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Abstract

A celebrated result of Abreu and Rubinstein (1988) states that in repeated games, when the players are 
restricted to playing strategies that can be implemented by finite automata and they have lexicographic 
preferences, the set of equilibrium payoffs is a strict subset of the set of feasible and individually rational 
payoffs. In this paper we explore the limitations of this result. We prove that if memory size is costly and
players can use mixed automata, then a folk theorem obtains and the set of equilibrium payoffs is once 
again the set of feasible and individually rational payoffs. Our result emphasizes the role of memory cost 
and of mixing when players have bounded computational power.
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1. Introduction

The literature on repeated games usually assumes that players have unlimited computational 
capacity or unbounded rationality. Since in practice this assumption does not hold, it is important 
to study whether and how its absence affects the predictions of the theory.

One common way of modeling players with bounded rationality is by restricting them to 
strategies that can be implemented by finite state machines, also called finite automata. The 
game theoretic literature on repeated games played by finite automata can be roughly divided 
into two categories. One backed by an extensive literature (e.g., Kalai, 1990, Ben Porath, 1993, 
Piccione, 1992, Piccione and Rubinstein, 1993, Neyman 1985, 1997, 1998, Neyman and Okada 
1999, 2000a, 2000b, Zemel, 1989) that studies games where the memory size of the two players 
is determined exogenously, so that each player can deviate only to strategies with the given 
memory size. In the other, Rubinstein (1986), Abreu and Rubinstein (1988), and Banks and 
Sundaram (1990) study games where the players have lexicographic preferences: each player 
tries to maximize her payoff, and subject to that she tries to minimize her memory size. Thus, 
it is assumed that memory is free, and a player would deviate to a significantly more complex 
strategy if that would increase her profit by one cent. Abreu and Rubinstein (1988) proved that 
in this case, the set of equilibrium payoffs in two-player games is generally a strict subset of the 
set of feasible and individually rational payoffs. In fact, it is the set of feasible and individually 
rational payoffs that can be generated by a coordinated play; that is, a sequence of action pairs 
in which there is a one-to-one mapping between Player 1’s actions and Player 2’s actions. For 
example, in the Prisoner’s Dilemma that appears in Fig. 1, where each player has two actions, 
C and D, this set is the union of the two line segments (3, 3) − (1, 1) and (3, 1) − (1, 3).

To obtain their result, Abreu and Rubinstein (1988) make two implicit assumptions: (a) mem-
ory is costless, and (b) players can use only pure automata. Removing assumption (a) while 
keeping assumption (b) does not change the set of equilibrium payoffs. Indeed, since the pref-
erence of the players is lexicographic, no player can profit by deviating to a larger automaton 
when memory is costless, so a fortiori she has no profitable deviation when memory is costly. 
The construction in Abreu and Rubinstein (1988) ensures that a deviation to a smaller automaton 
yields the deviator a payoff which is close to her min-max value in pure strategies. Therefore, as 
soon as memory cost is sufficiently small, there is no profitable deviation to a smaller memory as 
well. We do not know whether and how the set of equilibrium payoffs changes when removing 
assumption (b) and keeping assumption (a).

Our goal in this paper is to show that if one removes both assumptions (a) and (b), then the 
result of Abreu and Rubinstein (1988) fails to hold. We will show that if memory is costly (yet 
memory cost goes to 0) and players can use mixed strategies, then a folk theorem obtains, and 
the set of equilibrium payoffs includes the set of feasible and individually rational payoffs (w.r.t. 
the min-max value in pure strategies). We assume for simplicity that the players have additive 
utility: the utility of a player is the difference between her long-run average payoff and the cost 
of her computational power.

We thus present a new equilibrium concept that is relevant when memory size matters and each 
player’s set of pure strategies is the set of finite automata. For a given positive real number c, we 
say that the vector x ∈ R

2 is a c-Bounded Computational Capacity equilibrium payoff (hereafter, 
BCC for short) if it is an equilibrium payoff when the utility of each player is the difference 
between her long-run average payoff, and c times the size of its finite state machine.
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Fig. 1. The Prisoner’s Dilemma: the payoff matrix, the feasible and individually rational payoffs (the dark quadrilat-
eral W ), and the payoffs that correspond to coordinated play (the two thick lines).

A payoff vector x ∈ R
2 is a BCC equilibrium payoff if it is the limit, as c goes to 0, of 

c-bounded computational capacity equilibrium payoffs, and the cost of the machines used along 
the sequence converges to 0.

Interestingly, the definition does not imply that the set of BCC equilibrium payoffs is a subset, 
nor a superset, of the set of Nash equilibrium payoffs in mixed strategy of the one-shot game.

Our main result is a folk theorem: in two-player games, every feasible and individually ra-
tional (w.r.t. the min-max value in pure strategies) payoff vector is a BCC equilibrium payoff in 
mixed strategies of the one-shot game.

Our proof is constructive. The equilibrium play in the BCC equilibrium that we construct is 
composed of three phases. The first phase, that is played only once along the equilibrium path, is 
a punishment phase; in this phase each player plays a strategy that punishes the other player, that 
is, an action that attains the min-max value in pure strategies of the opponent. As in Abreu and 
Rubinstein (1988), it is crucial to have the punishment phase on the equilibrium path; otherwise, 
players can use smaller machines that cannot implement punishment, thereby reducing their 
computation cost. However, if a machine cannot implement punishment, there is nothing that 
will deter the other player from deviating. The second phase, called the babbling phase, is also 
played only once along the equilibrium path. In this phase the players play a predetermined 
sequence of action pairs. In the third phase, called the regular phase, the players repeatedly play 
a predetermined periodic sequence of action pairs that approximates the desired target payoff. To 
implement this phase, the players will use states that were used in the babbling phase. We call 
those states “reused states”. The identity of the reused states is chosen at random at the outset of 
the game. The role of the babbling phase is twofold. First, it enables one to embed the regular 
phase within it; second, its structure is designed to simplify complexity calculations. It is long 
enough to ensure that to learn the states that the other player uses to implement the regular phase, 
a player needs a much larger automaton than the one that she currently uses. In our construction, 
the automaton that each player uses is not a best response to the automaton that the other player 
uses when memory cost is 0. In fact, players forgo a possible profit because to achieve this profit 
they need to significantly increase their memory, which is too costly.

Even though the definition of a BCC equilibrium is theoretically appealing, to prove the folk 
theorem we use outrageously large automata. For example, the size of the automata that we 
construct to approximate a target payoff vector by 0.01 is about (100)3.

Our result highlights the difference between lexicographic preferences (as in Abreu and 
Rubinstein, 1988) and positive albeit low memory cost. When players have lexicographic pref-
erences, they are willing to increase the memory size that they use for the profit of one cent. In 
particular, if the opponent’s automaton reuses some states, and the knowledge of the identity of 
those reused states is beneficial to the player, then to learn the identity of these states the player 
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is willing to significantly increase her memory size. When the memory cost is positive, such an 
increase may not be beneficial. This observation is the key to our construction.

The rest of the paper is organized as follows. Section 2 presents the model and the main result. 
The proof in the particular case of the Prisoner’s Dilemma is presented in Section 3. Comments 
and open problems appear in Section 4. In the Online Appendix (Hernández and Solan, 2016)
we indicate how the proof for the Prisoner’s Dilemma should be altered to fit general two-player 
games.

2. The model and the main result

In this section we define the model, including the concepts of automata, repeated games, and 
strategies implementable by automata, we describe our solution concept of Bounded Computa-
tional Capacity equilibrium, and we state the main result.

2.1. Repeated games

A two-player repeated game is given by (1) two finite action sets A1 and A2 for the two 
players, and (2) two payoff functions u1 : A1 × A2 → R and u2 : A1 × A2 → R for the two 
players.

The game is played as follows. At each stage t ∈ N, each player i ∈ {1, 2} chooses an action 
at
i ∈ Ai and receives the stage payoff ui(a

t
1, a

t
2). The goal of each player is to maximize her 

long-run average payoff limt→∞ 1
t

∑t
j=1 ui(a

j

1 , aj

2 ), where {(aj

1 , aj

2 ), j ∈ N} is the sequence of 
action pairs that were chosen by the players along the game.1

The set of feasible payoff vectors is

F := conv{u(a), a ∈A1 ×A2}.
A pure strategy of player i is a function that assigns an action in Ai to every finite history h ∈
∪∞

t=0(A1 ×A2)
t . A mixed strategy of player i is a probability distribution over pure strategies.

2.2. Automata

A common way to model a decision maker with bounded computational capacity is as an 
automaton, which is a finite state machine whose output depends on its current state, and whose 
evolution depends on the current state and on its input (see, e.g., Neyman, 1985 and Rubinstein, 
1986). Formally, an automaton P is given by (1) a finite state space Q, (2) a finite set I of 
inputs, (3) a finite set O of outputs, (4) an output function f : Q → O , (5) a transition function 
g : Q × I → Q, and (6) an initial state q∗ ∈ Q.

Denote by qt the automaton’s state at stage t . The automaton starts in state q1 = q∗, and at 
every stage t ∈ N, as a function of the current state qt and the current input it , the output of the 
automaton ot = f (qt ) is determined, and the automaton moves to a new state qt+1 = g(qt , it ).

The size of an automaton P , denoted by |P |, is the number of states in Q. Below we will use 
strategies that can be implemented by automata; in this case the size of the automaton measures 
the complexity of the strategy.

1 In general this limit need not exist. Our solution concept will take care of this issue.
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2.3. Strategies implemented by automata

Fix a player i ∈ {1, 2}. An automaton P , whose set of inputs is the set of actions of player 3 − i

and set of outputs is the set of actions of player i, that is, I =A3−i and O =Ai , can implement a 
pure strategy of player i. Indeed, at every stage t , the strategy plays the action f (qt ), and the new 
state of the automaton qt+1 = g(qt , at

3−i ) depends on its current state qt and on the action at
3−i

that the other player played at stage t . For i = 1, 2, we denote an automaton that implements a 
strategy of player i by Pi . We denote by Pm

i the set of all automata with m states that implement 
pure strategies of player i.

When the players use arbitrary strategies, the long-run average payoff needs not exist. How-
ever, when both players use strategies that can be implemented by automata, say P1 and P2 of 
sizes p1 and p2 respectively, the evolution of the automata follows a (deterministic) Markov 
chain with p1 × p2 states, and therefore the long-run average payoff exists. We denote this aver-
age payoff by γ (P1, P2) ∈ R

2.
A mixed automaton M is a probability distribution over pure automata.2 A mixed automaton 

corresponds to the situation in which the automaton that is used is not known, and there is a 
belief over which automaton is used. A mixed automaton defines a mixed strategy: at the outset 
of the game, a pure automaton is chosen according to the probability distribution given by the 
mixed automaton, and the strategy that the pure automaton defines is executed. We will use only 
mixed automata whose support is pure automata of a given size m.

When both players use mixed strategies that can be implemented by mixed automata, the 
expected long-run average payoff exists; it is the expectation of the long-run average payoff of 
the pure automata that the players play:

γ (M1,M2) := EM1,M2[γ (P1,P2)].

2.4. Bounded computational capacity equilibrium

In the present paper we study games where the utility function of each player takes into 
account the complexity of the strategy that she uses.

Definition 1. Let c > 0. A pair of mixed automata (M1, M2) is a c-BCC equilibrium, if it is a 
Nash equilibrium for the utility functions Uc

i (M1, M2) := γi(M1, M2) − c|Mi |, for i ∈ {1, 2}.

If the game has an equilibrium in pure strategies, then the pair of pure automata (P1, P2), 
both with size 1, which repeatedly play the equilibrium actions of the two players, is a c-BCC 
equilibrium, for every c > 0.

The min-max value of player i in pure strategies is

vi := min
a3−i∈A3−i

max
ai∈Ai

ui(ai, a3−i ).

An action a3−i that attains the minimum is termed a punishing action of player 3 − i. The set of 
strictly individually rational payoff vectors (relative to the min-max value in pure strategies) is

V := {
x = (x1, x2) ∈ R

2 : x1 > v1, x2 > v2
}
.

2 To emphasize the distinction between automata and mixed automata, we call the former pure automata.
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To get rid of the dependency of the constant c we define the concept of a BCC equilibrium 
payoff. A payoff vector x is a BCC equilibrium payoff if it is the limit, as c goes to 0, of payoffs 
that correspond to c-BCC equilibria.

Definition 2. A payoff vector x = (x1, x2) is a BCC equilibrium payoff if for every c > 0
there is a c-BCC equilibrium (M1(c), M2(c)) such that limc→0 γ (M1(c), M2(c)) = x and 
limc→0 c|Mi(c)| = 0 for i = 1, 2.

Every pure equilibrium payoff is a BCC equilibrium payoff (implemented by automata of 
size 1). Using Abreu and Rubinstein’s (1988) proof, one can show that any strictly individu-
ally rational payoff (relative to the min-max value in pure strategies) that can be generated by 
coordinated play is a BCC equilibrium payoff. For the formal statement, assume w.l.o.g. that 
|A1| ≤ |A2|.

Theorem 3. (See Abreu and Rubinstein, 1988.) Let σ : A1 → A2 be a one-to-one function. Then 
any payoff vector x in the convex hull of {u(a1, σ(a1)), a1 ∈A1} that satisfies xi > vi for i = 1, 2
is a BCC equilibrium payoff.

2.5. The main result

Our main result is the following folk theorem, which states that every feasible and strictly 
individually rational payoff vector is a BCC equilibrium payoff.

Theorem 4. If the set F ∩ V has a nonempty interior, then every vector in F ∩ V is a BCC 
equilibrium payoff.

Theorem 4 is not a characterization of the set of BCC equilibrium payoffs, because it does 
not rule out the possibility that a feasible payoff that is not individually rational (relative to the 
min-max value in pure strategies) is a BCC equilibrium payoff. That is, we do not know whether 
threats of punishments by a mixed strategy in the one-shot game can be implemented in a BCC 
equilibrium.

Theorem 4 stands in sharp contrast to the main message of Abreu and Rubinstein (1988)
where it is proved that lexicographic preferences, which are equivalent to an infinitesimal cost 
function c, imply that in equilibrium players follow coordinated play, so that the set of equilib-
rium payoffs is often strictly smaller than the set of feasible and individually rational payoffs. Our 
study shows that the result of Abreu and Rubinstein (1988) hinges on two assumptions: (a) mem-
ory is costless, and (b) the players use only pure automata. Once we assume that memory is costly 
and that players may use mixed automata, the set of equilibrium payoffs dramatically changes.

2.6. A detour to Abreu and Rubinstein (1988)

Abreu and Rubinstein (1988) study repeated games in which players have lexicographic pref-
erences and can use only pure automata. They consider both the undiscounted game and the 
discounted game with a discount factor that is close to 1. A pair of pure automata is an equilib-
rium if (a) no player can profit by deviating to any other pure automaton, and (b) a player who 
deviates to a smaller automaton loses.
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Abreu and Rubinstein (1988) prove that the set of equilibrium payoffs is the set of feasible 
and individually rational payoff vectors that can be generated by a coordinated play.

In the Prisoner’s Dilemma (see Fig. 1) the min-max level of each player is 1, and the punishing 
action of each player is D. The set of feasible and (weakly) individually rational payoffs is the 
quadrilateral W with extreme points (1, 1), (1, 3 2

3 ), (3, 3) and (3 2
3 , 1) (see Fig. 1). The result 

of Abreu and Rubinstein implies that the set of equilibrium payoffs is the union of the two line 
segments (1, 1) − (3, 3) and (1, 3) − (3, 1).

The argument leading to the result of Abreu and Rubinstein’s (1988) are the following.

1. When Player 1 uses an automaton with m states, Player 2’s optimization problem reduces to 
a Markov decision problem with m states, and therefore Player 2’s best response is an au-
tomaton with at most m states. This implies that in an equilibrium both players use automata 
of the same size.

2. Each player’s equilibrium automaton uses distinct states until it completes one cycle of its 
states. This follows from a result that says that if the states of one player that are used in any 
two periods t and t ′ of equilibrium play are identical, then the average payoff of the opponent 
between stages t to t ′ coincides with the average payoff from t ′ onwards, and therefore also 
the average payoff from t onwards.3 Therefore if the cycle starts before all the states for both 
player are used, each player could modify her machine to skip the stages between stages t
and t ′, thereby lowering the size of her automaton without affecting the long-run average 
payoff.

3. If in stage t the automaton Pi plays the same action it plays in stage t ′, then in stage t the 
automaton P3−i plays the same action it plays in stage t ′. Indeed, by Point 2, the automaton 
Pi uses different states in stages t and t ′, and these two states are not used in other stages 
along the cycle. If the automaton P3−i plays differently in stages t and t ′, then player i can 
lower the size of her automaton by using the same state in stages t and t ′, and letting the 
action of player 3 − i control the transition out of this state.

Abreu and Rubinstein’s equilibrium construction is as follows.

• The players start by implementing a punishment phase: both players play the action D for a 
large number of stages. The states used for this phase are all distinct. Moreover those states 
are used only at the beginning of the equilibrium play.

• A cycle of action pairs, which is called the regular phase, is repeated. The states used in 
the cycle are distinct from those used during the punishment phase, and are used infinitely 
many times. Each of those states leads to the first state in the punishment phase if it detects 
a deviation. The action pairs of the cycle form a coordinated play. This implies that there 
exists a one-to-one relationship between the action set of Players 1 and 2 in equilibrium.

3. An example

In this section we present and explain the proof of Theorem 4 in the context of the Prisoner’s 
Dilemma. This construction will be formalized in Appendix B and extended to any game in the 
Online Appendix.

3 This result is Lemma 2, page 1268, in Abreu and Rubinstein (1988).
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Consider the Prisoner’s Dilemma game that appears in Fig. 1. We show how to implement the 
payoff vector x = (7

6 , 19
6 ) as a BCC equilibrium payoff. This vector can be written as a convex 

combination of three vectors in the payoff matrix, for example,

( 7
6 , 19

6 ) = 1
6 (1,1) + 2

6 (3,3) + 3
6 (0,4). (1)

The construction depends on a natural number k, that will determine the size of the automata 
that the players use. This number gets larger as (a) the memory cost decreases, and (b) the target 
payoff vector x and the actual payoff on the equilibrium path become closer.

The equilibrium play will consist of three phases, as follows.

• A punishment phase that consists of k3 times playing (D, D):

Q∗ := k3 × (D,D).

• A babbling phase that consists of 2k blocks of length k followed by one block of length 
k + 1: in odd blocks (except the last one) the players play k times (C, C); in even blocks 
they play k times (D, D); and in the last block the players play k + 1 times (C, C).

B∗ :=
k∑

n=1

(
k × (C,C) + k × (D,D)

) + (k + 1) × (C,C).

• A regular phase in which the players repeatedly play actions along which the average payoff 
is the target payoff x.

R∗ := 1 × (D,D) + 2 × (C,C) + 3 × (C,D).

Formally, the equilibrium play path ω∗ is

ω∗ := Q∗ + B∗ +
∞∑

n=1

R∗

= k3 × (D,D)︸ ︷︷ ︸
Punishment

+
k∑

n=1

(
k × (C,C) + k × (D,D)

) + (k + 1) × (C,C)

︸ ︷︷ ︸
Babbling

+
∞∑

n=1

R∗

︸ ︷︷ ︸
Regular

. (2)

To implement other feasible and individually rational payoff vectors x as BCC equilibria we 
change the regular phase to contain a cycle of action pairs whose average payoff is close to x.

The roles of the three phases are as follows.

• As in Abreu and Rubinstein (1988), the punishment phase ensures that punishment is on the 
equilibrium path. Because the players minimize their automaton size, subject to maximiz-
ing their payoff, if the punishment phase was off the equilibrium path, players could save 
states by not implementing it. But if a player cannot implement punishment, the other player 
may safely deviate, knowing that she will not be punished. In our construction, detectable 
deviations of the other player will lead the automaton to restart and reimplement ω∗, thereby 
initiating a long punishment phase. The length of the punishment phase, k3, is much larger 
than the length of the babbling phase to ensure that the punishment is severe.
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Fig. 2. An implementation of ω1.

• The babbling phase serves two purposes. First, because it is coordinated, it is not difficult 
to calculate the complexity of ω∗ for each player i, that is, the size of the minimal pure 
automaton of player i that can implement player i’s part in ω∗, given that the other player, 
player 3 − i, plays her part in ω∗. This implies in particular that if a player deviates to 
a smaller automaton than the one that we will construct, while the other player does not 
deviate, then there will be a stage in which that player’s play deviates from ω∗.
Second, the states that implement the babbling phase will be reused to implement the regular 
phase. The identity of the states that are reused will be chosen at random; this is the place 
where we rely on our usage of mixed automata. In our construction, any deviation in a state 
that is not reused to implement the regular phase starts a punishment phase. This implies that 
to profit by a deviation, the player needs to know which states are reused in his opponent’s 
automaton. Since the reused states are chosen at random, learning which states are reused 
requires a huge automaton, which, due to the memory cost, is too costly.

• On the equilibrium path the regular play will be played repeatedly, so that the long-run 
average payoff will be the average payoff along R∗, which is ( 7

6 , 19
6 ).

We say that a pure automaton Pi of player i is compatible with the play ω∗ (or that the play 
ω∗ is compatible with the automaton Pi) if, when the other player 3 − i plays her part in ω∗, the 
automaton generates the play of player i in ω∗. We will later show that the size of the smallest 
automaton of Player 1 (resp. Player 2) that is compatible with ω∗ is k3 + 2k2 + k + 1 (resp. 
k3 + 2k2 + k + 4), see Corollary 7 (resp. Corollary 8) below.

We now present an automaton for Player 1 with size k3 + 2k2 + k + 1 that is compatible with 
ω∗. Denote the states of the automaton that we construct by Q = {1, 2, · · · , k3 + 2k2 + k + 1}. 
The punishment and babbling phases, whose total length is k3 + 2k2 + k + 1, are

ω1 = k3 × (D,D) +
k∑

n=1

(
k × (C,C) + k × (D,D)

) + (k + 1) × (C,C).

The length of these phases is similar to the size of the automaton that we construct. A naive 
implementation is to have one state for each action of Player 1 in ω1: state q ∈ Q will implement 
the q’th action pair in ω1. This implementation is illustrated in Fig. 2, where the initial state is 
the dotted circle to the left, the white squares correspond to states where the action played is D, 
and the black circles correspond to states where the action played is C.

It is left to implement the regular phase R∗, in which Player 1 plays once D and 5 times C. 
One way to do this is as follows (see Fig. 3): When Player 1’s automaton is in its last state, 
state k3 + 2k2 + k + 1, and Player 2 plays C, Player 1’s automaton moves to the last state of the 
first D-block in the Babbling phase. If Player 2 does not deviate, then the play in the next six 
stages will indeed be 1 × (D, D) + 2 × (C, C) + 3 × (C, D). In the fifth stage of the following 
C-block we add a transition that ensures that the regular phase will be repeated: When Player 1’s 
automaton is in the fifth stage of the second C-block and Player 2 plays D, Player 1’s automaton 
moves to the last stage of the first D-block. Thus, three states in Player 1’s automaton accept both 
actions of Player 2: the third, the fourth, and the fifth states of the second C-block. The third and 
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Fig. 3. Implementation of the regular phase.

fourth states lead deterministically to the following state, and the fifth state either continues to the 
sixth state of the second C-block (if Player 2 plays C) or restarts the regular phase (if Player 2 
plays D). We call these three states accept-all states. In Fig. 3, the three accept-all states are 
denoted by triangles.

To ensure that deviations of Player 2 are not profitable, we set all transitions that were not 
determined so far to initiate a punishment phase, by making Player 1’s automaton move to the 
first state.

Analogously we will define an automaton for Player 2 with k3 + 2k2 + k + 4 states that is 
compatible with ω∗. Because the equilibrium play is not a coordinated play, by Abreu and Rubin-
stein (1988) Player 2 has a profitable deviation. Indeed, Player 2 may skip most of the babbling 
phase, thereby she reduces the number of states in her automaton while still implementing the 
same targeted payoff. This can be done as follows. Player 2 uses an automaton with k3 + 2k + 5
states. These states implement naively Player 2’s part in the sequence

k3 × (D,D) + k × (C,C) + k × (D,D) + 2 × (C,C) + 3 × (C,D),

and from the last state the automaton moves to the last state of the D-block.4

To be able to execute the deviation described in the previous paragraph, Player 2 must know 
the identity of the accept-all states in Player 1’s automaton.5 To make this deviation unprofitable 
Player 1 has to mask the identity of these states.

To achieve this goal, we note that the automaton that we described is only one automaton 
for Player 1 that is compatible with ω∗. Instead of using the last state of the first D-block and 
the first five states of the second C-block to implement the regular phase, we could have used 
the last state of the j ’th D-block and the first five states of the (j + 1)’th C-block for 1 ≤ j ≤
k − 1. More generally,6 we could have used the last state of the j ’th D-block, the first three
states of the (j + 1)’th C-block, and two additional states in the (j + 1)’th C-block, say, states 
number h1 and h2 (see Fig. 4). The accept-all states would be the third, h1, and h2 states of the 
(j + 1)’th C-block. When Player 1’s automaton is in the first accept-all state (the third state of 
the (j + 1)’th C-block) and Player 2 plays D, the automaton will move to the h1’th state of the 
(j + 1)’th C-block; when Player 1’s automaton is in the h1’th state of the (j + 1)’th C-block 
and Player 2 plays D, the automaton will move to the h2’th state of the (j + 1)’th C-block; and 
when Player 1’s automaton is in the h2’th state of the (j + 1)’th C-block and Player 2 plays D, 
the automaton will move to the last state of the j ’th D-block, thereby start a new cycle of the 
regular phase.

Recognizing that there are many pure automata for Player 1 that are compatible with ω∗, we 
define a mixed automaton for Player 1, which chooses one of these pure automata at random. 

4 Player 2 could deviate to an even smaller automaton to implement this deviation.
5 In the construction that we described, it is sufficient for Player 2 to know the identity of the third accept-all state.
6 There are additional pure automata for Player 1 that implement ω∗ . We will not use them in our construction.
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Fig. 4. The j ’th D-block and the (j + 1)’th C-block in P1.

This ensures that Player 2 will not know the identity of the accept-all states of the realized pure 
automaton of Player 1.

Similarly, we will define a collection of pure automata for Player 2 with k3 +2k2 +k+4 states 
that implements Player 2’s part of the play ω∗ that reuse different states, and a mixed automaton 
for Player 2 in which the reused states are chosen randomly.

Can Player 2 profit by deviating from her part of ω∗ when she faces the mixed automaton 
of Player 1? The answer is positive: she could enumerate over the three parameters that were 
chosen at random, namely, j , h1, and h2, and for each possible values of these parameters check 
whether they are the actual values chosen by Player 1.

The only way in which Player 2 can check whether j = j∗, h1 = h∗
1, and h2 = h∗

2 is to 
play D in states number h1 and h2 of the (j + 1)’th C-block, and observe the actions that 
Player 1 plays in the following stages. If the parameters of Player 1’s realized pure automaton 
are not (j∗, h∗

1, h
∗
2), then its automaton will restart, initiating a punishment phase of length k3. We 

will show below that for each triplet (j∗, h∗
1, h

∗
2) on which Player 2 enumerates, her automaton 

must devote distinct k3 states to pass the punishment phase (Lemma 15 below). Once Player 2 
identified the correct triplet (j∗, h∗

1, h
∗
2), she can use this information to increase her average 

payoff.
If memory were costless, such a deviation would be profitable: When memory is costly this 

is not necessarily the case. In our construction, the number of pure automata in the support of 
Player 1’s mixed automaton is O(k). Therefore, to learn the parameters (j, h1, h2) that Player 1 
uses with a nonnegligible probability, say ε, Player 2 needs an automaton of size O(εk4), whose 
cost is O(cεk4), where c is the cost of each memory cell. Since payoffs are bounded, such a 
deviation leads to a profit of O(ε). The size of Player 2’s automaton that we described above 
is O(k3). Consequently, if c = O(k−3.5), the cost of the automaton of Player 2, whose size 
is k3 + 2k2 + k + 4, vanishes as k goes to infinity, while the cost of the automaton that with 
a nonnegligible probability learns the parameters (j, h1, h2) goes to infinity. This implies that 
Player 2 cannot profit by deviating to a larger automaton for certain memory cost.

The discussion in the previous paragraph implies that the two mixed automata that we con-
struct are not best response to each other when memory is costless; They are best response to 
each other when the memory cost is c = O(k−3.5).

4. Comments and open problems

4.1. The discounted game

One could study variations of the definition of BCC equilibrium when using the discounted 
payoff instead of the long-run average payoff.

Given c > 0 and a discount factor λ ∈ (0, 1), a pair of mixed automata (M1, M2) is a 
(c, λ)-BCC equilibrium payoff if it is a Nash equilibrium for the utility functions Uc,λ

(M1, M2) =
i
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γ λ
i (M1, M2) − c|Mi | for i = 1, 2, where γ λ

i (M1, M2) is the λ-discounted payoff of player 
i when the players use the mixed automata (M1, M2). A vector x ∈ R

2 is a BCC equilib-
rium payoff if it is the limit, as c goes to 0 and λ goes to 1, of payoffs that correspond to 
(c, λ)-BCC equilibria. That is, there is a sequence (cn)n∈N and (λn)n∈N that converge to 0 and 
1, respectively, and for each n there is a (cn, λn)-BCC equilibrium (Mcn,λn

1 , Mcn,λn

2 ), such that 
limn→∞ γ λ(M

cn,λn

1 , Mcn,λn

2 ) = x and limn→∞ cn|Mcn,λn

i | = 0 for i = 1, 2.
Our folk theorem holds for this concept, with the same construction.

4.2. A more general definition of a BCC equilibrium

The definition of the concept of c-BCC equilibrium assumes that the utility of each player is 
additive, and that the memory cost is linear in the memory size. There are applications where the 
utility function Ui has a different form.

• Players may disregard the memory cost, but be bounded by the size of memory that they 
use.

Ui(M1,M2) =
{

γi(M1,M2) |Mi | ≤ ki,

−∞ |Mi | > ki.

This situation occurs, e.g., when players are willing to invest huge amounts of money even if 
the profit is low, but the available technology does not allow them to increase their memory 
size beyond some limit. Such a situation may occur, e.g., in the area of code breaking, where 
countries invest large sums of money to be able to increase the number of other countries’ 
codes that they break, yet they are bounded by technological advances.

• Memory is costly, yet players do not save money by reducing their memory size. That is, 
a pair of mixed automata (M1, M2) is a c-BCC equilibrium if for each player i ∈ {1, 2}
and for every pure automaton Pi ∈ supp(Mi) one has γi(Mi, M3−i ) = γi(Pi, M3−i ), and, if 
|Pi | > |Mi |, one has γi(Mi, M3−i ) ≥ γi(Pi, M3−i ) − c(|Pi | − |Mi |). This situation occurs, 
e.g., when the players are organizations whose size cannot be reduced.

It may be of interest to study the set of equilibrium payoffs for various utility functions Ui , 
and to see whether and how this set depends on the shape of this function.

4.3. More than two players

The concept of BCC equilibrium payoff is valid for games with any number of players. How-
ever, Theorem 4 holds only for two-player games. One crucial point in our construction is that 
if a deviation is detected, a player is punished for a long (yet finite) period of time by a punish-
ing action. When there are more than two players, the punishing action of, say, Player 1 against 
Player 2 may be different that the punishing action of Player 1 against Player 3. It is not clear 
how to construct an automaton that can punish each of the other players, if necessary, and such 
that all these memory cells will be used on the equilibrium path.
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Appendix A. The complexity of a sequence of action pairs

In this section we provide tools to calculate lower bounds to the complexity of sequences and 
we prove that the complexity of ω∗, which is defined in (2), w.r.t. each of the players is at least 
the quantities given in Corollaries 7 and 8 below.

When ω = (ω(t))t is a (finite or infinite) sequence of action pairs, we denote by compi (ω)

the complexity of ω w.r.t. player i. We denote by ωi(t) player i’s action at time t at ω. When Pi

is an automaton of player i, we denote by qi(t) the state of Pi at time t .
The following lemma lists several simple observations that we will use in the sequel. The first 

property says that if the action that Pi plays in stage t1 differs from the action it plays in stage 
t2, then in those stages it is in different states. The second property says that if Pi is in different 
states in stages t1 + 1 and t2 + 1, and if the action pair played in stage t1 equals the action pair 
that is played in stage t2, then Pi must have been in different states already in stages t1 and t2. 
The third property is a generalization of the second property: if Pi is in different states in stages 
t1 +m and t2 +m, and if the action pair played in stage t1 + l equals the action pair that is played 
in stage t2 + l for l ∈ {0, 1, . . . , m − 1}, then Pi must have been in different states already in 
stages t1 and t2. The fourth property says that the complexity of a finite sequence of action pair 
w.r.t. Player 1 is independent of the action that Player 2 plays in the last stage.

Lemma 5. Let Pi be a pure automaton of player i that is compatible with ω.

1. If ωi(t1) �= ωi(t2) then qi(t1) �= qi(t2).
2. If qi(t1 + 1) �= qi(t2 + 1) and ω(t1) = ω(t2), then qi(t1) �= qi(t2).
3. If qi(t1 + m) �= qi(t2 + m) and ω(t1 + l) = ω(t2 + l) for every l ∈ {0, 1, . . . , m − 1}, then 

qi(t1) �= qi(t2).
4. If ω = (ω(t))Tt=1 and ω′ = (ω′(t))Tt=1 are two finite sequences that differ only in the action 

of Player 2 at stage T , that is, ωi(t) = ω′
i (t) for every t ∈ {1, 2, . . . , T } and every i ∈ {1, 2}, 

except t = T and i = 2, then the complexity of ω w.r.t. Player 1 is equal to the complexity of 
ω′ w.r.t. Player 1.

Proof. The first claim holds since the automaton’s output is a function of the automaton’s state. 
The second claim follows since the new state of the automaton is a function of the current state 
and of the other player’s action. The third claim follows from the second claim by induction. The 
fourth claim follows since for a finite sequence, the action of Player 2 in the last stage T does 
not affect the evolution of the automaton of Player 1 in the first T stages. �

A (finite or infinite) sequence of action pairs ω = (ω(t))t is coordinated if ω1(t) = ω1(t
′) if 

and only if ω2(t) = ω2(t
′), for every t �= t ′. The following result follows from Neyman (1998).

Lemma 6. Let ω = (ω(t))Tt=1 be a coordinated sequence of action pairs and let T0 ≤ T . If 
(ω(t))Tt=t2

is not a prefix of (ω(t))Tt=t1
for every t1 < t2 ≤ T0, then compi (ω) ≥ T0 for each 

player i.

Proof. Assume to the contrary that the condition of the lemma holds but there is a pure automa-
ton for player i with size less than T0 that is compatible with ω. By the pigeon hole principle, 
there are t1 < t2 ≤ T0 such that qi(t1) = qi(t2). By Lemma 5(1), ωi(t1) = ωi(t2), and since ω is 
coordinated we have ω3−i(t1) = ω3−i (t2). It follows by Lemma 5(2) that qi(t1 + 1) = qi(t2 + 1). 
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Continuing inductively we deduce that qi(t1 + l) = qi(t2 + l) for every l for which t2 + l ≤ T . 
This implies that (ω(t))Tt=t2

is a prefix of (ω(t))Tt=t1
, a contradiction. �

We can now calculate the complexity of the sequence ω∗ defined in Eq. (2) w.r.t. both players.

Corollary 7. comp1(ω
∗) ≥ k3 + 2k2 + k + 1.

Proof. The definition of the complexity of a sequence implies that the complexity of a sequence 
cannot be lower than the complexity of any of its subsequences. Consider then the prefix ω′ of 
length T = k3 +2k2 + k +3 of ω∗, which involves only a coordinated play. For this sequence the 
condition in Lemma 6 is satisfied for ω∗ with T0 = k3 + 2k2 + k + 1, and therefore comp1(ω

′) ≥
k3 + 2k2 + k + 1, as desired. �
Corollary 8. comp2(ω

∗) ≥ k3 + 2k2 + k + 4.

Proof. Consider the prefix ω′ of ω∗ of length T = k3 + 2k2 + k + 4. Let ω′′ be the sequence ω′
after adding the action pair (D, D) at the end, and let ω′′′ be the sequence ω′ after adding the 
action pair (C, D) at the end. Note that ω′′′ is a prefix of ω∗, hence comp2(ω

∗) ≥ comp2(ω
′′′). 

By Lemma 5(4), comp2(ω
′′′) = comp2(ω

′′). Apply Lemma 6 to the sequence ω′′ with T0 =
k3 + 2k2 + k + 4 to deduce that comp2(ω

′′) ≥ k3 + 2k2 + k + 4. The result follows. �
Appendix B. BCC equilibria in the prisoner’s dilemma

In the present section the construction described in Section 3 is provided formally, and we 
prove that it forms a BCC equilibrium. The construction in this case contains all ingredients and 
complexities of the construction in the general case, yet, because the regular phase is short, there 
is no need to carry many indices and execute complex computations. In the Online Appendix we 
generalize this construction to any two-player repeated game.

Consider then the payoff vector

x = (x1, x2) = ( 7
6 , 19

6 ) = 1
6 (1,1) + 2

6 (3,3) + 3
6 (0,4). (3)

Our construction depends on a parameter k that determines the size of the automata that the 
players use: Player 1 mixes between pure automata of size k3 + 2k2 + k + 1 and Player 2 mixes 
between pure automata of size k3 + 2k2 + k + 4. Let k ≥ 36; to facilitate calculations we assume 
that k is divisible by 4. In particular, the following inequalities, which will be used below, hold: 
min{x1 − 1, x2 − 1} > 6

k
and k3 > 3k2 + 2k + 8.

As mentioned before, the equilibrium play will be

ω∗ = k3 × (D,D)︸ ︷︷ ︸
Punishment

+
k∑

n=1

(
k × (C,C) + k × (D,D)

) + (k + 1) × (C,C)

︸ ︷︷ ︸
Babbling

+
∞∑

n=1

R∗

︸ ︷︷ ︸
Regular

.

B.1. An automaton P1 for player 1 that is compatible with ω∗

Fix j ∈ {1, 2, . . . , k − 1} and h1, h2 ∈ {4, 5, . . . , k} such that h1 �= h2. In this section we 
provide the formal definition of the pure automaton P1 = P

j,h1,h2
1 for Player 1 with size 

k3 + 2k2 + k + 1 that is compatible with ω∗ and was described in Section 3.
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Denote the states of P1 by the integers Q = {1, 2, . . . , k3 + 2k2 + k + 1}, where q∗ = 1 is the 
initial state. Divide Q into three sets:

1. QP = {1, 2, . . . , k3} is the set of all states that implement the punishment phase.

2. QC =
(⋃k−1

n=0{k3 + 2nk + 1, . . . , k3 + 2nk + k}
)

∪ {k3 + 2k2 + 1, . . . , k3 + 2k2 + k + 1} is 
the set of states in all C-blocks.

3. QD = ⋃k−1
n=0{k3 + 2nk + k + 1, . . . , k3 + 2nk + 2k} is the set of states in all D-blocks.

The output function is

f (q) =
{

D q ∈ QP ∪ QD,

C q ∈ QC,

and the transition function is as follows (see Figs. 2 and 4):

• As long as Player 2 complies with her part of ω∗, the automaton P1 advances from each state 
to the following one:

g(q,f (q)) = q + 1, 1 ≤ q < k3 + 2k2 + k + 1.

• When P1 is at the last state and Player 2 plays C, the automaton moves to the last state of 
the j ’th D-block:

g(k3 + 2k2 + k + 1,C) = k3 + 2jk.

• When P1 is at the third state of the (j + 1)’th C-block and Player 2 plays D, the automaton 
moves to state h1 of the (j + 1)’th C-block:

g(k3 + 2jk + 3,D) = k3 + 2jk + h1.

• When P1 is at state h1 of the C-block and Player 2 plays D, the automaton moves to state 
h2 of the (j + 1)’th C-block:

g(k3 + 2jk + h1,D) = k3 + 2jk + h2.

• When P1 is at state h2 of the C-block and Player 2 plays D, the automaton moves to last 
state of the j ’th D-block:

g(k3 + 2jk + h2,D) = k3 + 2jk.

• All transitions that were not defined above lead to state 1, thereby initiating a punishment 
phase.

B.2. A mixed automaton M1 = M1(k)

A mixed automaton Mi of player i is compatible with ω∗ if all the pure automata in its support 
are compatible with ω∗.

The pure automaton P1 = P1(j, h1, h2) that was constructed in Section B.1 depends on three 
parameters: j , h1, and h2. If Player 2 learns the three parameters or a subset thereof, she may 
have a profitable deviation, either by decreasing the size of her automaton or by implementing a 
payoff greater than x2.
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D1. As discussed in Section 3, if Player 2 knows j , then she can decrease the size of her au-
tomaton by skipping part of the babbling phase.

D2. If Player 2 knows h1, she would know the distance between the first and second reused 
states in the (j + 1)’th C-block. In particular, if instead of following her part in the regular 
phase D + 2 × C + 3 × D she would play D + (2 + h1) × C + 2 × D, she would create the 
cycle

2 × (D,D) + (2 + h1) × (C,C) + 2 × (C,D),

which yields to her (and to Player 1 as well) a higher average payoff.
D3. Similarly, if Player 2 knew h2 or h2 − h1, then she could profit by an appropriate deviation 

in the regular phase.

This discussion implies that Player 1 must mask the parameters j , h1, and h2 that she uses. This 
is done by defining a mixed automaton M1 = M1(k), which chooses these parameters randomly.

Let H = {(jd, hd
1 , hd

2) : 1 ≤ d ≤ k
4 } be a collection of k

4 triplets that satisfy the following 
conditions:

A1 (jd)
k/4
d=1 are distinct elements from {1, 2, . . . , k − 1} and (hd

1 , hd
2)

k/4
d=1 are distinct elements 

from {4, 5, . . . , k}.
A2 h

d1
2 − h

d1
1 �= h

d2
2 − h

d2
1 for every distinct d1, d2 ∈ {1, 2, . . . , k4 }.

One can define, e.g., jd = d , hd
1 = 3 + d and hd

2 = hd
1 + k

4 + d for every d ∈ {1, 2, . . . , k4 }.
The mixed automaton M1 = M1(k) chooses uniformly one of the pure automata in P1 :=

{P j,h1,h2
1 , (j, h1, h2) ∈ H}. In particular, all pure automata in the support of M1 are compatible 

with ω∗ for Player 1, so that M1 is compatible with ω∗ for Player 1 as well.
The most significant implication of Properties (A1)–(A2) is the following. Player 2 may face 

any of the k4 pure automata in P1. To deviate, the play of Player 2 must differ from ω∗. Properties 
(A1) and (A2) ensure that if Player 2 deviates from ω∗, then all pure automata in P1, except 
possibly one, will restart within 2k2 +k+1 stages. That is, with probability close to 1, a deviation 
from ω∗ starts a punishment phase. This observation is the content of the following result.

Lemma 9. Let P1 = P
j,h1,h2
1 and P ′

1 = P
j ′,h′

1,h
′
2

1 be two different pure automata in the support 
of M1 and let P2 be any pure automaton of Player 2. Let t be the first stage in which the play 
under (P1, P2) differs from ω∗. Then at least one of the automata P1 and P ′

1 restarts before stage 
t + 2k2 + k + 1.

Note that since both P1 and P ′
1 are compatible with ω∗, the first stage in which the play under 

(P ′
1, P2) differs from ω∗ is also t . The Lemma is valid for any strategy of Player 2, not necessarily 

those implementable by pure automata.

Proof of Lemma 9. Denote by q(t) (resp. q ′(t)) the state of the automaton P1 (resp. P ′
1) at stage 

t when facing P2. Denote by ω∗(t) the action pair at stage t according to ω∗. Then ω∗
2(t) is the 

action that Player 2 is supposed to play at stage t according to ω∗.
Since P1 and P ′

1 are compatible with ω∗, and since in stage t the play under (P1, P2) differs 
from ω∗, it follows that in stage t the pure automaton P2 does not play the action ω∗

2(t). If q(t)

(resp. q ′(t)) is not an accept-all state, then the automaton P1 (resp. P ′
1) restarts at stage t , and the 

lemma follows. Thus, we assume from now on that both q(t) and q ′(t) are accept-all states.
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In which stages do both P1 and P ′
1 visit an accept-all state? During the punishment phase 

none of these automata visits an accept-all state, and since j1 �= j ′
1, during the implementation of 

the babbling phase they do not visit accept-all states at the same stage. Thus, only in the regular 
phase both automata visit accept-all states simultaneously, when implementing the action pairs 
(C, D). We will show that if P2 deviates when P1 implements either one of these action pairs, 
a punishment phase will ensue in at most 2k2 + k + 1 stages.

Suppose first that state q(t) is the h1’th state of the (j + 1)’th C-block. Then q ′(t) is the 
h′

1’th state of the (j ′ + 1)’th C-block. Since P2 deviates in stage t , it plays C instead of D, so 
that q(t + 1) = q(t) + 1 and q ′(t + 1) = q ′(t) + 1. The automaton P1 expects now the sequence 
(k−h1) ×(C, C) +1 ×(D, D) and is going to visit an accept-all state in h2 −h1 stages. Similarly, 
the automaton P ′

1 expects now the sequence (k −h′
1) × (C, C) + 1 × (D, D) and is going to visit 

an accept-all state in h′
2 −h′

1 stages. By (A1)–(A2) we have h1 �= h′
1 and h2 −h1 �= h′

2 −h′
1, and 

therefore no sequence of actions that P2 can generate is compatible with both automata, hence at 
least one of them will restart within at most k stages.

The argument is similar if state q(t) is the h2’th stage of the (j + 1)’th C-block.
It is left to handle the case in which state q(t) is the third stage of the (j + 1)’th C-block, in 

which case state q ′(t) is the third stage of the (j ′ + 1)’th C-block. The automaton P1 expects the 
sequence

ω := (k −3)× (C,C)+k × (D,D)+
k∑

n=j+2

(k × (C,C)+k × (D,D))+ (k +1)× (C,C),

and visits two accept-all states in h1 − 3 and h2 − 3 stages. Similarly, the automaton P ′
1 expects 

the sequence

ω′ := (k−3)× (C,C)+k× (D,D)+
k∑

n=j ′+2

(k× (C,C)+k× (D,D))+ (k+1)× (C,C),

and visits two accept-all states in h′
1 − 3 and h′

2 − 3 stages. By (A1)–(A2) we have h1 �= h′
1, 

h2 �= h′
2, and j �= j ′, and therefore no sequence of actions that P2 can generate is compatible 

with both automata, hence at least one of them will restart within at most 2k2 + k + 1 stages. �
Remark 10. Lemma 9 assumes that both automata start at state 1. The reader can verify that 
the proof is valid as soon as the two automata start at the same state; that is, it holds whenever 
q(1) = q ′(1).

B.3. An automaton P2 for player 2 that is compatible with ω∗

As in Section B.1 we define a family of pure automaton for Player 2, which are compatible 
with ω∗ and have size k3 + 2k2 + k + 4. As for player 1, the automata in the family depend on 
two parameters, an integer j ∈ {1, 2, . . . , k − 1} and a set H = {h1, h2, h3} of three integers that 
satisfy 1 ≤ h1 < h2 < h3 ≤ k.

Let Q = {1, 2, . . . , k3 +2k2 +k+4} be the set of states of the automaton with q∗ = 1 the initial 
state. The sets QP , QC , and QD of the states that implement the punishment phase, the C-blocks, 
and the D-blocks, respectively, and the output function f , are defined as in Section B.1. The 
transition function along the coordinated play is

g(q,f (q)) = q + 1, 1 ≤ q < k3 + 2k2 + k + 1.
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We now add transitions that implement the next three action pairs in ω∗, which are ω5 =
(D, D) + 2 × (C, C). To this end we use the last three states of Q.

The action function for these states is given by

f (k3 + 2k2 + k + 2) = D;f (k3 + 2k2 + k + 3) = C;f (k3 + 2k2 + k + 4) = C

and the transition is given by

g(q,f (q)) = q + 1, k3 + 2k2 + k + 1 ≤ q < k3 + 2k2 + k + 4.

The last part of the regular phase, 3 × (C, D), is implemented by reusing states h1, h2, and h3 in 
the j ’th D-block:

g(k3 + 2k2 + k + 4,C) = k3 + 2k(j − 1) + k + h1, (4)

g(k3 + 2k(j − 1) + k + h1,C) = k3 + 2k(j − 1) + k + h2, (5)

g(k3 + 2k(j − 1) + k + h2,C) = k3 + 2k(j − 1) + k + h3. (6)

Finally, from state k3 + 2k(j − 1) + k + h3 the regular phase should be repeated, so that we 
define

g(k3 + 2k(j − 1) + k + h3,C) = k3 + 2k2 + k + 2.

All transitions that are not defined above lead to state 1, The automaton that we just constructed is 
denoted P j,h1,h2,h3

2 . Its accept-all states are states k3 +2k(j −1) +k+h1, k3 +2k(j −1) +k+h2, 
and k3 + 2k(j − 1) + k + h3.

B.4. A mixed automaton of player 2

The definition of the mixed strategy M2 is analog to that of M1. The pure automaton P2 =
P2(j, h1, h2, h3) that was constructed in Section B.3 depends on four parameters j , h1, h2 and 
h3. We will now define a mixed automaton M2 = M2(k) that chooses these parameters randomly.

Let H = {(jd, hd
1 , hd

2 , hd
3) : 1 ≤ d < k

6 } be a collection of k
6 triplets that satisfy the following 

conditions:

B1 (jd)
k/6
d=1 are distinct elements from {1, 2, . . . , k − 1}, and (hd

1 , hd
2 , hd

3)
k/6
d=1 are distinct ele-

ments from {1, 2, . . . , k}.
B2 For every distinct d1, d2 ∈ {1, 2, . . . , k6 } the six numbers hd1

2 − h
d1
1 , hd2

2 − h
d2
1 , hd1

3 − h
d1
2 , 

h
d2
3 − h

d1
2 , hd1

3 − h
d1
1 , and hd2

3 − h
d1
1 are distinct.

One can define, e.g., jd = d , hd
1 = d , hd

2 = 2d + k
6 , and hd

3 = 3d +3 k
6 , for every d ∈ {1, 2, . . . , k6 }.

The mixed automaton M2 = M2(k) chooses uniformly one of the pure automata in P2 :=
{P j,h1,h2,h3

2 , (j, h1, h2, h3) ∈ H}. As for Player 1, all pure automata in the support of M2 are 
compatible with ω∗ for Player 2, so that M1 is compatible with ω∗ for Player 1 as well. The 
analog of Lemma 9 is the following.

Lemma 11. Let P2 = P
j,h1,h2,h3
2 and P ′

2 = P
j ′,h′

1,h
′
2,h

′
3

2 be two different pure automata in the 
support of M2 and let P1 be any pure automaton of Player 1. Let t be the first stage in which the 
play under (P1, P2) differs from ω∗. Then at least one of the automata P2 and P ′

2 restarts before 
stage t + 2k2 + k + 1.
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B.5. (M1, M2) is a c-BCC equilibrium

In this section we prove that (M1, M2) is a c-BCC equilibrium, provided the cost of memory 
c is neither too high nor too low. If c is very low, switching to a significantly larger automaton 
may not be too costly, while if c is very high, the cost of the automaton Mi , which is c|Mi |, is 
high, so that the players will profit by deviating to a small automaton, thereby saving the cost of 
the automaton. Here we will prove that if 12

k4 < c <
η

4k3 then (M1, M2) is a c-BCC equilibrium, 
where η < min{x∗

1 − 1, x∗
2 − 1}.

By construction, the average payoff under (M1, M2) is γ (M1, M2) = x∗ = ( 7
6 , 19

6 ).
How can a player increase her payoff? To this end she needs to learn which states are the 

accept-all states of the other player’s realized pure automaton. In our construction each state 
is reused by at most one pure automaton, and therefore learning the identity of the accept-all 
states essentially means enumerating over all their possible values. There are O(k) different 
possibilities for accept-all states, and each failed attempt requires (at least) k3 new states to 
pass the ensuing punishment phase. It follows that to successfully learn the accept-all states the 
deviator has to use a memory of size of the order of k4. The relation between c and k ensures 
that such a deviation is not profitable. We now turn this intuition into a formal argument.

B.5.1. A lower bound on the size of player 2’s automaton that can gain against M1

In the present section we provide a lower bound on the size of an automaton P2 of Player 2 
that profits when facing M1. As we will see, the size of such an automaton P2 will be larger than 
O(k3), the complexity of ω∗.

Denote by (P d
1 )

k/4
d=1 the pure automata in the support of M1. Suppose that the players use the 

automata (P d
1 , P2). Denote by q2(t; P d

1 ) the state of the automaton P2 at stage t when it faces 
the automaton P d

1 .
If P2 is not compatible with ω∗ for Player 2, then P d

1 restarts whenever a deviation from ω∗
is detected, and a punishment phase starts. Denote by tdn the stage at the n’th time in which P d

1
visits state 1 when facing P2, that is, the stage in which the n’th punishment phase starts:

td1 := 1,

tdn+1 := min
{
t > tdn : q1(t) = 1

}
, n ≥ 1.

By convention, the minimum of an empty set is ∞.
There are two scenarios in which Player 2 may improve her long-run average payoff. One 

possibility is if there exists n such that tdn < ∞ = tdn+1. Then tdn is the last stage in which the 
automaton P d

1 restarts. If the play after stage tdn is different from ω∗, it means that Player 2 plays 
as if she knows (some of) the parameters that determine P d

1 , and she might use this information 
to improve her payoff. Another possibility is that (tdn )n∈N are finite and between two of these 
stages the average payoff of Player 2 is higher7 than x∗

2 .
This leads us to the following definition. For every d ∈ {1, 2, . . . , k4 } and every n ∈ N let ωd

n

be the play generated from stage n and on under (P d
1 , P2).

7 In fact, if (tdn )n∈N are finite then, so that Player 2 improves her payoff, the average payoff between tdn and td
n+1 − 1

should be higher than x∗ infinitely often.
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Definition 12. The automaton P2 fools the automaton P d
1 if either one of the following conditions 

hold when the automata (P d
1 , P2) face each other.

C1) There is n0 ∈ N such that tdn0
< ∞ = tdn0+1 and ωd

n0
�= ω∗.

C2) tdn < ∞ for every n ∈ N, and there is n0 ∈ N such that the average payoff for Player 2 
between stages tdn0

and tdn0+1 − 1 is strictly higher8 than x∗
2 .

Since the punishment phase lowers the average payoff, provided that k is sufficiently large, if 
Condition C2 holds, then the play between stages tdn0

and tdn0+1 − 1 is not a prefix of ω∗.

Neither C1 nor C2 imply that the long-run average payoff under (P d
1 , P2) is higher than x∗

2 . 
Yet, as the next lemma shows, the converse is true: if the long-run average payoff of Player 2 
under (P d

1 , P2) exceeds x∗
2 , then P2 must have fooled P d

1 .

Lemma 13. If P2 does not fool P d
1 then γ2(P

d
1 , P2) ≤ x∗

2 .

Proof. Since both P d
1 and P2 are automata, γ2(P

d
1 , P2), which is the long-run average payoff of 

Player 2 under (P d
1 , P2), exists. Suppose first that tdn < ∞ for every n ∈ N. Since P2 does not 

fool P d
1 , for every n ∈N the average payoff of Player 2 between stages tdn and tdn+1 − 1 is at most 

x∗
2 , and therefore γ2(P

d
1 , P2) ≤ x∗

2 .
Suppose now that there is n0 ∈ N such that tdn0

< ∞ = tdn0+1. Since P2 does not fool P d
1 , we 

have ωd
n0

= ω∗, so that γ2(P
d
1 , P2) = x∗

2 , and the result follows. �
The following proposition states that to be able to fool L0 pure automata in the support of M1, 

Player 2 must use an automaton of size at least L0k
3. To profit Player 2 needs to fool many of 

the pure automata in P1, hence this result will induce a lower bound on the size of an automaton 
of Player 2 that profits by deviating.

Proposition 14. Denote by L0 the number of pure automata P d
1 , 1 ≤ d ≤ k

4 , that P2 fools. Then 
|P2| ≥ L0k

3.

Proof. If condition C1 in Definition 12 holds, we say that P2 fools P d
1 in stages {tdn0

, tdn0
+1, . . .}. 

If condition C2 holds, we say that P2 fools P d
1 in stages {tdn0

, tdn0
+ 1, . . . , tdn0+1 − 1}. In both 

cases9 we set td∗ = tdn0
, and we say that at stage td∗ Player 2 starts to fool P d

1 . Denote by Rd =
{q2(t

d∗ ; P d
1 ), q2(t

d∗ +1; P d
1 ), · · · , q2(t

d∗ +k3 −1; P d
1 )} the k3 states that P2 visits at the beginning 

of the period in which it fools P d
1 . During these stages the automaton P d

1 executes the punishment 
phase, and the payoff of Player 2 is low.

The following lemma implies Proposition 14.

Lemma 15. Let 1 ≤ d1 < d2 ≤ k
4 . If P2 fools both P d1

1 and P d2
1 , then |Rd1 | = |Rd2 | = k3 and 

Rd1 ∩ Rd2 = ∅.

8 Observe that in this case td
n0+1 ≥ tdn0

+ k3. In fact, a stronger bound can be obtained.
9 If condition C2 holds, there may be several stages n0 at which P2 starts to fool Pd

1 . In such a case we choose one of 
them arbitrarily.
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Proof. The first k3 + 1 action pairs of ω∗ are coordinated, and the (k3 + 1)’th action of Player 2 
differs from her actions in the first k3 stages. Lemma 5(3) implies the following:

Fact 1. If P2 fools P d
1 then the states in Rd are distinct: |Rd | = k3.

Lemma 5(3) also implies the following:

Fact 2. If Rd1 and Rd2 are not disjoint, then the last state in Rd1 coincides with the last state in 
Rd2 , that is, q2(t

d1∗ + k3 − 1; P d1
1 ) = q2(t

d2∗ + k3 − 1; P d2
1 ).

Indeed, suppose that Rd1 and Rd2 are not disjoint, and assume that q2(t
d1∗ + n1; P d1

1 ) =
q2(t

d2∗ +n2; P d2
1 ). We argue that necessarily n1 = n2. This will imply that the last state in Rd1 co-

incides with the last state in Rd2 . Assume then to the contrary that, w.l.o.g., n1 < n2. Lemma 5(3) 
implies that q2(t

d1∗ + n1 + s; P d1
1 ) = q2(t

d2∗ + n2 + s; P d2
1 ) for every s that satisfies 1 ≤ s ≤

k3 −n2 + 1. Since P2 fools P d1
1 , the action that P2 plays in state q2(t

d1∗ +n1 + k3 −n2 + 1; P d1
1 )

is D. Since P2 fools P d2
1 , the action that P2 plays in state q2(t

d2∗ + n2 + k3 − n2 + 1; P d2
1 ) is C. 

But q2(t
d1∗ + n1 + k3 − n2 + 1; P d1

1 ) = q2(t
d2∗ + n2 + k3 − n2 + 1; P d2

1 ), a contradiction.
We are now ready to prove that Rd1 ∩ Rd2 = ∅.
Assume to the contrary that Rd1 and Rd2 are not disjoint. By Fact 2, the last state in Rd1

coincides with the last state in Rd2 , that is, q2(t
d1∗ +k3 −1; P d1

1 ) = q2(t
d2∗ +k3 −1; P d2

1 ). Because, 
for i = 1, 2, at stage tdi∗ the automaton P2 starts fooling P di

1 , it follows that the play under 
(P

di

1 , P2) after this stage is different from ω∗. Denote by tdi∗ + t the first stage in which the play 
under (P di

1 , P2) differs from ω∗. Lemma 9 implies that at least one of the automata (P di

1 )i=1,2, 
say the automaton P d1

1 , restarts before stage tdi∗ + t + 2k2 + k + 1 (see Remark 10). We argue 
that P2 does not fool P d1

1 , a contradiction.

Indeed, the play from stage td1∗ until the automaton P d1
1 restarts consists of

• k3 stages of the punishment phase, in which Player 2’s payoff is 1 per stage;
• 2k2 + k + 1 stages of the babbling phase in which her payoff is at most 4 in each stage10;
• several rounds, say r , of the regular phase, in which her average payoff is x2 per round;
• if deviation occurs in a regular phase, at most 6 stages in a portion of the regular phase, in 

which the per-period payoff is at most 4;
• and at most k2 + k + 1 stages between the deviation and the stage in which P d1

1 restarts, in 
which her payoff is at most 4 in each stage.

Thus, Player 2’s average payoff between stage td1∗ and the stage in which P d1
1 restarts is at most

k3 × 1 + (3k2 + 2k + 8) × 4 + 6r × x2

k3 + 3k2 + 2k + 8 + 6r
, (7)

which is strictly lower than x2 provided

10 Or at most 2k2 + k + 1 stages, if deviation occurs during the babbling phase.
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x2 >
k3 + 12k2 + 8k + 32

k3 + 3k2 + 2k + 8
> 1 + 6

k
,

as we claimed. �
The analog of Proposition 14 for Player 1 is the following.

Theorem 16. Let P1 be a pure automaton of Player 1, and denote by L0 the number of pure 
automata P d

2 that P1 fools. Then |P1| ≥ L0k
3.

B.5.2. A BCC-equilibrium
In this section we argue that the pair of automata (M1, M2), which was constructed in Sec-

tions B.2 and B.4, is a c-BCC equilibrium, provided k is sufficiently large and 12
k4 < c <

η

4k3 . We 
only prove the claims for Player 2. The claims for Player 1 can be proven analogously. Below we 
denote the state of an automaton of player i at stage t by qi(t).

We now prove that Player 2 cannot profit by deviating to an automaton smaller than M2.

Lemma 17. Assume that k and c satisfy 24
k

<
η
2 and c <

η

2k3 . Let P ′
2 be an automaton for Player 2 

with size smaller than k3 + 2k2 + k + 4. Then γ2(M1, P ′
2) − c|P ′

2| ≤ γ2(M1, M2) − c|M2|.

Proof. Because the complexity of ω∗ w.r.t. Player 2 is k3 + 2k2 + k + 4, the play under (P l
1, P

′
2)

is not ω∗. By Lemma 15, and because the size of P2 is smaller than 2k3, the automaton P ′
2 can 

fool at most one of the automata (P d
1 )

k/4
d=1. Because it cannot generate ω∗, any automaton that P2

does not fool restarts after at most k3 + 2k2 + k + 3 stages, so that the average payoff is at most 
k3

k3+2k2+k+3
+ 4 2k2+k

k3+2k2+k+3
. It follows that the expected payoff γ2(M1, P ′

2) is at most

4
1

k/4
+

k
4 − 1

k
4

(
k3

k3 + 2k2 + k + 3
+ 4

2k2 + k

k3 + 2k2 + k + 3

)
≤ 1 + 24

k
< 1 + η

2
.

Because the size of the automaton M2 is k3 + 2k2 + k + 4, the gain of reducing the size of 
automaton from |M2| to |P ′

2| is at most c(k3 + 2k2 + k + 3). Player 2 does not profit by this 
deviation as soon as

x∗
2 ≥ 1 + 24

k
+ c(k3 + 2k2 + k + 3),

and therefore it is enough to require that

x∗
2 − 1 > η >

24

k
+ c(k3 + 2k2 + k + 3).

The right-hand side inequality holds, provided

c <
η − 24

k

k3 + 2k2 + k + 3
,

so it is enough to require that c <
η

4k3 . �

We finally prove that Player 2 cannot profit by deviating to an automaton larger than M2.
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Lemma 18. Let P ′
2 be a pure automaton such that γ2(M1, P ′

2) > x2. Then γ2(M1, P ′
2) − c|P ′

2| ≤
γ2(M1, M2) − c|M2|, provided c > 12

k4 .

Proof. Let L0 be the number of pure automata (P d
1 )

k/4
d=1 that P2 fools. Because γ2(M1, P ′

2) > x∗
2

we have L0 ≥ 1. If P2 fools the realized pure automaton of Player 1, then Player 2’s long-run 
average payoff is at most 4, the maximal payoff in the game. If P2 does not fool the realized 
pure automaton of Player 1, then Player 1’s long-run average payoff is at most x∗

2 . The expected 
long-run average payoff of Player 2 then satisfies

γ2(M1,P
′
2) ≤ 4

L0
k
4

+ x∗
2

k
4 − L0

k
4

< x∗
2 + 12

L0

k
.

By Theorem 16 we have |P ′
2| ≥ L0k

3, and therefore

γ2(M1,P
′
2) < x∗

2 + 12
L0

k
= x∗

2 + 12
L0k

3

k4
≤ x∗

2 + |P ′
2| ×

12

k4
.

Therefore, as soon as c > 12
k4 Player 2 does not profit by this deviation. �

To summarize, given the feasible and individually rational payoff vector x∗, we choose η ∈
(0, min{x∗

1 − 1, x∗
2 − 1}). For every c > 0 we define k = k(c) by the equality c = η

k3.5 . Then 
12
k4 < c <

η

3k3 , provided c is small enough (so that k(c) is large enough). The pair of automata 
(M1(k(c)), M2(k(c))) are then c-BCC equilibrium with payoff x∗.

Appendix C. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2016.02.007.
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