γi(Mi, M3−i) ≥ γi(Pi, M3−i) − c(|Pi | − |Mi |). This situation occurs,
e.g., when the players are organizations whose size cannot be reduced.

It may be of interest to study the set of equilibrium payoffs for various utility functions Ui ,
and to see whether and how this set depends on the shape of this function.

4.3. More than two players

The concept of BCC equilibrium payoff is valid for games with any number of players. How-
ever, Theorem 4 holds only for two-player games. One crucial point in our construction is that
if a deviation is detected, a player is punished for a long (yet finite) period of time by a punish-
ing action. When there are more than two players, the punishing action of, say, Player 1 against
Player 2 may be different that the punishing action of Player 1 against Player 3. It is not clear
how to construct an automaton that can punish each of the other players, if necessary, and such
that all these memory cells will be used on the equilibrium path.

354 P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364
Appendix A. The complexity of a sequence of action pairs

In this section we provide tools to calculate lower bounds to the complexity of sequences and
we prove that the complexity of ω∗, which is defined in (2), w.r.t. each of the players is at least
the quantities given in Corollaries 7 and 8 below.

When ω = (ω(t))t is a (finite or infinite) sequence of action pairs, we denote by compi (ω)

the complexity of ω w.r.t. player i. We denote by ωi(t) player i’s action at time t at ω. When Pi

is an automaton of player i, we denote by qi(t) the state of Pi at time t .
The following lemma lists several simple observations that we will use in the sequel. The first

property says that if the action that Pi plays in stage t1 differs from the action it plays in stage
t2, then in those stages it is in different states. The second property says that if Pi is in different
states in stages t1 + 1 and t2 + 1, and if the action pair played in stage t1 equals the action pair
that is played in stage t2, then Pi must have been in different states already in stages t1 and t2.
The third property is a generalization of the second property: if Pi is in different states in stages
t1 +m and t2 +m, and if the action pair played in stage t1 + l equals the action pair that is played
in stage t2 + l for l ∈ {0, 1, . . . , m − 1}, then Pi must have been in different states already in
stages t1 and t2. The fourth property says that the complexity of a finite sequence of action pair
w.r.t. Player 1 is independent of the action that Player 2 plays in the last stage.

Lemma 5. Let Pi be a pure automaton of player i that is compatible with ω.

1. If ωi(t1) �= ωi(t2) then qi(t1) �= qi(t2).
2. If qi(t1 + 1) �= qi(t2 + 1) and ω(t1) = ω(t2), then qi(t1) �= qi(t2).
3. If qi(t1 + m) �= qi(t2 + m) and ω(t1 + l) = ω(t2 + l) for every l ∈ {0, 1, . . . , m − 1}, then

qi(t1) �= qi(t2).
4. If ω = (ω(t))Tt=1 and ω′ = (ω′(t))Tt=1 are two finite sequences that differ only in the action

of Player 2 at stage T , that is, ωi(t) = ω′
i (t) for every t ∈ {1, 2, . . . , T } and every i ∈ {1, 2},

except t = T and i = 2, then the complexity of ω w.r.t. Player 1 is equal to the complexity of
ω′ w.r.t. Player 1.

Proof. The first claim holds since the automaton’s output is a function of the automaton’s state.
The second claim follows since the new state of the automaton is a function of the current state
and of the other player’s action. The third claim follows from the second claim by induction. The
fourth claim follows since for a finite sequence, the action of Player 2 in the last stage T does
not affect the evolution of the automaton of Player 1 in the first T stages. �

A (finite or infinite) sequence of action pairs ω = (ω(t))t is coordinated if ω1(t) = ω1(t
′) if

and only if ω2(t) = ω2(t
′), for every t �= t ′. The following result follows from Neyman (1998).

Lemma 6. Let ω = (ω(t))Tt=1 be a coordinated sequence of action pairs and let T0 ≤ T . If
(ω(t))Tt=t2

is not a prefix of (ω(t))Tt=t1
for every t1 < t2 ≤ T0, then compi (ω) ≥ T0 for each

player i.

Proof. Assume to the contrary that the condition of the lemma holds but there is a pure automa-
ton for player i with size less than T0 that is compatible with ω. By the pigeon hole principle,
there are t1 < t2 ≤ T0 such that qi(t1) = qi(t2). By Lemma 5(1), ωi(t1) = ωi(t2), and since ω is
coordinated we have ω3−i(t1) = ω3−i (t2). It follows by Lemma 5(2) that qi(t1 + 1) = qi(t2 + 1).

P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364 355
Continuing inductively we deduce that qi(t1 + l) = qi(t2 + l) for every l for which t2 + l ≤ T .
This implies that (ω(t))Tt=t2

is a prefix of (ω(t))Tt=t1
, a contradiction. �

We can now calculate the complexity of the sequence ω∗ defined in Eq. (2) w.r.t. both players.

Corollary 7. comp1(ω
∗) ≥ k3 + 2k2 + k + 1.

Proof. The definition of the complexity of a sequence implies that the complexity of a sequence
cannot be lower than the complexity of any of its subsequences. Consider then the prefix ω′ of
length T = k3 +2k2 + k +3 of ω∗, which involves only a coordinated play. For this sequence the
condition in Lemma 6 is satisfied for ω∗ with T0 = k3 + 2k2 + k + 1, and therefore comp1(ω

′) ≥
k3 + 2k2 + k + 1, as desired. �
Corollary 8. comp2(ω

∗) ≥ k3 + 2k2 + k + 4.

Proof. Consider the prefix ω′ of ω∗ of length T = k3 + 2k2 + k + 4. Let ω′′ be the sequence ω′
after adding the action pair (D, D) at the end, and let ω′′′ be the sequence ω′ after adding the
action pair (C, D) at the end. Note that ω′′′ is a prefix of ω∗, hence comp2(ω

∗) ≥ comp2(ω
′′′).

By Lemma 5(4), comp2(ω
′′′) = comp2(ω

′′). Apply Lemma 6 to the sequence ω′′ with T0 =
k3 + 2k2 + k + 4 to deduce that comp2(ω

′′) ≥ k3 + 2k2 + k + 4. The result follows. �
Appendix B. BCC equilibria in the prisoner’s dilemma

In the present section the construction described in Section 3 is provided formally, and we
prove that it forms a BCC equilibrium. The construction in this case contains all ingredients and
complexities of the construction in the general case, yet, because the regular phase is short, there
is no need to carry many indices and execute complex computations. In the Online Appendix we
generalize this construction to any two-player repeated game.

Consider then the payoff vector

x = (x1, x2) = (7
6 , 19

6) = 1
6 (1,1) + 2

6 (3,3) + 3
6 (0,4). (3)

Our construction depends on a parameter k that determines the size of the automata that the
players use: Player 1 mixes between pure automata of size k3 + 2k2 + k + 1 and Player 2 mixes
between pure automata of size k3 + 2k2 + k + 4. Let k ≥ 36; to facilitate calculations we assume
that k is divisible by 4. In particular, the following inequalities, which will be used below, hold:
min{x1 − 1, x2 − 1} > 6

k
and k3 > 3k2 + 2k + 8.

As mentioned before, the equilibrium play will be

ω∗ = k3 × (D,D)︸ ︷︷ ︸
Punishment

+
k∑

n=1

(
k × (C,C) + k × (D,D)

) + (k + 1) × (C,C)

︸ ︷︷ ︸
Babbling

+
∞∑

n=1

R∗

︸ ︷︷ ︸
Regular

.

B.1. An automaton P1 for player 1 that is compatible with ω∗

Fix j ∈ {1, 2, . . . , k − 1} and h1, h2 ∈ {4, 5, . . . , k} such that h1 �= h2. In this section we
provide the formal definition of the pure automaton P1 = P

j,h1,h2
1 for Player 1 with size

k3 + 2k2 + k + 1 that is compatible with ω∗ and was described in Section 3.

356 P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364
Denote the states of P1 by the integers Q = {1, 2, . . . , k3 + 2k2 + k + 1}, where q∗ = 1 is the
initial state. Divide Q into three sets:

1. QP = {1, 2, . . . , k3} is the set of all states that implement the punishment phase.

2. QC =
(⋃k−1

n=0{k3 + 2nk + 1, . . . , k3 + 2nk + k}
)

∪ {k3 + 2k2 + 1, . . . , k3 + 2k2 + k + 1} is
the set of states in all C-blocks.

3. QD = ⋃k−1
n=0{k3 + 2nk + k + 1, . . . , k3 + 2nk + 2k} is the set of states in all D-blocks.

The output function is

f (q) =
{

D q ∈ QP ∪ QD,

C q ∈ QC,

and the transition function is as follows (see Figs. 2 and 4):

• As long as Player 2 complies with her part of ω∗, the automaton P1 advances from each state
to the following one:

g(q,f (q)) = q + 1, 1 ≤ q < k3 + 2k2 + k + 1.

• When P1 is at the last state and Player 2 plays C, the automaton moves to the last state of
the j ’th D-block:

g(k3 + 2k2 + k + 1,C) = k3 + 2jk.

• When P1 is at the third state of the (j + 1)’th C-block and Player 2 plays D, the automaton
moves to state h1 of the (j + 1)’th C-block:

g(k3 + 2jk + 3,D) = k3 + 2jk + h1.

• When P1 is at state h1 of the C-block and Player 2 plays D, the automaton moves to state
h2 of the (j + 1)’th C-block:

g(k3 + 2jk + h1,D) = k3 + 2jk + h2.

• When P1 is at state h2 of the C-block and Player 2 plays D, the automaton moves to last
state of the j ’th D-block:

g(k3 + 2jk + h2,D) = k3 + 2jk.

• All transitions that were not defined above lead to state 1, thereby initiating a punishment
phase.

B.2. A mixed automaton M1 = M1(k)

A mixed automaton Mi of player i is compatible with ω∗ if all the pure automata in its support
are compatible with ω∗.

The pure automaton P1 = P1(j, h1, h2) that was constructed in Section B.1 depends on three
parameters: j , h1, and h2. If Player 2 learns the three parameters or a subset thereof, she may
have a profitable deviation, either by decreasing the size of her automaton or by implementing a
payoff greater than x2.

P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364 357
D1. As discussed in Section 3, if Player 2 knows j , then she can decrease the size of her au-
tomaton by skipping part of the babbling phase.

D2. If Player 2 knows h1, she would know the distance between the first and second reused
states in the (j + 1)’th C-block. In particular, if instead of following her part in the regular
phase D + 2 × C + 3 × D she would play D + (2 + h1) × C + 2 × D, she would create the
cycle

2 × (D,D) + (2 + h1) × (C,C) + 2 × (C,D),

which yields to her (and to Player 1 as well) a higher average payoff.
D3. Similarly, if Player 2 knew h2 or h2 − h1, then she could profit by an appropriate deviation

in the regular phase.

This discussion implies that Player 1 must mask the parameters j , h1, and h2 that she uses. This
is done by defining a mixed automaton M1 = M1(k), which chooses these parameters randomly.

Let H = {(jd, hd
1 , hd

2) : 1 ≤ d ≤ k
4 } be a collection of k

4 triplets that satisfy the following
conditions:

A1 (jd)
k/4
d=1 are distinct elements from {1, 2, . . . , k − 1} and (hd

1 , hd
2)

k/4
d=1 are distinct elements

from {4, 5, . . . , k}.
A2 h

d1
2 − h

d1
1 �= h

d2
2 − h

d2
1 for every distinct d1, d2 ∈ {1, 2, . . . , k4 }.

One can define, e.g., jd = d , hd
1 = 3 + d and hd

2 = hd
1 + k

4 + d for every d ∈ {1, 2, . . . , k4 }.
The mixed automaton M1 = M1(k) chooses uniformly one of the pure automata in P1 :=

{P j,h1,h2
1 , (j, h1, h2) ∈ H}. In particular, all pure automata in the support of M1 are compatible

with ω∗ for Player 1, so that M1 is compatible with ω∗ for Player 1 as well.
The most significant implication of Properties (A1)–(A2) is the following. Player 2 may face

any of the k4 pure automata in P1. To deviate, the play of Player 2 must differ from ω∗. Properties
(A1) and (A2) ensure that if Player 2 deviates from ω∗, then all pure automata in P1, except
possibly one, will restart within 2k2 +k+1 stages. That is, with probability close to 1, a deviation
from ω∗ starts a punishment phase. This observation is the content of the following result.

Lemma 9. Let P1 = P
j,h1,h2
1 and P ′

1 = P
j ′,h′

1,h
′
2

1 be two different pure automata in the support
of M1 and let P2 be any pure automaton of Player 2. Let t be the first stage in which the play
under (P1, P2) differs from ω∗. Then at least one of the automata P1 and P ′

1 restarts before stage
t + 2k2 + k + 1.

Note that since both P1 and P ′
1 are compatible with ω∗, the first stage in which the play under

(P ′
1, P2) differs from ω∗ is also t . The Lemma is valid for any strategy of Player 2, not necessarily

those implementable by pure automata.

Proof of Lemma 9. Denote by q(t) (resp. q ′(t)) the state of the automaton P1 (resp. P ′
1) at stage

t when facing P2. Denote by ω∗(t) the action pair at stage t according to ω∗. Then ω∗
2(t) is the

action that Player 2 is supposed to play at stage t according to ω∗.
Since P1 and P ′

1 are compatible with ω∗, and since in stage t the play under (P1, P2) differs
from ω∗, it follows that in stage t the pure automaton P2 does not play the action ω∗

2(t). If q(t)

(resp. q ′(t)) is not an accept-all state, then the automaton P1 (resp. P ′
1) restarts at stage t , and the

lemma follows. Thus, we assume from now on that both q(t) and q ′(t) are accept-all states.

358 P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364
In which stages do both P1 and P ′
1 visit an accept-all state? During the punishment phase

none of these automata visits an accept-all state, and since j1 �= j ′
1, during the implementation of

the babbling phase they do not visit accept-all states at the same stage. Thus, only in the regular
phase both automata visit accept-all states simultaneously, when implementing the action pairs
(C, D). We will show that if P2 deviates when P1 implements either one of these action pairs,
a punishment phase will ensue in at most 2k2 + k + 1 stages.

Suppose first that state q(t) is the h1’th state of the (j + 1)’th C-block. Then q ′(t) is the
h′

1’th state of the (j ′ + 1)’th C-block. Since P2 deviates in stage t , it plays C instead of D, so
that q(t + 1) = q(t) + 1 and q ′(t + 1) = q ′(t) + 1. The automaton P1 expects now the sequence
(k−h1) ×(C, C) +1 ×(D, D) and is going to visit an accept-all state in h2 −h1 stages. Similarly,
the automaton P ′

1 expects now the sequence (k −h′
1) × (C, C) + 1 × (D, D) and is going to visit

an accept-all state in h′
2 −h′

1 stages. By (A1)–(A2) we have h1 �= h′
1 and h2 −h1 �= h′

2 −h′
1, and

therefore no sequence of actions that P2 can generate is compatible with both automata, hence at
least one of them will restart within at most k stages.

The argument is similar if state q(t) is the h2’th stage of the (j + 1)’th C-block.
It is left to handle the case in which state q(t) is the third stage of the (j + 1)’th C-block, in

which case state q ′(t) is the third stage of the (j ′ + 1)’th C-block. The automaton P1 expects the
sequence

ω := (k −3)× (C,C)+k × (D,D)+
k∑

n=j+2

(k × (C,C)+k × (D,D))+ (k +1)× (C,C),

and visits two accept-all states in h1 − 3 and h2 − 3 stages. Similarly, the automaton P ′
1 expects

the sequence

ω′ := (k−3)× (C,C)+k× (D,D)+
k∑

n=j ′+2

(k× (C,C)+k× (D,D))+ (k+1)× (C,C),

and visits two accept-all states in h′
1 − 3 and h′

2 − 3 stages. By (A1)–(A2) we have h1 �= h′
1,

h2 �= h′
2, and j �= j ′, and therefore no sequence of actions that P2 can generate is compatible

with both automata, hence at least one of them will restart within at most 2k2 + k + 1 stages. �
Remark 10. Lemma 9 assumes that both automata start at state 1. The reader can verify that
the proof is valid as soon as the two automata start at the same state; that is, it holds whenever
q(1) = q ′(1).

B.3. An automaton P2 for player 2 that is compatible with ω∗

As in Section B.1 we define a family of pure automaton for Player 2, which are compatible
with ω∗ and have size k3 + 2k2 + k + 4. As for player 1, the automata in the family depend on
two parameters, an integer j ∈ {1, 2, . . . , k − 1} and a set H = {h1, h2, h3} of three integers that
satisfy 1 ≤ h1 < h2 < h3 ≤ k.

Let Q = {1, 2, . . . , k3 +2k2 +k+4} be the set of states of the automaton with q∗ = 1 the initial
state. The sets QP , QC , and QD of the states that implement the punishment phase, the C-blocks,
and the D-blocks, respectively, and the output function f , are defined as in Section B.1. The
transition function along the coordinated play is

g(q,f (q)) = q + 1, 1 ≤ q < k3 + 2k2 + k + 1.

P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364 359
We now add transitions that implement the next three action pairs in ω∗, which are ω5 =
(D, D) + 2 × (C, C). To this end we use the last three states of Q.

The action function for these states is given by

f (k3 + 2k2 + k + 2) = D;f (k3 + 2k2 + k + 3) = C;f (k3 + 2k2 + k + 4) = C

and the transition is given by

g(q,f (q)) = q + 1, k3 + 2k2 + k + 1 ≤ q < k3 + 2k2 + k + 4.

The last part of the regular phase, 3 × (C, D), is implemented by reusing states h1, h2, and h3 in
the j ’th D-block:

g(k3 + 2k2 + k + 4,C) = k3 + 2k(j − 1) + k + h1, (4)

g(k3 + 2k(j − 1) + k + h1,C) = k3 + 2k(j − 1) + k + h2, (5)

g(k3 + 2k(j − 1) + k + h2,C) = k3 + 2k(j − 1) + k + h3. (6)

Finally, from state k3 + 2k(j − 1) + k + h3 the regular phase should be repeated, so that we
define

g(k3 + 2k(j − 1) + k + h3,C) = k3 + 2k2 + k + 2.

All transitions that are not defined above lead to state 1, The automaton that we just constructed is
denoted P j,h1,h2,h3

2 . Its accept-all states are states k3 +2k(j −1) +k+h1, k3 +2k(j −1) +k+h2,
and k3 + 2k(j − 1) + k + h3.

B.4. A mixed automaton of player 2

The definition of the mixed strategy M2 is analog to that of M1. The pure automaton P2 =
P2(j, h1, h2, h3) that was constructed in Section B.3 depends on four parameters j , h1, h2 and
h3. We will now define a mixed automaton M2 = M2(k) that chooses these parameters randomly.

Let H = {(jd, hd
1 , hd

2 , hd
3) : 1 ≤ d < k

6 } be a collection of k
6 triplets that satisfy the following

conditions:

B1 (jd)
k/6
d=1 are distinct elements from {1, 2, . . . , k − 1}, and (hd

1 , hd
2 , hd

3)
k/6
d=1 are distinct ele-

ments from {1, 2, . . . , k}.
B2 For every distinct d1, d2 ∈ {1, 2, . . . , k6 } the six numbers hd1

2 − h
d1
1 , hd2

2 − h
d2
1 , hd1

3 − h
d1
2 ,

h
d2
3 − h

d1
2 , hd1

3 − h
d1
1 , and hd2

3 − h
d1
1 are distinct.

One can define, e.g., jd = d , hd
1 = d , hd

2 = 2d + k
6 , and hd

3 = 3d +3 k
6 , for every d ∈ {1, 2, . . . , k6 }.

The mixed automaton M2 = M2(k) chooses uniformly one of the pure automata in P2 :=
{P j,h1,h2,h3

2 , (j, h1, h2, h3) ∈ H}. As for Player 1, all pure automata in the support of M2 are
compatible with ω∗ for Player 2, so that M1 is compatible with ω∗ for Player 1 as well. The
analog of Lemma 9 is the following.

Lemma 11. Let P2 = P
j,h1,h2,h3
2 and P ′

2 = P
j ′,h′

1,h
′
2,h

′
3

2 be two different pure automata in the
support of M2 and let P1 be any pure automaton of Player 1. Let t be the first stage in which the
play under (P1, P2) differs from ω∗. Then at least one of the automata P2 and P ′

2 restarts before
stage t + 2k2 + k + 1.

360 P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364
B.5. (M1, M2) is a c-BCC equilibrium

In this section we prove that (M1, M2) is a c-BCC equilibrium, provided the cost of memory
c is neither too high nor too low. If c is very low, switching to a significantly larger automaton
may not be too costly, while if c is very high, the cost of the automaton Mi , which is c|Mi |, is
high, so that the players will profit by deviating to a small automaton, thereby saving the cost of
the automaton. Here we will prove that if 12

k4 < c <
η

4k3 then (M1, M2) is a c-BCC equilibrium,
where η < min{x∗

1 − 1, x∗
2 − 1}.

By construction, the average payoff under (M1, M2) is γ (M1, M2) = x∗ = (7
6 , 19

6).
How can a player increase her payoff? To this end she needs to learn which states are the

accept-all states of the other player’s realized pure automaton. In our construction each state
is reused by at most one pure automaton, and therefore learning the identity of the accept-all
states essentially means enumerating over all their possible values. There are O(k) different
possibilities for accept-all states, and each failed attempt requires (at least) k3 new states to
pass the ensuing punishment phase. It follows that to successfully learn the accept-all states the
deviator has to use a memory of size of the order of k4. The relation between c and k ensures
that such a deviation is not profitable. We now turn this intuition into a formal argument.

B.5.1. A lower bound on the size of player 2’s automaton that can gain against M1

In the present section we provide a lower bound on the size of an automaton P2 of Player 2
that profits when facing M1. As we will see, the size of such an automaton P2 will be larger than
O(k3), the complexity of ω∗.

Denote by (P d
1)

k/4
d=1 the pure automata in the support of M1. Suppose that the players use the

automata (P d
1 , P2). Denote by q2(t; P d

1) the state of the automaton P2 at stage t when it faces
the automaton P d

1 .
If P2 is not compatible with ω∗ for Player 2, then P d

1 restarts whenever a deviation from ω∗
is detected, and a punishment phase starts. Denote by tdn the stage at the n’th time in which P d

1
visits state 1 when facing P2, that is, the stage in which the n’th punishment phase starts:

td1 := 1,

tdn+1 := min
{
t > tdn : q1(t) = 1

}
, n ≥ 1.

By convention, the minimum of an empty set is ∞.
There are two scenarios in which Player 2 may improve her long-run average payoff. One

possibility is if there exists n such that tdn < ∞ = tdn+1. Then tdn is the last stage in which the
automaton P d

1 restarts. If the play after stage tdn is different from ω∗, it means that Player 2 plays
as if she knows (some of) the parameters that determine P d

1 , and she might use this information
to improve her payoff. Another possibility is that (tdn)n∈N are finite and between two of these
stages the average payoff of Player 2 is higher7 than x∗

2 .
This leads us to the following definition. For every d ∈ {1, 2, . . . , k4 } and every n ∈ N let ωd

n

be the play generated from stage n and on under (P d
1 , P2).

7 In fact, if (tdn)n∈N are finite then, so that Player 2 improves her payoff, the average payoff between tdn and td
n+1 − 1

should be higher than x∗ infinitely often.

P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364 361
Definition 12. The automaton P2 fools the automaton P d
1 if either one of the following conditions

hold when the automata (P d
1 , P2) face each other.

C1) There is n0 ∈ N such that tdn0
< ∞ = tdn0+1 and ωd

n0
�= ω∗.

C2) tdn < ∞ for every n ∈ N, and there is n0 ∈ N such that the average payoff for Player 2
between stages tdn0

and tdn0+1 − 1 is strictly higher8 than x∗
2 .

Since the punishment phase lowers the average payoff, provided that k is sufficiently large, if
Condition C2 holds, then the play between stages tdn0

and tdn0+1 − 1 is not a prefix of ω∗.

Neither C1 nor C2 imply that the long-run average payoff under (P d
1 , P2) is higher than x∗

2 .
Yet, as the next lemma shows, the converse is true: if the long-run average payoff of Player 2
under (P d

1 , P2) exceeds x∗
2 , then P2 must have fooled P d

1 .

Lemma 13. If P2 does not fool P d
1 then γ2(P

d
1 , P2) ≤ x∗

2 .

Proof. Since both P d
1 and P2 are automata, γ2(P

d
1 , P2), which is the long-run average payoff of

Player 2 under (P d
1 , P2), exists. Suppose first that tdn < ∞ for every n ∈ N. Since P2 does not

fool P d
1 , for every n ∈N the average payoff of Player 2 between stages tdn and tdn+1 − 1 is at most

x∗
2 , and therefore γ2(P

d
1 , P2) ≤ x∗

2 .
Suppose now that there is n0 ∈ N such that tdn0

< ∞ = tdn0+1. Since P2 does not fool P d
1 , we

have ωd
n0

= ω∗, so that γ2(P
d
1 , P2) = x∗

2 , and the result follows. �
The following proposition states that to be able to fool L0 pure automata in the support of M1,

Player 2 must use an automaton of size at least L0k
3. To profit Player 2 needs to fool many of

the pure automata in P1, hence this result will induce a lower bound on the size of an automaton
of Player 2 that profits by deviating.

Proposition 14. Denote by L0 the number of pure automata P d
1 , 1 ≤ d ≤ k

4 , that P2 fools. Then
|P2| ≥ L0k

3.

Proof. If condition C1 in Definition 12 holds, we say that P2 fools P d
1 in stages {tdn0

, tdn0
+1, . . .}.

If condition C2 holds, we say that P2 fools P d
1 in stages {tdn0

, tdn0
+ 1, . . . , tdn0+1 − 1}. In both

cases9 we set td∗ = tdn0
, and we say that at stage td∗ Player 2 starts to fool P d

1 . Denote by Rd =
{q2(t

d∗ ; P d
1), q2(t

d∗ +1; P d
1), · · · , q2(t

d∗ +k3 −1; P d
1)} the k3 states that P2 visits at the beginning

of the period in which it fools P d
1 . During these stages the automaton P d

1 executes the punishment
phase, and the payoff of Player 2 is low.

The following lemma implies Proposition 14.

Lemma 15. Let 1 ≤ d1 < d2 ≤ k
4 . If P2 fools both P d1

1 and P d2
1 , then |Rd1 | = |Rd2 | = k3 and

Rd1 ∩ Rd2 = ∅.

8 Observe that in this case td
n0+1 ≥ tdn0

+ k3. In fact, a stronger bound can be obtained.
9 If condition C2 holds, there may be several stages n0 at which P2 starts to fool Pd

1 . In such a case we choose one of
them arbitrarily.

362 P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364
Proof. The first k3 + 1 action pairs of ω∗ are coordinated, and the (k3 + 1)’th action of Player 2
differs from her actions in the first k3 stages. Lemma 5(3) implies the following:

Fact 1. If P2 fools P d
1 then the states in Rd are distinct: |Rd | = k3.

Lemma 5(3) also implies the following:

Fact 2. If Rd1 and Rd2 are not disjoint, then the last state in Rd1 coincides with the last state in
Rd2 , that is, q2(t

d1∗ + k3 − 1; P d1
1) = q2(t

d2∗ + k3 − 1; P d2
1).

Indeed, suppose that Rd1 and Rd2 are not disjoint, and assume that q2(t
d1∗ + n1; P d1

1) =
q2(t

d2∗ +n2; P d2
1). We argue that necessarily n1 = n2. This will imply that the last state in Rd1 co-

incides with the last state in Rd2 . Assume then to the contrary that, w.l.o.g., n1 < n2. Lemma 5(3)
implies that q2(t

d1∗ + n1 + s; P d1
1) = q2(t

d2∗ + n2 + s; P d2
1) for every s that satisfies 1 ≤ s ≤

k3 −n2 + 1. Since P2 fools P d1
1 , the action that P2 plays in state q2(t

d1∗ +n1 + k3 −n2 + 1; P d1
1)

is D. Since P2 fools P d2
1 , the action that P2 plays in state q2(t

d2∗ + n2 + k3 − n2 + 1; P d2
1) is C.

But q2(t
d1∗ + n1 + k3 − n2 + 1; P d1

1) = q2(t
d2∗ + n2 + k3 − n2 + 1; P d2

1), a contradiction.
We are now ready to prove that Rd1 ∩ Rd2 = ∅.
Assume to the contrary that Rd1 and Rd2 are not disjoint. By Fact 2, the last state in Rd1

coincides with the last state in Rd2 , that is, q2(t
d1∗ +k3 −1; P d1

1) = q2(t
d2∗ +k3 −1; P d2

1). Because,
for i = 1, 2, at stage tdi∗ the automaton P2 starts fooling P di

1 , it follows that the play under
(P

di

1 , P2) after this stage is different from ω∗. Denote by tdi∗ + t the first stage in which the play
under (P di

1 , P2) differs from ω∗. Lemma 9 implies that at least one of the automata (P di

1)i=1,2,
say the automaton P d1

1 , restarts before stage tdi∗ + t + 2k2 + k + 1 (see Remark 10). We argue
that P2 does not fool P d1

1 , a contradiction.

Indeed, the play from stage td1∗ until the automaton P d1
1 restarts consists of

• k3 stages of the punishment phase, in which Player 2’s payoff is 1 per stage;
• 2k2 + k + 1 stages of the babbling phase in which her payoff is at most 4 in each stage10;
• several rounds, say r , of the regular phase, in which her average payoff is x2 per round;
• if deviation occurs in a regular phase, at most 6 stages in a portion of the regular phase, in

which the per-period payoff is at most 4;
• and at most k2 + k + 1 stages between the deviation and the stage in which P d1

1 restarts, in
which her payoff is at most 4 in each stage.

Thus, Player 2’s average payoff between stage td1∗ and the stage in which P d1
1 restarts is at most

k3 × 1 + (3k2 + 2k + 8) × 4 + 6r × x2

k3 + 3k2 + 2k + 8 + 6r
, (7)

which is strictly lower than x2 provided

10 Or at most 2k2 + k + 1 stages, if deviation occurs during the babbling phase.

P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364 363
x2 >
k3 + 12k2 + 8k + 32

k3 + 3k2 + 2k + 8
> 1 + 6

k
,

as we claimed. �
The analog of Proposition 14 for Player 1 is the following.

Theorem 16. Let P1 be a pure automaton of Player 1, and denote by L0 the number of pure
automata P d

2 that P1 fools. Then |P1| ≥ L0k
3.

B.5.2. A BCC-equilibrium
In this section we argue that the pair of automata (M1, M2), which was constructed in Sec-

tions B.2 and B.4, is a c-BCC equilibrium, provided k is sufficiently large and 12
k4 < c <

η

4k3 . We
only prove the claims for Player 2. The claims for Player 1 can be proven analogously. Below we
denote the state of an automaton of player i at stage t by qi(t).

We now prove that Player 2 cannot profit by deviating to an automaton smaller than M2.

Lemma 17. Assume that k and c satisfy 24
k

<
η
2 and c <

η

2k3 . Let P ′
2 be an automaton for Player 2

with size smaller than k3 + 2k2 + k + 4. Then γ2(M1, P ′
2) − c|P ′

2| ≤ γ2(M1, M2) − c|M2|.

Proof. Because the complexity of ω∗ w.r.t. Player 2 is k3 + 2k2 + k + 4, the play under (P l
1, P

′
2)

is not ω∗. By Lemma 15, and because the size of P2 is smaller than 2k3, the automaton P ′
2 can

fool at most one of the automata (P d
1)

k/4
d=1. Because it cannot generate ω∗, any automaton that P2

does not fool restarts after at most k3 + 2k2 + k + 3 stages, so that the average payoff is at most
k3

k3+2k2+k+3
+ 4 2k2+k

k3+2k2+k+3
. It follows that the expected payoff γ2(M1, P ′

2) is at most

4
1

k/4
+

k
4 − 1

k
4

(
k3

k3 + 2k2 + k + 3
+ 4

2k2 + k

k3 + 2k2 + k + 3

)
≤ 1 + 24

k
< 1 + η

2
.

Because the size of the automaton M2 is k3 + 2k2 + k + 4, the gain of reducing the size of
automaton from |M2| to |P ′

2| is at most c(k3 + 2k2 + k + 3). Player 2 does not profit by this
deviation as soon as

x∗
2 ≥ 1 + 24

k
+ c(k3 + 2k2 + k + 3),

and therefore it is enough to require that

x∗
2 − 1 > η >

24

k
+ c(k3 + 2k2 + k + 3).

The right-hand side inequality holds, provided

c <
η − 24

k

k3 + 2k2 + k + 3
,

so it is enough to require that c <
η

4k3 . �

We finally prove that Player 2 cannot profit by deviating to an automaton larger than M2.

364 P. Hernández, E. Solan / Journal of Economic Theory 163 (2016) 342–364
Lemma 18. Let P ′
2 be a pure automaton such that γ2(M1, P ′

2) > x2. Then γ2(M1, P ′
2) − c|P ′

2| ≤
γ2(M1, M2) − c|M2|, provided c > 12

k4 .

Proof. Let L0 be the number of pure automata (P d
1)

k/4
d=1 that P2 fools. Because γ2(M1, P ′

2) > x∗
2

we have L0 ≥ 1. If P2 fools the realized pure automaton of Player 1, then Player 2’s long-run
average payoff is at most 4, the maximal payoff in the game. If P2 does not fool the realized
pure automaton of Player 1, then Player 1’s long-run average payoff is at most x∗

2 . The expected
long-run average payoff of Player 2 then satisfies

γ2(M1,P
′
2) ≤ 4

L0
k
4

+ x∗
2

k
4 − L0

k
4

< x∗
2 + 12

L0

k
.

By Theorem 16 we have |P ′
2| ≥ L0k

3, and therefore

γ2(M1,P
′
2) < x∗

2 + 12
L0

k
= x∗

2 + 12
L0k

3

k4
≤ x∗

2 + |P ′
2| ×

12

k4
.

Therefore, as soon as c > 12
k4 Player 2 does not profit by this deviation. �

To summarize, given the feasible and individually rational payoff vector x∗, we choose η ∈
(0, min{x∗

1 − 1, x∗
2 − 1}). For every c > 0 we define k = k(c) by the equality c = η

k3.5 . Then
12
k4 < c <

η

3k3 , provided c is small enough (so that k(c) is large enough). The pair of automata
(M1(k(c)), M2(k(c))) are then c-BCC equilibrium with payoff x∗.

Appendix C. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2016.02.007.

References

Abreu, D., Rubinstein, A., 1988. The structure of Nash equilibrium in repeated games with finite automata. Economet-
rica 56, 1259–1281.

Banks, J., Sundaram, R., 1990. Repeated games, finite automata and complexity. Games Econ. Behav. 2, 97–117.
Ben Porath, E., 1993. Repeated games with finite automata. J. Econ. Theory 59, 17–32.
Hernández, P., Solan, E., 2016. Bounded computational capacity equilibrium – online appendix. Available at

www.math.tau.ac.il/~eilons.
Kalai, E., 1990. Bounded rationality and strategic complexity in repeated games. In: Ichiishi, Neyman, Tauman (Eds.),

Game Theory and Applications. Academic Press, San Diego, pp. 131–157.
Neyman, A., 1985. Bounded complexity justifies cooperation in the finitely-repeated prisoners’ dilemma. Econ. Lett. 19,

227–229.
Neyman, A., 1997. Cooperation, repetition and automata. In: Hart, S., Mas-Colell, A. (Eds.), Cooperation: Game-

Theoretic Approaches. In: NATO ASI Series F, vol. 155. Springer-Verlag, pp. 233–255.
Neyman, A., 1998. Finitely repeated games with finite automata. Math. Oper. Res. 23, 513–552.
Neyman, A., Okada, D., 1999. Strategic entropy and complexity in repeated games. Games Econ. Behav. 29, 191–223.
Neyman, A., Okada, D., 2000a. Repeated games with bounded entropy. Games Econ. Behav. 30, 228–247.
Neyman, A., Okada, D., 2000b. Two-person repeated games with finite automata. Int. J. Game Theory 29, 309–325.
Piccione, M., 1992. Finite automata equilibria with discounting. J. Econ. Theory 56, 180–193.
Piccione, M., Rubinstein, A., 1993. Finite automata play a repeated extensive game. J. Econ. Theory 61, 160–168.
Rubinstein, A., 1986. Finite automata play the repeated prisoner’s dilemma. J. Econ. Theory 39, 83–96.
Zemel, E., 1989. Small talk and cooperation: a note on bounded rationality. J. Econ. Theory 49, 1–9.

http://dx.doi.org/10.1016/j.jet.2016.02.007
http://dx.doi.org/10.1016/j.jet.2016.02.007
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib41523838s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib41523838s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib42533930s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib423933s1
http://www.math.tau.ac.il/~eilons
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib4B616C6169s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib4B616C6169s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib4E3835s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib4E3835s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib4E3937s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib4E3937s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib4E3938s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib4E4F3939s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib4E4F3030s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib4E4F494A47543030s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib503932s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib50523933s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib523836s1
http://refhub.elsevier.com/S0022-0531(16)00028-4/bib5A3839s1

	Bounded computational capacity equilibrium
	1 Introduction
	2 The model and the main result
	2.1 Repeated games
	2.2 Automata
	2.3 Strategies implemented by automata
	2.4 Bounded computational capacity equilibrium
	2.5 The main result
	2.6 A detour to Abreu and Rubinstein (1988)

	3 An example
	4 Comments and open problems
	4.1 The discounted game
	4.2 A more general deﬁnition of a BCC equilibrium
	4.3 More than two players

	Appendix A The complexity of a sequence of action pairs
	Appendix B BCC equilibria in the prisoner's dilemma
	B.1 An automaton P1 for player 1 that is compatible with ω*
	B.2 A mixed automaton M1 = M1(k)
	B.3 An automaton P2 for player 2 that is compatible with ω*
	B.4 A mixed automaton of player 2
	B.5 (M1,M2) is a c-BCC equilibrium
	B.5.1 A lower bound on the size of player 2's automaton that can gain against M1
	B.5.2 A BCC-equilibrium

	Appendix C Supplementary material
	References

