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Abstract In repeated games, cooperation is possible in equilibrium only if players are
sufficiently patient, and long-term gains from cooperation outweigh short-term gains
from deviation. What happens if the players have incomplete information regarding
each other’s discount factors? In this paper we look at repeated games in which each
player has incomplete information regarding the other player’s discount factor, and
ask when full cooperation can arise in equilibrium. We provide necessary and suffi-
cient conditions that allow full cooperation in equilibrium that is composed of grim
trigger strategies, and characterize the states of the world in which full cooperation
occurs. We then ask whether these “cooperation events” are close to those in the com-
plete information case, when the information on the other player’s discount factor is
“almost” complete.

Keywords Repeated games · Incomplete information · Cooperation · Common
belief · Rationalizability · Prisoner’s dilemma

1 Introduction

Cooperation is an important theme in human behavior. In repeated interactions, coop-
eration is often achieved by threats: if a player deviates from an agreed upon plan, the
other players will punish him. The effectiveness of the threat is determined by the loss
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Fig. 1 The Prisoner’s Dilemma

that the deviator incurs if the punishment is executed: if the loss is high, the threat is
effective.

Controlling behavior by threats is possible only if the players assign high enough
weight to future payoffs, that is, if they are sufficiently patient, and future payoffs
sufficiently affect their overall utility. This implies that sometimes cooperation cannot
arise in equilibrium: if a player is supposed to cooperate but is not patient, hewill prefer
to deviate and obtain short-term profits. The same will happen if a player believes that
some other player is not patient; in this case, the player will believe that that player
will not cooperate, and therefore he will have no reason to cooperate as well.

In the present paper we study a model in which each of two players does not
know how patient the other player is; that is, the players have incomplete information
regarding each other’s discount factor. We ask whether and when full cooperation
can arise in equilibrium, or, more exactly, what should be the players’ beliefs so
that cooperation arises in equilibrium. To develop our ideas we consider the repeated
Prisoner’s Dilemma (see Fig. 1), which is a classical game that is used to study issues
relating to cooperation.

In this game, both players have two actions, Cooperate (C) and Defect (D). The
action D strongly dominates the action C in the one-shot game. If the players wish to
cooperate, they may want to play (C,C) at every stage, thereby obtaining the payoff
(3, 3) at every stage. By deviating to D, a player profits 1 at the stage of deviation.
This deviation will not be profitable if the total loss that the player will incur due to
this deviation is higher than 1.

There are many ways in which a player can punish the other player for deviating.
One way uses the grim trigger strategy: if the other player deviates at stage t and plays
D instead of C , punish him by playing D in all future stages. If a player employs
the grim trigger strategy, then the deviator loses at least 2 in every stage following a
deviation. In particular, as soon as the discount factor of the deviator is at least 1

3 , the
deviation is not profitable. Another way to punish a deviator is by using the tit-for-tat
strategy, in which at every stage the player plays the action that the other player played
in the previous stage. It turns out that this punishment deters deviations as soon as the
discount factor of the deviator is at least 1

3 as well.
These constructions yield equilibrium when the players’ discount factors are com-

mon knowledge. In this case, each player knows how much the other player stands to
lose for deviating, and therefore he knows whether the other player will be willing to
cooperate. In the present paper we study two-player repeated games in which the play-
ers have incomplete information regarding each other’s discount factor. Our goal is to
study when full cooperation may arise in equilibrium; that is, what are the beliefs of
the players that allow play paths in which the players cooperate all through the game.
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To illustrate the complexity of the analysis of this problem, suppose that the discount
factors of the players are not common knowledge. A naive strategy profile is one in
which at the first stage each player signals whether or not he is willing to cooperate,
and in subsequent stages the players cooperate only if both expressed willingness to
cooperate at the first stage. Signalling at the first stage is achieved by playing C if
one’s discount factor is at least 1

3 , and playing D otherwise. This profile may not be
an equilibrium, because if a player’s discount factor is above 1

3 , but he assigns high
probability to the event that his opponent’s discount factor is lower than 1

3 , then the
player has incentive to deviate and play D at the first stage.

As mentioned before, it is easier to support cooperation when the punishment is
severe. Our goal is to focus on the conditions on the beliefs of a player that are needed
for cooperation in equilibrium.Wewill therefore consider themost severe punishment,
which is achievedby the grim trigger strategy; that is, if a player deviates, he is punished
in all subsequent stages. We thus allow each player to be of one of two types: a non-
cooperative type who always defects, and a cooperative type who follows the grim
trigger strategy. As we show through an example (see Example 5.4), the grim trigger
strategy is not necessarily the strategy that yields the most widespread cooperation,
that is, cooperation in the largest set of states of the world. We choose to focus on the
grim trigger strategy because, due to its simplicity, it allows us to focus on the players’
beliefs, even under complex information structures.

Under the grim trigger strategy profile, if the player’s discount factor is below 1
3 ,

then hewill not cooperate, andwill be of the non-cooperative type. The player will also
be of the non-cooperative type if he assigns sufficiently high probability to the event
that his opponent is of the non-cooperative type. He will also refuse to cooperate if he
assigns high probability to the event that the opponent assigns high probability to him
being of the non-cooperative type, etc. Thus, cooperation can arise only when both
players’ discount factor is at least 1

3 , each player assigns sufficiently high probability
to the event that the other player’s discount factor is at least 1

3 , each player assigns
sufficiently high probability to the event that the other player assigns sufficiently high
probability to the event that his (the player’s) discount factor is at least 1

3 , etc. In other
words, an infinite list of requirements must hold so that full cooperation will arise.

Not surprisingly, the infinite list of requirements necessary to support an equilibrium
can be summarized by two conditions. So that full cooperation arises in equilibrium
one should require that (a) each player’s discount factor is at least 13 , and (b) each player
assigns a sufficiently high probability that the other player is going to cooperate. For
the conditions to be sufficient, we need to add a third condition, (c) that whenever a
player does not cooperate, he assigns a sufficiently high probability to the event that
the other player is not going to cooperate. Interestingly, the probability in (b) is not
constant, but depends on the player’s discount factor: the higher his discount factor,
the more the player will lose if cooperation is not achieved. Therefore, a player with
high discount factor will cooperate in situations where he wouldn’t have cooperated
if his discount factor were lower.

To model incomplete information on the discount factor we use a Harsaniy’s game
with incomplete information, where the state of nature is the pair of the players’
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discount factors, and the concept of Bayesian equilibrium.1 A pair of events (K1, K2)

is a pair of cooperation events if the strategy pair in which each player i plays the
grim trigger strategy on Ki and always defects on the complement of Ki is a Bayesian
equilibrium. That is, when cooperation events occur, full cooperation is possible in
equilibrium.

We start by providing a complete characterization of pairs of cooperation events.
We then define a new concept of f -belief, which is a generalization of Monderer and
Samet (1989) concept of p-belief: when f is a real-valued function defined over the
set of states of the world, an event A is an f -belief of player i at the state of the world
ω if the conditional probability that player i assigns to A at ω is at least f (ω). This
concept is closely related to the cooperation condition (b) mentioned above, since in
order to cooperate each player needs to assign a sufficiently high probability that the
other player is going to cooperate, a probability that depends on his own discount
factor, and therefore on the state of the world; that is, the player has to f -believe that
the other player is going to cooperate, for a certain function f . Using the notions of
iterated f -belief and common f -belief we provide an iterative construction of the
largest pair of cooperation events.

The characterization of cooperation events can be generalized for other two-player
games. For 2×2 games the results remain fairly the same, with an appropriate adjust-
ments of conditions (a)–(c). In the case of larger games, while (the equivalent of)
conditions (a)–(c) still characterize cooperation events, our construction of the largest
pair of cooperation events is no longer valid.

Another solution concept that was studied in the literature is that of interim cor-
related rationalizabiliy (ICR), see, e.g., Dekel et al. (2007) and Weinstein and Yildiz
(2007). With respect to this concept the results have the same flavor, yet condition
(c) is not necessary for a grim trigger strategy to be rationalizable. In this case the
construction of cooperation events via f -beliefs is simpler and can be easily extended
to games larger than 2 × 2.

A natural question is whether, when there is almost complete information on the
discount factors, there are cooperation events that are close to the cooperation events
in the case of complete information. Monderer and Samet (1989) ensure that there is
an equilibrium that coincide with the complete information equilibrium in most states
of the world, when the information is almost complete in a certain sense. However, in
their setting there are always “unmapped areas” in this almost complete information
equilibrium; that is, states of the world in which the strategy is not specified. We ask
whether, in an almost complete information setting, there is an equilibrium in grim
trigger strategies that is defined in every state of the world and is close to the complete
information equilibrium. It turns out that the answer depends on the definition of
almost complete information. We will provide two natural definitions for this concept;
in one, similar to Monderer and Samet (1989), the answer is positive for the Prisoner’s
Dilemma and a certain class of other games, but generally it is negative, while in the
other it is positive for all games.

1 The results would not change if we used perfect Bayesian equilibria instead of Bayesian equilibria.
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Our analysis demonstrates the significance of the concept of f -belief to the study of
cooperation in the presence of incomplete information. Plainly the decision whether
or not to cooperate depends on the whole hierarchy of belief of the player; our analysis
reveals that it crucially depends on the exact discount factor of the player, and not only,
say, on whether it is above or below some fixed threshold, as is the case in the games
with complete information. Finally, our analysis shows that the details of the definition
of almost complete information drastically affect the continuity of the largest pair of
cooperation events as a function of the beliefs of the players, and we point out at one
possible definition of the concept that guarantees the continuity of this function.

The literature regarding repeated games with different discount factors, and specif-
ically with incomplete information regarding them, is quite scant. The most thorough
analysis of repeated games with different discount factors with complete information
that we are aware of is Lehrer and Pauzner (1999) who characterize the equilibrium
payoffs in two-player games and show that the set of feasible payoffs in the repeated
game is typically larger than the convex hull of the underlying stage-game payoffs.
Lehrer and Yariv (1999) analyze the case of two-player zero-sum repeated game with
one-sided incomplete information regarding the payoff matrix in which the discount
factors are common knowledge. The analysis closest to ours is Blonsky and Probst
(2008), who deal with a two-player game with incomplete information regarding the
discount factors. Their paper characterizes the efficient equilibria and the Pareto fron-
tier of the payoffs in a game that is related to the Prisoner’s Dilemma, but with more
strategies in the stage game, which correspond to different levels of cooperation or
trust. Our paper differs from Blonsky and Probst (2008) in several aspects. First, we
deals with a different class of games that do not include a mechanism of gradually
building trust embedded. Second, while Blonsky and Probst (2008) takes a simple
information structure and ask what are the effective equilibria, we take a simple and
natural strategy (grim trigger) and check checks when it induces an equilibrium for a
given information structure. In other words, while Blonsky and Probst (2008) show
how an equilibrium with cooperation look like in a specific game and information
structure, we study the requirements on the players’ beliefs that guarantee the exis-
tence of an equilibrium in grim trigger strategies.

Other papers that dealwith cooperation in repeated gameswith incomplete informa-
tion, albeit in settings quite different from ours, areWatson (1999, 2002), who analyze
the building of trust in a two-player game with incomplete information regarding the
payoff matrix, somewhat similar to the game in Blonsky and Probst (2008), and Kajii
and Morris (1997) and Chassang and Takahashi (2011), who investigate the robust-
ness of equilibria in repeated games to a small amount of incomplete information
on the payoff matrix. Chassang and Takahashi (2011) also deal specifically with the
Prisoner’s Dilemma and show that the grim trigger equilibria are not the most robust
way to sustain cooperation.

The paper is organized as follows. In Sect. 2 we present the repeated Prisoner’s
Dilemma with incomplete information on the discount factor, and the concept of
cooperation events. In Sect. 3 we characterize pairs of cooperation events. In Sect.
4 we present the concepts of f -belief, common f -belief and iterated f -belief, and
characterize the largest pair of cooperation events in the repeated Prisoner’s Dilemma
using these notions. Examples are provided in Sect. 5. In Sect. 6 we present several
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extensions and additional results, including general two-player gameswith incomplete
information on the other player’s discount factor, the analysis of almost complete
information, and another possible application of the concept of f -belief, to define
sufficient conditions for “combining” two different complete information equilibria
into an incomplete information equilibrium, not necessarily in a repeated game.

2 The model

Consider the repeated Prisoner’s Dilemma with incomplete information on the dis-
count factors. That is, the set of states of nature is S = [0, 1)2; a state of nature
s = (λ1, λ2) ∈ S indicates the discount factors λ1 and λ2 of the two players 1 and 2
respectively. An arbitrary player will be denoted by i ; when i is a player, j denotes
the other player.

We consider a general (that is, not necessarily finite) set of states of the world �,
equipped with a σ -algebra �. The function λ = (λ1, λ2) : � → S indicates the
state of nature that corresponds to each state of the world; thus, λi (ω) ∈ [0, 1) is the
discount factor of player i at the state of the world ω.

The belief of each player i is given by a function Pi : � → �(�). We denote by
Pi (E | ω) the probability that player i ascribes to the event E ∈ � at the state of
the world ω, and by Ei (· | ω) the corresponding expectation operator. The function
Pi is measurable in the sense that, for every E ∈ �, the function ω �→ Pi (E | ω) is
measurable. This function is required to be consistent, in the sense that each player
knows his belief: Pi ({ω′ : Pi (ω) = Pi (ω′)} | ω) = 1, for every ω ∈ �. We assume
throughout2 that each player i knows his own discount factor in every state of theworld
ω: Pi ({ω′ : λi (ω

′) = λi (ω)} | ω) = 1 for every ω ∈ �. The triplet (�,�, (P1, P2))
is called a belief space.

The type of player i at the state of the worldω is the set of all states of the world that
are indistinguishable from the true state of the world, given the player’s information;
formally, it is the set {ω′ | Pi (ω′) = Pi (ω)}.

To allow general information structures, we assume that the information that a
player has is described by a sub-σ -algebra �i of �, and that both λi and Pi are �i -
measurable. Thus, each player knows his discount factor and his beliefs. The σ -algebra
�i identifies the events that can be described by player i .

The game is played as follows: at the outset of the game, a state of the world ω ∈ �

is realized, each player i learns his type, and therefore also his discount factor λi (ω).
Then the players repeatedly play the Prisoner’s Dilemma that appears in Fig. 1 (see
page 2).

A course of action of player i is a function that assigns a mixed action of player i
to each finite history of actions in the repeated Prisoner’s Dilemma. This is a strategy
for the player given his type.

2 Similar though slightly weaker results to the ones we obtain below can be proven when the players have
incomplete information regarding their own discount factor as well as the other player’s discount factor.
However, the assumption that a player knows his own discount factor is natural in many applications, and
it allows us to concentrate on the impact of incomplete information on the other player’s discount factor.
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Two simple courses of action of player i are the always defect course of action D∗
i ,

in which he always plays D, and the grim trigger course of action GT ∗
i , in which he

cooperates at the first stage, and in every subsequent stage he cooperates only if the
other player cooperated in all previous stages.

A strategy of player i is a�i -measurable3 function ηi that assigns a course of action
ηi (ω) to each state of the world ω.

The subjective payoff of player i under the strategy profile (ηi , η j ), conditional on
the state of the world ω, is γi (ηi , η j | ω) = Ei (

∑∞
t=1(λi (ω))t−1ui,t | ω), where ui,t

is player i’s payoff at stage t . Note that the subjective payoff depends on ω in three
ways: first, player i’s discount factor depends on ω; second, the course of action that
player i takes depends on ω; and third, the belief of player i about player j’s type, and
therefore about player j’s course of action, also depends on ω.

In the complete information case both players know each other’s discount factor. In
this case, the grim trigger course of action is an equilibrium if and only if the discount
factors of both players are at least λ0i := 1

3 . Thus, the players will cooperate in some
states of the world, and will never cooperate in the remaining states of the world. This
observation leads us to the following definition of a conditional grim trigger strategy,
in which the player plays a grim trigger course of action in some states of the world,
and always defects in the rest of the states of the world.

Definition 2.1 Let i ∈ {1, 2} be a player, and let Ki ⊆ � be a�i -measurable set. The
conditional grim trigger strategy with cooperation region Ki for player i , denoted by
η∗
i (Ki ), is the strategy defined by

η∗
i (Ki , ω) =

{
GT ∗

i if ω ∈ Ki ,

D∗
i if ω /∈ Ki .

If a player plays a conditional grim trigger strategy, his action at the first stage
reveals whether he follows the grim trigger course of action or the “never cooperate”
course of action.

If η∗(K1, K2) := (η∗
1(K1), η

∗
2(K2)) is a Bayesian equilibrium, then whenever ω ∈

K1 ∩ K2 the players will cooperate all along the game.

Definition 2.2 The pair of events (K1, K2) is called a pair of cooperation events if
η∗(K1, K2) = (η∗

1(K1), η
∗
2(K2)) is a Bayesian equilibrium,

As mentioned in the introduction, the significance of cooperation events is that they
enable cooperation all through the game, without the need to exchange information.
As Example 5.4 shows, there are equilibria in which the players cooperate from some
stage on, after a short signalling period, even when there are no non-trivial cooperation
events.

The pair (∅,∅) is a pair of cooperation events in which the players never cooperate.
Moreover, if (K1, K2) are cooperation events and Ki = ∅, then K j = ∅. Indeed, if

3 So that �i -measurability of strategies is well defined, one needs to introduce a topological structure on
the space of courses of actions. In this paper we will study only a simple type of strategies, conditional grim
trigger strategies, which is defined below (Definition 2.1), and the measurability issue will not arise.
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Ki = ∅ then player i never cooperates, so that player j’s dominant strategy is never
to cooperate.

Note that there may be two pairs of non-empty yet disjoint cooperation events.
Indeed, given a belief space with a pair of non-empty cooperation events (K1, K2),
consider an auxiliary belief space that includes two independent copies of the original
belief space. Then the two copies of (K1, K2) are two pairs of disjoint cooperation
events in the auxiliary belief space.

The larger the sets (K1, K2), the higher the probability that cooperationwill occur. If
there are several pairs of sets (K1, K2) forwhichη∗(K1, K2) is aBayesian equilibrium,
then using pre-play communication or amediator the players can agree on theBayesian
equilibrium with largest pair of cooperation events (K1, K2). Our main goal is to
characterize the cooperation events, and to provide an algorithm for calculating the
largest pair of cooperation events (K1, K2).

3 Characterization of the cooperation events

We start by characterizing cooperation events in the (simple) benchmark case of com-
plete information, where the discount factors are common knowledge among the play-
ers. We will then analyze the general case with incomplete information.

When the game has complete information, in equilibrium each player knows the
course of action that the other player will take: a player cooperates if and only if his
discount factor is at least λ0i = 1

3 and the other player cooperates. In particular, if
η∗(K1, K2) is a Bayesian equilibrium then necessarily K1 = K2: We therefore obtain
the following characterization for cooperation events in the complete information case.

Theorem 3.1 When the game has complete information, (K1, K2) is a pair of coop-
eration events if and only if K1 = K2 ⊆ 
, where 
 := 
1 ∩ 
2 and 
i := {ω ∈
� : λi (ω) ≥ λ0i } for i ∈ {1, 2}.

When information is incomplete the characterization of cooperation events is more
subtle, and is described by the following theorem.

Theorem 3.2 Let Ki ⊆ � be a �i -measurable event for each i = 1, 2. The pair
(K1, K2) is a pair of cooperation events if and only if, for each i = 1, 2

(a) Ki ⊆ 
i ;
(b) Pi (K j | ω) ≥ fi (ω) for every ω ∈ Ki ; and
(c) Pi (K j | ω) ≤ fi (ω) for every ω /∈ Ki ;

where fi is the �i -measurable function defined by fi (ω) := 1−λi (ω)
2λi (ω)

.

Condition (a) is an individual rationality condition: a player will not cooperate if
his own discount factor is not sufficiently high to justify cooperation. Conditions (b)
and (c) capture the whole hierarchy of beliefs that should hold to ensure cooperation.
Condition (b) requires that whenever a player is supposed to cooperate, he assigns
sufficiently high probability that the other player will cooperate; if this were not the
case, the player would find it beneficial not to cooperate at that state of the world.

123



Cooperation discount factors 329

The cutoff for cooperation depends on the player’s discount factor, and therefore it
depends on the state of the world. Indeed, if the player’s discount factor is high, he
will be willing to take the risk and cooperate in the first stage even if the probability
of the event that the other player will also cooperate is low, because the possible loss
in the first stage is small due to the high discount factor. Condition (c) is analogous
to condition (b); it requires that whenever a player is not supposed to cooperate, he
assigns low probability to the event that the other player will cooperate; otherwise, the
player would prefer to cooperate. Note that condition (c) trivially holds for ω /∈ 
i

because in this case fi (ω) ≥ 1.
The proof of the theorem appears in “Appendix”.
It is interesting to note that Theorem 3.1 is a special case of Theorem 3.2. When

information is complete, whether or not the state of the world ω lies in K1 or K2 is
common knowledge among the players, and therefore Pi (K j | ω) is either 0 or 1. If
K1 = K2 then the probability in condition (b) is 1 and the probability in condition
(c) is 0. Since Ki ⊆ 
i , we have fi (ω) ≤ 1 for ω ∈ Ki . Moreover, fi > 0 for every
ω ∈ �. It follows that in this case conditions (b) and (c) hold. On the other hand,
if K1 
= K2 and ω ∈ Ki \ K j , then Pi (K j | ω) = 0, and condition (b) does not
hold. Therefore, as Theorem 3.1 states, we deduce that the conditions that ensure that
(K1, K2) are cooperation events are K1 = K2 ⊆ 
1 ∩ 
2.

4 Belief operators

In this section we present the concepts of f -belief and common f -belief, which
are generalizations of the concepts of p-belief and common-p-belief introduced by
Monderer and Samet (1989). These concepts will be useful in the construction of
cooperation events.

The definitions and results presented in this section are valid for general belief
spaces with any finite number of players (see Definition 10.1 in Maschler et al. 2013
for a formal definition of a general belief space).

Definition 4.1 Let i be a player, and let fi : � → R be a �i -measurable function, let
A ⊆ � be an event, and let ω ∈ A. Player i fi -believes in the event A at the state of
the world ω if Pi (A | ω) ≥ fi (ω).

We say that both players f -believe in an event at the state of the world ω if player
1 f1-believes in the event at ω and player 2 f2-believes in the event at ω. A function
f : � → R

2 is called *-measurable if fi is �i -measurable for each i ∈ {1, 2}.
Definition 4.2 Let f : � → R

2 be a *-measurable function, let A ⊆ � be an event,
and let ω ∈ A. The event A is common f -belief at the state of the world ω if at ω each
player i fi -believes in A, each player i fi -believes that both players f -believe in A,
each player i fi -believes that both players f -believe that both players f -believe in A,
etc. ad infinitum.

If there is p ∈ (0, 1) such that f1 ≡ p and f2 ≡ p, then f -belief and common
f -belief reduce toMonderer and Samet (1989) p-belief and common p-belief, respec-
tively. If fi is a constant function pi for each i ∈ {1, 2}, but p1 and p2 may differ, then
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the concept of f -belief reduces to the concept of p-belief of Morris and Kajii (1997),
where p = (p1, p2).

An equivalent formulation of conditions (b) and (c) of Theorem 3.2 using the
concept of fi -belief, where ( fi )i=1,2 are the functions that are defined in the statement
of the theorem, is the following:

(b’) K j is an fi -belief in Ki ; and
(c’) Kc

j is a (1 − fi )-belief in Kc
i .

Thus, the events (K1, K2) are cooperation events if (a) each Ki is a subset of 
i

(individual rationality condition), (b’) at each state of the world in which player i
is supposed to cooperate, he fi -believes that the other player is going to cooperate,
and (c’) at each state of the world in which player i is not supposed to cooperate, he
(1 − fi )-believes that the other player is not going to cooperate.

Definition 4.3 Let i be a player, and let fi : � → R be a �i -measurable function.
The fi -belief operator of player i is the operator B

fi
i : � → � that assigns to each

event the states of the world at which player i fi -believes in the event: B
fi
i (A) := {ω ∈

� | Pi (A | ω) ≥ fi (ω)}.
Because both fi and Pi are �i -measurable functions, the set B fi

i (A) is in �i for
every event A.

Let f : � → R
2 be a *-measurable function. Using the fi -belief operator we can

formally define common f -belief. Define

D0, f (C) :=C, (1)

Dn+1, f (C) := B f1
1 (Dn, f (C)) ∩ B f2

2 (Dn, f (C)) for every n ≥ 0, (2)

D f (C) :=
⋂

n≥1

Dn(C). (3)

An event C is common f -belief at ω if and only if ω ∈ D f (C).
The following proposition, which lists several desirable properties that the f -belief

operator satisfies, is analogous to results derived in Monderer and Samet (1989).

Proposition 4.4 Let i ∈ {1, 2} and f : � → R2 be *-measurable. The following
statements hold:

1. If A,C ∈ � and A ⊆ C, then B fi
i (A) ⊆ B fi

i (C).

2. If A ∈ � then B fi
i (B fi

i (A)) = B fi
i (A).

3. If (An)
∞
n=1 is a decreasing sequence of events, then B fi

i (
⋂∞

n=1 An) = ⋂∞
n=1 B

fi
i

(An).
4. If C ∈ � is a �i -measurable event, then

B fi
i (C) = (C \ {ω ∈ � | fi (ω) > 1}) ∪ {ω ∈ � | fi (ω) ≤ 0}.

5. If fi > 0 or { fi ≤ 0} ⊆ C, then B fi
i (A)∩C = B fi

i (A∩C) for every event A ∈ �

and every �i -measurable event C ∈ �.
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Proof The proof of parts 1 and 3 is similar to the proof for Proposition 2 in Monderer
and Samet (for p-belief operators). To prove part 4, observe that Pi (C | ω) = 1 for
every ω ∈ C , and Pi (C | ω) = 0 for every ω /∈ C . Part 2 follows from part 4, because
for every A ∈ �, B fi

i (A) is a�i -measurable event that contains {ω ∈ � | fi (ω) ≤ 0}.
To prove part 5, assume { fi ≤ 0} ⊆ C . In this case B fi

i (C) = C \ { fi > 1}. Assume

ω ∈ B fi
i (A ∩ C). From part 1 we have ω ∈ B fi

i (A) and ω ∈ B fi
i (C) ⊆ C . For the

other direction, assumeω ∈ B fi
i (A)∩C . Then Pi (A | ω) ≥ fi (ω) and Pi (C | ω) = 1,

and therefore Pi (A ∩ C | ω) ≥ fi (ω); that is, ω ∈ B fi
i (A ∩ C). ��

By Proposition 4.4, B fi
i is a belief operator as defined by Monderer and Samet

(1989). Analogously to Proposition 3 in Monderer and Samet (1989) we obtain the
following characterization of common f -belief.

Proposition 4.5 The event C is a common f -belief at the state of the world ω if and
only if there exists an event D ∈ � such that (a) ω ∈ D, (b) D ⊆ B fi

i (C), and (c)

D ⊆ B fi
i (D) for every i ∈ {1, 2}.

4.1 Common f -belief and cooperation events

In the spirit of the notion of iterated p-belief (see Morris 1999), we define the concept
of iterated f -belief of pairs of events. As we will see below, this notion is also related
to the concept of common f -belief.

Definition 4.6 For every two events Ci ∈ �, i = 1, 2, define

D1, f
i (Ci ,C j ) := B fi

i (C j ) ∩ Ci ,

Dn, f
i (Ci ,C j ) := B fi

i (Dn−1, f
j (C j ,Ci )) ∩ Dn−1, f

i (Ci ,C j ), for every n > 1,

D f
i (Ci ,C j ) :=

⋂

n≥1

Dn, f
i (Ci ,C j ).

The event D f
i (C1,C2) is called the iterated f -belief of player i w.r.t. (C1,C2).

To understand this definition, suppose that ω is the true state of the world, and C1
andC2 are two events that containω. Suppose that each player i is informed ofCi . The
statement ω ∈ D f

i (Ci ,C j ) is then equivalent to the following: (a) player i fi -believes
that ω is in player j’s set, (b) player i fi -believes that (b1) ω is in player j’s set and
that (b2) player j f j -believes that ω is in player i’s set, etc. ad infinitum.

Because B f
i (A) is a�i -measurable event for every event A, ifCi is a�i -measurable

event, then the event D f
i (C1,C2), the iterated f -belief of player i w.r.t. (C1,C2), is

also �i -measurable, for every (not necessarily �i -measurable) event C j .

As the next lemma states, D f
1 (C1,C2) and D f

2 (C2,C1) are the largest subsets of
C1 and C2, respectively, such that condition (b) in Theorem 3.2 holds.
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Lemma 4.7 1. For each i ∈ {1, 2} and every ω ∈ D f
i (Ci ,C j ) one has

Pi (D
f
j (C j ,Ci ) | ω) ≥ fi (ω). D f

1 (C1,C2) and D f
2 (C2,C1) are the largest sub-

sets of C1 and C2 (respectively) such that this property holds.4

2. If Ci is �i -measurable and { fi ≤ 0} ⊆ Ci for i = 1, 2, then Dn, f
i (Ci ,C j )

and D f
i (Ci ,C j ) depend only on the intersection of Ci and C j . In this case,

D f
1 (C1,C2) ∩ D f

2 (C2,C1) = D f (C1 ∩ C2), the event containing all states of

the world ω such that C1 ∩ C2 is a common f -belief at ω, and D f
i (Ci ,C j ) =

B fi
i (D f (C1 ∩ C2)), the event containing all states of the world ω where player i
f -believes that C1 ∩ C2 is a common f -belief.

Lemma 4.7(2) relates the concepts of common f -belief and iterated f -belief: when
fi (ω) > 0 for every ω 
∈ Ci and each i = 1, 2, the event D f (C1 ∩ C2) is the
intersection of the iterated f -belief events D f

1 (C1,C2) and D f
2 (C1,C2). Example

3 in Morris (1999) shows that the concept of iterated belief that we defined here is
different from the concept with the same name defined in Morris (1999).

If f1 > 0 and f2 > 0, then the set { fi ≤ 0} is empty, and part 2 holds as soon as Ci

is �i -measurable. The condition f1 > 0 and f2 > 0 holds in particular for the case
of p-beliefs, when f1 = f2 ≡ p for some p ∈ (0, 1].
Proof To avoid cumbersome notation, we write D f

i and Dn, f
i instead of D f

i (Ci ,C j )

and Dn, f
i (Ci ,C j ), respectively.

We first argue that D f
i ⊆ B fi

i (D f
j ). Indeed, by Proposition 4.4(3), and since

(Dn, f
j )∞n=1 is a decreasing sequence of events,

B fi
i (D f

j ) = B fi
i

⎛

⎝
⋂

n≥1

Dn, f
j

⎞

⎠ =
⋂

n≥1

B fi
i (Dn, f

j ) ⊃
⋂

n≥1

(
B fi
i (Dn, f

j ) ∩ Dn, f
i

)

=
⋂

n≥1

Dn+1, f
i = D f

i .

For the maximality property, assume that K1 ⊆ C1 and K2 ⊆ C2 satisfy Pi (K j |
ω) ≥ fi (ω) for every ω ∈ Ki and each i = 1, 2. For each i ∈ {1, 2} we then have
Ki ⊆ B fi

i (K j ), which implies that D1, f
i (Ki , K j ) = Ki . It follows by induction on

n that Dn, f
i (Ki , K j ) = Ki , and therefore D f

i (Ki , K j ) = Ki . Because Ki ⊆ Ci it

follows from Proposition 4.4(1) that D f
i (Ki , K j ) ⊆ D f

i (Ci ,C j ), and the first claim
follows.

Denote C :=C1 ∩ C2. Because { fi ≤ 0} ⊆ Ci , by Proposition 4.4(5) one has
D1, f
i (Ci ,C j ) = B fi

i (C). This proves the first part of the second claim.

Because D1, f
i (Ci ,C j ) = B fi

i (C), it can be verified from the definition that for

n ≥ 1 one has Dn, f (C) = Dn, f
1 (C1,C2) ∩ Dn, f

2 (C2,C1), and therefore D f (C) =

4 They are the largest in the following (strong) sense: if K1 ⊆ C1 and K2 ⊆ C2 satisfy Pi (K j | ω) ≥ fi (ω)

for each i = 1, 2 and every ω ∈ Ki , then Ki ⊆ D f
i (Ci ,C j ).
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D f
1 (C1,C2)∩ D f

2 (C2,C1). The event “player i fi -believes that C1 ∩C2 is a common
f -belief” is the event

B fi
i (D f (C)) = B fi

i (D f
1 (C1,C2) ∩ D f

2 (C2,C1)) (4)

= B fi
i (Dj (C j ,Ci )) ∩ D f

i (Ci ,C j ) = D f
i (Ci ,C j ). (5)

Since D f
i (C1,C2) is �i -measurable, the second equality follows from Proposition

4.4(5), and the last one from the first part of this lemma. ��
As a conclusion of Theorem 3.2 and Lemma 4.7 we obtain the following result.

Theorem 4.8 IfCi ⊆ 
i for i = 1, 2, then (B f1
1 (D f (C1∩C2)), B

f2
2 (D f (C1∩C2))) is

a pair of cooperation events if and only if Pi (B
f j
j (D f (C1∩C2)) | ω) ≤ fi (ω) for every

ω ∈ 
i \B fi
i (D f (C1∩C2)), for i = 1, 2. In particular, (B f1

1 (D f (
)), B f2
2 (D f (
)))

is a pair of cooperation events, where 
 = 
1 ∩ 
2.

Proof The first claim follows from Theorem 3.2 and Lemma 4.7, because fi (ω) > 1
for every ω 
∈ 
i .

To prove the second claim, assume to the contrary that there exists ω∗ ∈ 
1 \
B f1
1 (D f (
)) such that P1(B

f2
2 (D f (
) | ω∗)) > f1(ω∗).Denote K1 := B f1

1 (D f (
)∪
{ω∗}) and K2 := B f2

2 (D f (
)). From the assumption, Pi (K j | ω) ≥ fi (ω) for every
ω ∈ Ki and each i ∈ {1, 2}, contradicting Lemma 4.7(1). ��

The last case defines the largest cooperation events: the profile in which each player
i plays the grim trigger course of action whenever he fi -believes that it is a common
f -belief that λ1, λ2 ≥ 1

3 (and otherwise, always defects) is an equilibrium.
Note that although there cannot be a pair of cooperation events larger than

(B f
1 (D f (
)), B f

2 (D f (
))), there may be smaller pairs of non-trivial cooperation
events (see Example 5.1).

Remark 4.9 If we consider the solution concept of interim correlated rationalizability
(ICR) instead of Bayesian equilibrium, we obtain slightly different results. First, the
course of action D∗

i is always rationalizable for player i , regardless of the information
structure, which makes condition (c) in Theorem 3.2 redundant. Second, using similar
arguments as in the proofs of Theorems 3.2 and 4.8, it can be shown that GT ∗

i is

rationalizable for player i ifω ∈ B fi
i (D f (C1∩C2)) for someCi ⊂ 
i . Therefore, the

strategy η∗
i (B

fi
i (D f (C1 ∩ C2))) is rationalizable for every choice of Ci ⊂ 
i . This

difference is more significant when considering larger games (see Sect. 6.1).

5 Examples

In this section we present several examples that illustrate properties of cooperation
events. Constructing examples where the only pair of cooperation events is the trivial
pair (∅,∅) is not difficult. For example, if there is a player i who, whenever his
discount factor is higher than λ0i = 1

3 , assigns high probability to the event that player
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j’s discount factor is low, then that player will never cooperate, and there will be
no non-trivial pair of cooperation events. The same phenomenon will occur if such
a property holds in higher levels of belief, e.g., there is a player i who believes that
player j’s belief satisfies that, whenever player j’s discount factor is higher than λ0j ,
player j assigns high probability to the event that player i’s discount factor is low.

We start with two examples in which B fi
i (D f (
)) = 
i for i ∈ {1, 2}, so that

(
1,
2) is a pair of cooperation events; in the first example, there are additional pairs
of non-trivial cooperation events, while in the second example (
1,
2) is the unique
pair of non-trivial cooperation events.

In all the examples in this section, � ⊆ [0, 1)2, and we interpret the coordinates
of ω ∈ � as the players’ discount factors, i.e. λ(ω) = (λ1(ω), λ2(ω)) = ω. In all
examples, each player’s belief regarding the other player’s discount factor depends
only on his own discount factor.

Example 5.1 Let � = { 14 , 1
2 ,

3
4 }2. The belief of the players is derived from a common

prior, which is the uniform distribution over �.
We first show that D f

i (
1,
2) = 
i for each i ∈ {1, 2}, so that by Theorem 4.8,
({ 12 , 3

4 }, { 12 , 3
4 }) is a pair of cooperation events. We then argue that ({ 34 }, { 34 }) is also a

pair of cooperation events.5 Note that

fi

(
3

4

)

= 1

6
, fi

(
1

2

)

= 1

2
, fi

(
1

4

)

= 3

2
.

Because λ01 = λ02 = 1
3 , it follows that 
1 = { 12 , 3

4 } × { 14 , 1
2 ,

3
4 } and 
2 =

{ 14 , 1
2 ,

3
4 } × { 12 , 3

4 }. Therefore, P1(
2 | ω) = 2
3 for every ω. Since f1(

3
4 ) < 2

3 and

f1(
1
2 ) < 2

3 we get D1, f
1 (
1,
2) = 
1. Similarly, D1, f

2 (
2,
1) = 
2. It follows

that B f1
1 (D f (
)) = D f

1 (
1,
2) = 
1, and therefore for each i ∈ {1, 2}, the iterated
f -belief of player i w.r.t. (
1,
2) is 
i .
To see that ({ 34 }, { 34 }) is a pair of cooperation events, note that

P1

({
1

4
,
1

2
,
3

4

}

×
{
3

4

}

| ω

)

= P2

({
3

4

}

×
{
1

4
,
1

2
,
3

4

}

| ω

)

= 1

3
,

for every state of the world ω ∈ � and each player i ∈ {1, 2}, and use Theorem 3.2.
In fact, the same argument also implies that ({ 12 , 3

4 }, { 12 , 3
4 }) is a pair of cooperation

events, because Pi ({ 12 , 3
4 } | ω) = 2

3 for every state of the worldω ∈ � and each player
i ∈ {1, 2}.
Example 5.2 Let � be as in the Example 5.1. The beliefs of the players are given in
Fig. 2.

5 To avoid cumbersomenotation, in the exampleswewrite { 34 } instead of { 34 }×{ 14 , 1
2 , 3

4 }or { 14 , 1
2 , 3

4 }×{ 34 },
and so on, when the meaning is clear. We also write f1(

3
4 ) and f2(

3
4 ) instead of f1((

3
4 , y)) and f2((y,

3
4 ))

for y ∈ �.
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Fig. 2 The beliefs of player i
given his discount factor in
Example 5.2

Fig. 3 The beliefs of player i
given his discount factor in
Example 5.3

Each player believes that the other player’s discount factor is at least as high as his
own. One can verify that B fi

i (D f (
)) = 
i for i ∈ {1, 2}, so that ({ 12 , 3
4 }, { 12 , 3

4 }) is
a pair of cooperation events.

Let Ci be as in Example 5.1. Because

P1

({
1

4
,
1

2
,
3

4

}

×
{
3

4

}

| 1
2

)

= P2

({
3

4

}

×
{
1

4
,
1

2
,
3

4

}

| 1
2

)

= 2

3
>

1

2
,

it follows from Theorem 3.2 that ({ 34 }, { 34 }) is not a pair of cooperation events. One
can verify that in this example, the only non-trivial pair of cooperation events is
({ 12 , 3

4 }, { 12 , 3
4 }).

In the following example B fi
i (D f (
)) is a strict non-empty subset of 
i for i ∈

{1, 2}.
Example 5.3 Let � be as in Example 5.1. The beliefs of the players are given in
Fig. 3: each player believes that his discount factor is high if and only if the other
player’s discount factor is low.

One can verify that B fi
i (D f (
)) = { 12 }, and that ({ 12 }, { 12 }) is the unique non-trivial

pair of cooperation events.

The next example shows that even if there are no cooperation events, there may be
equilibria in which, with positive probability, the players eventually cooperate. Such
a cooperation is achieved by having players signal their information one to the other
in the first stage of the game.

Example 5.4 Let � = {( 12 , 1
2 ), (

1
2 ,

1
4 )}; that is, player 1 has a high discount factor,

while the discount factor of player 2 may be high or low. With probability p < 1
2 =

f1(
1
2 ) the state of the world is ( 12 ,

1
2 ).

We first argue that B fi
i (D f (
)) = ∅ for i ∈ {1, 2}, and hence there is no non-

trivial pair of cooperation events. Indeed, 
1 = � and 
2 = {( 12 , 1
2 )}, and therefore


 := 
1 ∩ 
2 = {( 12 , 1
2 )}. Now, D1, f

1 = B f
1 (
) = B f

1 ({( 12 , 1
2 )}), and since p <
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f1(
1
2 ) < f1(

1
4 ), we have D1, f

1 (
) = ∅. Therefore, B f
1 (D f (
)) = ∅, and thus

B f
2 (D f (
)) = ∅.
We claim that the following strategy profile σ = (σ1, σ2) is a Bayesian equilibrium.

Player 1: Play D in the first stage. From the second stage on play D∗
1 if player 2

played D in the first stage, and play GT ∗
1 if player 2 played C in the first

stage.
Player 2: If the state of the world is ( 12 ,

1
4 ), play the course of action D∗

2 . If the state
of the world is ( 12 ,

1
2 ), play C in the first stage; from the second stage on

play the course of action GT ∗
2 , starting with action C at the second stage,

without taking into account player 1’s action at the first stage.

Note that under this strategy profile, the first stage is used by player 2 to signal the
state of the world to player 1, and from the second stage on the players either defect
in all stages or cooperate in all stages.

We now verify that this strategy pair is a Bayesian equilibrium. Because from the
second stage on the players follow an equilibrium, any profitable deviation involves
deviating in the first stage.

Player 1 cannot profit by deviating in the first stage, because in the first stage he
plays a dominant strategy in the one-shot game, and his action at that stage does not
affect the evolution of the play.

We now argue that player 2 cannot profit by deviating in the first stage either.
Assume first that the state of the world is ( 12 ,

1
2 ). Player 2’s payoff under σ is then

1
2 × 3

1− 1
2

= 3, while if he deviates in the first stage and plays D his payoff would be

1
1− 1

2
= 2. Assume now that the state of the world is ( 12 ,

1
4 ). Player 2’s payoff under σ is

then 1
1− 1

2
= 2, while if he deviates in the first stage and plays C he will be able to gain

4 in the second stage, so that his payoff is bounded by 1
4 × 4+ ( 14 )

2 × 1
1− 1

4
= 13

12 < 2.

Our last example concerns the continuity of cooperation events as the players’
beliefs vary. It shows that even if each player knows approximately the other player’s
discount factor, there need not be cooperation events that are close to (
1,
2). We
will discuss this issue further in Sect. 6.2.

Example 5.5 Let � = (0, 1)2 be equipped with the Borel σ -algebra. Each player
believes that the other player’s discount factor is within ε > 0 of his own: player
i believes that λ j is uniformly distributed in the interval (λi (ω) − ε, λi (ω) + ε) ∩
(0, 1). One has 
1 = [ 13 , 1) × (0, 1) and 
2 = (0, 1) × [ 13 , 1). We will show that

B f1
1 (D f (
)) = [ 12 , 1) × (0, 1), provided ε is sufficiently small, which will show that


i and B fi
i (D f (
)) are not close in the Hausdorff metric.

Let δ > 0. Because fi is a continuous monotonically decreasing function, and
because fi (

1
2 ) = 1

2 , there exists δ′ > 0 such that fi (
1
2 − δ′) = 1

2 + δ. Therefore, any

state of the world ω such that λi (ω) < min{ 13 + 2εδ, 1
2 − δ′} is not in D1, f

i (
i ,
 j ).
Indeed, for such states of the world ω, one has Pi (
 j | ω) = Pi ({λ j ≥ 1

3 } | ω) <
1
2 + δ = fi (

1
2 − δ′) < fi (ω). Therefore, D1, f

1 (
1,
2) = [x1, 1) × (0, 1) for some
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x1 ≥ min{ 13 +2εδ, 1
2 − δ′}; a similar result holds for player 2. By the same reasoning,

any state of theworldω such thatλi (ω) < min{x1+2εδ, 1
2−δ′} is not in D2, f

i (
i ,
 j ),

and D2, f
1 (
1,
2) = [x2, 1) × (0, 1) for x2 ≥ min{x1 + 2εδ, 1

2 − δ′}. We continue
inductively, and deduce that any state of the world ω such that λi (ω) < 1

2 − δ′ is not
in D f

i (
i ,
 j ). This is true for every δ > 0. Because δ′ goes to 0 as δ goes to 0,

D f
1 (
1,
2) ⊆ [ 12 , 1) × (0, 1). An analog inequality holds for player 2.

The inclusion D f
1 (
1,
2) ⊇ [ 12 , 1)× (0, 1) follows from Lemma 4.7(1), because

[ 12 , 1) × (0, 1) and (0, 1) × [ 12 , 1) satisfy inequality (b) of Theorem 3.2.
From Theorem 4.8 we deduce that ([ 12 , 1), [ 12 , 1)) is a pair of cooperation events.

An alternative way to show the last point is to use Theorem 3.2.
Note that this analysis does not change if � = (0, 1)2 ∩ {(x, y) : |x − y| < ε},

which verifies that the true state of the world is within the support of the beliefs of the
players. Also, if, for every state of theworldω, player i believes that λ j is distributed in
any non-atomic symmetric way around λi (ω), the result still holds. Similar examples
can also be constructed with a finite state space.

6 Generalizations and additional results

6.1 General two-player repeated games

Our main results were given for the repeated Prisoner’s Dilemma. In this section we
provide an analog result for general repeated games with incomplete information on
the discount factors.Wewill start by explaining how to adapt Theorem3.2 to this setup.
Conditions (b) and (c) of that theorem will change, because in general games there
are more ways in which a player can deviate than in the Prisoner’s Dilemma. As we
will see below, in the general case, even if the event D f (
1 ∩ 
2) is not empty, there
might not be non-trivial cooperation events. This happens because in games larger than
2×2, conditions (b) and (c) do not refer to the same function f , but rather to different
functions f and g, respectively, and therefore D f (
1 ∩ 
2) does not automatically
fulfill condition (c). However, in the spirit of Remark 4.9, if we consider ICR as
a solution concept, the function g becomes irrelevant and η∗

i (B
fi
i (D f (C1 ∩ C2)))

are still rationalizable strategies for every choice of Ci ⊂ 
i , and in particular for
Ci = 
i . Therefore, unlike the case of Bayesian equilibrium, when considering ICR
the results remain essentially the same in larger games.

Consider a two-player repeated game G where the set of actions of each player
i ∈ {1, 2} is a finite set Ai , and his utility function is ui : A1 × A2 → R. Each ui is
extended multilinearily to mixed actions. As in the model of Sect. 2, each player has
incomplete information about the other player’s discount factor. Let σ = (σ1, σ2) be a
Nash equilibrium in mixed actions of the one-shot game 
 := ({1, 2}, A1, A2, u1, u2),
and let τ = (τ1, τ2) be a pair of pure actions that satisfies the following two conditions,
for each i ∈ {1, 2}:
• ui (τ1, τ2) > ui (σ1, σ2), and
• τi is not a best response against σ j .

123



338 C. Maor, E. Solan

The actions σ1 and σ2 are the analog of the action D in the Prisoner’s Dilemma, while
the actions τ1 and τ2 are the analog of the action C .

Denote by σ ∗
i the course of action of player i in which he always plays σi . Denote

by GT ∗
i the course of action of player i in which he plays τi in the first stage, and

in every subsequent stage he plays τi if player j played τ j in all previous stages, and
plays σi otherwise.

The definition of a conditional grim trigger strategy is analogous to Definition 2.1,
with the course of action σ ∗

i replacing the “always defect” course of action D∗
i :

Definition 6.1 Let Ki ⊆ � be a �i -measurable event. A conditional grim trigger
strategy for player i with cooperation region Ki , is the strategy η∗

i (Ki ) defined as
follows:

η∗(Ki | ω) =
{
GT ∗

i (ω) ω ∈ Ki ,

σ ∗
i (ω) ω 
∈ Ki .

(6)

Cooperation events are defined similarly to Definition 2.2. In the complete infor-
mation case, there are thresholds λ01, λ

0
2 such that the players can agree to cooperate

(and play according to τ ) if and only if λi (ω) ≥ λ0i for every ω ∈ �, where

λ0i := min

{

λi | ui (τ )

1 − λi
−

(

ui (σ
′
i , τ j ) + ui (σ )

λi

1 − λi

)

≥ 0 ∀σ ′
i 
= τi

}

.

Denote 
i = {ω ∈ � | λi (ω) ≥ λ0i }. Then in the complete information case,
Theorem 3.1 holds: (K1, K2) are cooperation events if and only if K1 = K2 ⊆ 
,
where 
 := 
1 ∩ 
2.

The analog of Theorem 3.2 in the general setup is the following.

Theorem 6.2 Let Ki ⊆ � be a �i -measurable event for each i = 1, 2. The pair
(K1, K2) is a pair of cooperation events if and only if, for each i = 1, 2,

(a) Ki ⊆ 
i ,
(b) Pi (K j | ω) ≥ fi (ω) for every ω ∈ Ki , and
(c) Pi (K j | ω) ≤ gi (ω) for every ω /∈ Ki ,

for the �i -measurable functions6

fi (ω) := max
σ ′
i ∈Fi

ui (σ ′
i , σ j ) − ui (τi , σ j )

(
ui (τ )

1−λi (ω)
− (ui (σ ′

i , τ j )+ui (σ )
λi (ω)

1−λi (ω)
)
)

+ (ui (σ ′
i , σ j ) − ui (τi , σ j ))

,

(7)
and

gi (ω) := min{g1i , g2i (ω), g3i (ω)},

6 By convention, the infimum over an empty set is 1 and the supremum over an empty set is 0.
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where σ ′
i is an action of player i , and Fi = {σ ′

i ∈ Ai | ui (τi , σ j ) < ui (σ ′
i , σ j )}. The

functions g1i , g
2
i (ω) and g3i (ω) reflect several types of deviations, and are defined by

g1i := min
σ ′
i ∈H1

i

ui (σ ) − ui (σ ′
i , σ j )

(ui (σ ) − ui (σ ′
i , σ j )) + (ui (σ ′

i , τ j ) − ui (σi , τ j ))

where H1
i := {

σ ′
i ∈ Ai \ {σi , τi } | ui (σi , τ j ) < ui (σ ′

i , τ j )
}
,

g2i (ω) := ui (σ ) − ui (τi , σ j )

(ui (σ ) − ui (τi , σ j )) +
(

ui (τ )
1−λi (ω)

− (ui (σi , τ j ) + ui (σ )
λi (ω)

1−λi (ω)
)
)

whenever ui (σi , τ j ) + ui (σ )
(

λi (ω)
1−λi (ω)

)
<

(
ui (τ )

1−λi (ω)

)
, and g2i (ω) := 1 otherwise, and

g3i (ω)

:= min
σ ′
i ∈H3

i (ω)

ui (σ )−ui (τi , σ j )

(ui (σ )−ui (τi , σ j )) + (ui (τ )−ui (σi , τ j ) + (ui (σ ′
i , τ j )−ui (σ ))(λi (ω))

,

where

H3
i (ω) := {

σ ′
i ∈ Ai \ {τi } | ui (τ )−ui (σi , τ j ) + (ui (σ

′
i , τ j ) − ui (σ ))λi (ω)<0

}
.

It is worth noting that the only difference between Theorems 3.2 and 6.2 is in condition
(c): in the general case, player i (1 − gi )-believes that the event K j does not hold at
every ω 
∈ Ki , and not (1 − fi )-believes that this event does not hold. The reason
for this difference is that in general games players have more options to deviate than
in the Prisoner’s Dilemma, and therefore additional constraints affect the equilibrium
conditions.

As in Sect. 4, the conditions in Theorem 6.2 are equivalent to the following condi-
tion, which links the theorem to the concept of f -common-belief: each player either
f -believes that K1 ∩ K2 is a common- f -belief or (1 − g)-believes that the event
“K1 ∩ K2 is not a common- f -belief” is a common-(1− g)-belief (see Maor 2010 for
details).

The proof of Theorem 6.2 follows the lines of the proof of Theorem 3.2; the inter-
ested reader is referred to Maor (2010) for the complete proof.

If 
 is not a 2× 2 game, there may be ω ∈ � such that fi (ω) > gi (ω). In this case
(B f1

1 (D f (
)), B f2
2 (D f (
))) may not be a pair of cooperation events. This point is

illustrated in Examples 6.3 and 6.4. In these two examples we consider the following
3 × 3 repeated game:
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C

D

D C

N

N

0, ·
0, 4

1, 1

a, ·
3, 3

4, 0

·, ·
·, a
·, 0

where a > 4; payoffs that are not indicated in the matrix can be arbitrary. Here
σ = (D, D), τ = (C,C), and λ01 = λ02 = a−3

a−1 . In both examples, fi (ω) = g2i (ω) =
1−λi (ω)
2λi (ω)

, g1i = 1
a−3 , and g3i (ω) = 1

(a−1)λi (ω)
.

In the following example B fi
i (D f (
)) 
= ∅ for i = 1, 2, but these sets do not satisfy

the conditions in Theorem 6.2. Moreover, we prove that in this example there are no
non-trivial pairs of cooperation events. For simplicity the example uses an infinite
state space. A similar construction is possible with a finite state space.

Example 6.3 Let a = 6. The set of states of the world is � = (0, 1)2, and the beliefs
of the players are derived from a common prior, the uniform distribution over �.
One can verify that 
1 = [3/5, 1) × (0, 1) and 
2 = (0, 1) × [3/5, 1). Because
fi (ω) ≤ fi (3/5) = 1

3 < 1 − 3/5 = Pi (
 j | ω) for every ω ∈ 
i , it follows

that D1
i (
1,
2) = 
i , and therefore B fi

i (D f (
1,
2)) = D f
i (
1,
2) = 
i . But,

for ω /∈ 
i , Pi (λ j ≥ 3/5 | ω) = 2/5 > 1
3 = g1i ≥ gi (ω), and therefore, in

contrast to previous examples, the second condition in Theorem 6.2 does not hold,
and (B f1

1 (D f (
)), B f2
2 (D f (
)))) is not a pair of cooperation events.

We now argue that the only pair of cooperation events is (∅,∅). Suppose to the
contrary that there is a pair of non-empty cooperation events (K1, K2). For i = 1, 2
denote λ∗

i := inf{λi (ω) | ω ∈ Ki }. Since Ki ⊆ 
i , λ∗
i ≥ 3/5. Note that Pi (K j | ω)

is independent of the state of the world ω; denote this quantity by Pi (K j ). From the
first inequality of Theorem 6.2, we have Pi (K j ) ≥ fi (ω) for every ω ∈ Ki , and since
fi is continuous, Pi (K j ) ≥ fi (λ∗

i ). We now argue that if λi (ω) > λ∗
i , then ω ∈ Ki .

Otherwise we deduce from the second inequality of Theorem 6.2, that Pi (K j ) ≤
gi (ω) ≤ g2i (ω) = fi (ω). Since λi (ω) > λ∗

i it follows that fi (ω) < fi (λ∗
i ) ≤ Pi (K j ),

a contradiction. Therefore, we have that Pi (K j ) = 1 − λ∗
j .

Next, we argue that Pi (K j ) = fi (λ∗
i ). Otherwise Pi (K j ) > fi (λ∗

i ), and there is a
state of theworldω ∈ � such that Pi (K j ) > fi (ω) > fi (λ∗

i ). From the definition ofλ∗
i

we have ω /∈ Ki , but then we should have Pi (K j ) ≤ g2i (ω) = fi (ω), a contradiction.
We conclude that 1− λ∗

j = fi (λ∗
i ) for i = 1, 2. Because fi (λi ) = 1−λi

2λi
, we have that

1−λ∗
2

2λ∗
2

= 1− λ∗
1 = 2λ∗

1(1− λ∗
2), or equivalently, λ

∗
1λ

∗
2 = 1

4 . But λ
∗
i ≥ 3/5 for i = 1, 2,

a contradiction.

In the following example B fi
i (D f (
)) 
= ∅ and does not satisfy the conditions

in Theorem 6.2, but for a smaller non-empty set, the conditions hold, and therefore
define a Bayesian equilibrium.

Example 6.4 Let a = 5, and � = { 14 , 1
2 ,

3
4 }2. The beliefs of the players are derived

from a common prior, which is the uniform distribution over �. Here λ0i = 1
2 , and

therefore 
i = {λi (·) ≥ 1
2 }. As in the Example 6.3, B fi

i (D f (
)) = D f
i (
i ,
 j ) =
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i , but the second condition of Proposition 6.2 does not hold because of g1i : P1(
2 |
( 14 , λ2)) = 2/3 > 1

2 = g1i .

For Ci = {λi = 3
4 } we get D f

i (Ci ,C j ) = Ci , and one can verify that the second
condition of Proposition 6.2 does hold. Therefore,

η∗
i (ω) =

{
τ ∗
i λi = 3

4 ,

σi λi = 1
4 ,

1
2 ,

defines a Bayesian equilibrium.

6.2 “Almost” complete information

Monderer and Samet (1989) use the notion of common p-belief to measure approxi-
mate common knowledge. A natural question is then, whether when there is common
(1− ε)-belief regarding the discount factor for sufficiently small ε > 0, there is a pair
of cooperation events that is close to (
,
), the largest pair of cooperation events in
the complete information case.

In this section we provide two natural definitions for the notion “almost complete
information”; in one the answer to the question we posed is negative, in the other it
is positive. We present the results without proofs; the interested reader is referred to
Maor (2010) for additional examples and for the complete proofs, which are basically
applications of Theorems 3.2 and 6.2 and results from Monderer and Samet (1989).
The discussion in this section is related to Monderer and Samet (1996), who show that
the concept of common repeated p-belief is related to the continuity of the Nash equi-
librium correspondence relative to the information structure (see also Einy et al. 2008).

Example 5.5 shows that when each player approximately knows the other player’s
discount factor, the cooperation events may be significantly different from 
; this
is true even if we consider only δ-equilibrium for some δ > 0. Other concepts of
perturbation of the complete information case are also possible, and they may yield
different results. For example, the structure theorem in Weinstein and Yildiz (2007)
shows that there are arbitrary small perturbations of the product topology of beliefs
that make no conditional grim trigger strategy rationalizable.

Following Monderer and Samet (1989), we can suggest the following definition of
almost complete information.

Definition 6.5 Assume a common prior P over the set of states of the world. Let
ε, δ > 0. We say that the discount factors are almost complete information with
respect to ε and δ, if the set of states of the world in which the true discount factors
are common-(1 − ε)-belief has probability at least 1 − δ.

In other words, this definition means that in most states of the world, the true state of
nature in a common p-belief for a high p, that is, the true state of nature is known
with a high probability, that fact is known with high probability, etc.

From Theorem B in Monderer and Samet (1989) we deduce that if the number of
states of nature is finite, there are a strategy profile η and an event �′ with probability
at least (1− 2ε)(1− δ), such that (a) η(ω) = η∗(
,
)(ω) for every ω ∈ �′, and (b)
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η is an ε′-equilibrium for ε′ > 4Mε, where M is the maximal absolute value of the
payoff that a player can obtain in any state of the world:

M := sup
ω∈�

max
a∈A1×A2

max
i=1,2

ui (a)

1 − λi (ω)
< ∞.

In other words, there is an ε′-equilibrium that coincides over a large set with the condi-
tional grim trigger equilibrium of maximum cooperation in the complete information
case.

In the Prisoner’s Dilemma and other 2 × 2 games, this profile η can indeed be a
conditional grim trigger profile, as the following proposition states. In the proposition’s
statement, f ε

i is the function defined in (7) after subtracting ε from the numerator.

Proposition 6.6 Suppose each player has two actions. Let ε > 0 and δ > 0 be
given, and denote M0 := 2maxi=1,2(ui (σ ) − ui (τi , σ j )). Assume that the discount
factors are almost complete information with respect to ε and δ. Then, for every ε′ ≥
M0ε, the strategy profile η∗(B f ε′

1
1 (D f ε′

(
)), B
f ε′
2

2 (D f ε′
(
))) is an ε′-equilibrium,

and P(
 \ D f ε′
(
)) < δ.

For games where a player has more than two actions, the profile η may not be a
conditional grim trigger strategy profile. Moreover, there may be no conditional grim
trigger ε′-equilibriawhatsoever, even in the case of a finite state space (seeExample 8.3
in Maor 2010). This happens because this definition of almost complete information
allows the existence of “problematic” states that occur with small probability, in which
the beliefs of the players can be far from complete information, while conditions (b)
and (c) in Theorem 6.2 pose demands on all states of the world.

Therefore,with conditional grim trigger strategies in games that are larger than 2×2,
to obtain an ε′-equilibrium that coincides over a large set with the conditional grim
trigger equilibrium of maximum cooperation in the complete information case, we
need a stronger concept of almost complete information, which is “almost complete”
in all states of the world, and not merely over a large set of states of the world.

Definition 6.7 Let ε > 0. We say that the discount factors are almost complete infor-
mation with respect to ε, if at every state of the world ω, each player (1− ε)-believes
that some state of nature is common-(1 − ε)-belief in ω.

When the information is almost complete according to this definition, we can point
at an ε′-equilibrium in conditional grim trigger strategies:

Proposition 6.8 Let ε > 0. Assume that the discount factors are almost complete
information with respect to ε (according to Definition 6.7). Then the strategy profile
η∗(B1−ε

1 (D1−ε(
)), B1−ε
2 (D1−ε(
))) is an ε′-equilibrium, for every ε′ > Mε, where

M > 0 is a constant, independent of the information structure and of ε.

While there can be almost complete information on the discount factors (according
to Definition 6.7) even if there is no common prior, if there is a common prior, then this
concept is stronger than the concept in Definition 6.5. In this case, under a common
prior, the ε′-equilibrium in conditional grim trigger strategies described above indeed
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coincides over a large set with the conditional grim trigger equilibrium of maximum
cooperation in the complete information case, as stated by the following proposition.
In other words, under a stronger concept of almost complete information, we have a
result that is quite similar to the one in Theorem B of Monderer and Samet (1989),
but with a conditional grim trigger profile that is defined explicitly for every state of
the world.

Proposition 6.9 Let ε > 0. Assume that (a) the beliefs of the players are derived from
a common prior P; (b) the discount factors are almost complete information with
respect to ε (according to Definition 6.7); and (c) the number of states of nature is
finite or countable. Then (i) the strategy profile η∗(B1−ε

1 (D1−ε(
)), B1−ε
2 (D1−ε(
)))

is an ε′-equilibrium, for every ε′ > M1ε, where M1 > 0 is a constant, independent of
the players’ beliefs and of ε; (ii) under this strategy profile, both players will cooperate
if and only if ω ∈ D1−ε(
); and (iii) P(
 \ D1−ε(
)) < 3ε.

6.3 Further generalizations

Theorem 3.2 can also be generalized for other cases, with the necessary adjustments
to the functions fi and gi and the sets 
i . One generalization is for the case of
incomplete information regarding one’s own discount factor. A second generalization
concerns games withmore than two players. In these cases, using similar ideas one can
obtain analog results regarding sufficient conditions for equilibria in conditional grim
trigger strategies. Because the information structure and the game structure are more
complicated in multiplayer games, further assumptions should be made. E.g., in the
case ofmore than two players, to treat all the other players within the framework of one
function f one needs to take some “worst case scenario”. This makes the conditions
only sufficient and not necessary. See Maor (2010) for details.

Lastly, the theorem can be extended to general games with incomplete information.
Let G = (N , (S,S),�, (Ai )i∈N , (ui )i∈N ) be a general two-player Bayesian game.
To avoid measurability problems, assume that the set of states of the world is finite
or countable. Assume that there is a course of action profile σ ∗ = (σ ∗

1 , σ ∗
2 ) that is

an equilibrium for all states of nature when information is complete, and that there
is another course of action profile, τ ∗ = (τ ∗

1 , τ ∗
2 ) that is an equilibrium only in some

states of nature when the information is complete. Suppose that the supports of τ ∗
i and

σ ∗
i are disjoint in all states of the world; that is, it is discernable whether player i plays

σ ∗
i or τ ∗

i . A strategy of player i is an i-measurable function that assigns a course of
action of player i to each state of the world.

Let
i ⊆ � be the event “player i believes that he cannot benefit by deviating from
the profile τ ∗”. That is, for every ω ∈ 
i and every course of action σ ′

i of player i ,
Ei (ui (τ ∗) | ω) ≥ Ei (ui (σ ′

i , τ
∗
j ) | ω).

Theorem 6.10 In the game G there exist i -measurable functions 0 ≤ fi , gi ≤ 1,
i = 1, 2, such that if K1 ⊆ 
1 and K2 ⊆ 
2, the strategy profile η∗(K1, K2) =
(η∗

1(K1), η
∗
2(K2)) is a Bayesian equilibrium if and only if for i = 1, 2,

1. Pi (K j | ω) ≥ fi (ω) for every ω ∈ Ki , and
2. Pi (K j | ω) ≤ gi (ω) for every ω /∈ Ki .
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or, in other words, if and only if

1. Ki ⊂ B fi
i (K j ), and

2. K c
i ⊂ B1−gi

i (Kc
j ).

There are several differences between Theorems 6.10 and 6.2. First, herewe assume
that K1 ⊆ 
1 and K2 ⊆ 
2 whereas in Theorem 6.2 we showed that it was necessary
forη∗(K1, K2) to be aBayesian equilibrium.Thisweakened result allowsus to drop the
assumption that τ ∗

i is not a best response to σ ∗
j , and only requires that it is discernable

whether player i plays σ ∗
i or τ ∗

i (disjoint supports).7 Second, we do not assume that
the realized payoffs are observed, so that all a player knows is his expected payoff
based on his information on the states of nature. Third, we do not assume that the
payoffs when τ ∗ is played are higher than when σ ∗ is played.

For further generalizations and complete the reader is referred to Maor (2010).

Appendix: Proof of Theorem 3.2

Because a strategy of player i is a �i -measurable function, a necessary condition for
η∗
i (Ki ) to be a strategy is that Ki is �i -measurable.
For each i ∈ {1, 2}, let Ki be a�i -measurable event.Wewill checkwhen a deviation

from η∗(K1, K2) can be profitable.
Assume first thatω ∈ Ki . In this case player i is supposed to follow the grim trigger

course of action GT ∗.
If ω 
∈ K j , player j will play D all along the game, regardless of the play of player

i . Ifω ∈ K j , player j will follow the grim trigger course of actionGT ∗. It then follows
that if player i deviates and plays D at stage k, then he receives the highest payoff if
he continues to play D after stage k. Because payoffs are discounted, if a deviation
to D at stage k is profitable to player i , then a deviation at stage 1 provides a higher
profit. Therefore, the best possible deviation of player i is to the course of action D∗.
This deviation is not profitable if and only if

γi (η
∗(Ki , K j ) | ω) ≥ γi (D

∗
i , η

∗
j (Ki , K j ) | ω), (8)

where D∗
i is player i’s strategy in which he always plays D. One can verify that

γi (η
∗(Ki , K j ) | ω)= Pi (K j | ω)

(
3

1−λi (ω)

)

+(1 − Pi (K j | ω))
λi (ω)

1−λi (ω)
. (9)

Indeed, according to player i’s belief, with probability Pi (K j | ω) player j plays
GT ∗, so they will play (C,C) at every stage and his payoff will be 3

1−λi (ω)
, and with

probability (1 − Pi (K j | ω)) player j plays D∗, so in the first stage he will get 0,

7 Still, as before, if we assume that τ∗
i is not a best response to σ∗

j and if the payoffs in G are bounded,
then fi > 0.
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and afterwards the players will play (D, D); therefore in this case player i’s payoff is
λi (ω)

1−λi (ω)
. Similarly,

γi (D
∗
i , η

∗
j (K j ) | ω) = Pi (K j | ω)

(

4 + λi (ω)

1 − λi (ω)

)

+ (1 − Pi (K j | ω))

(
1

1 − λi (ω)

)

.

(10)

Plugging in (9) and (10) in (8) yields that D∗
i is not a profitable deviation for player i if

and only if Pi (K j | ω) ≥ fi (ω), which is condition (b). Since fi (ω) > 1 for ω /∈ 
i ,
this also implies that Ki ⊆ 
i , which is condition (a).

Now assume thatω /∈ Ki . In this case under η∗
i (K1, K2) player i follows the course

of action D∗. If player i follows η∗
i (K1, K2) at the first stage, then from the second

stage on player j will play D, and then the best reply of player i is to play D.
If ω 
∈ K j , player j follows D∗, and η∗

i (K1, K2) is player i’s best response. If
ω ∈ K j , player j followsGT ∗, and therefore if there is a profitable deviation to player
i , he must deviate at the first stage. Thus, to check whether η∗(K1, K2) is a Bayesian
equilibrium we need to check whether γi (η

∗(K1, K2)) ≥ γi (GT ∗
i , η∗

j (K1, K2)),
where GT ∗

i is the grim trigger course of action of player i .
One can verify that

γi (η
∗(K1, K2) | ω) = (1 − Pi (K j | ω))

1

1 − λi (ω)
+ Pi (K j | ω)

(

4 + λi

1 − λi
| ω

)

and

γi (C
∗
i , η∗

j (K j ) | ω) = Pi (K j | ω)
3

1 − λi (ω)
+ (1 − Pi (K j | ω))

(
λi (ω)

1 − λi (ω)

)

.

The inequality γi (η
∗(K1, K2)) ≥ γi (GT ∗

i , η∗
j (K1, K2)) then reduces to Pi (K j | ω) ≤

fi (ω), and condition (c) is obtained.
Finally we need to verify that fi is �i -measurable. This function is a rational

function of λi , and therefore it is a Borel function of λi . Since �i contains the sets
{ω | λi (ω) ∈ B}, for every open set B ⊆ [0, 1), fi , as a function of ω, is indeed
�i -measurable.
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