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Abstract

An optimal strategy in a Markov decision problem is robust if it is optimal in every

decision problem (not necessarily stationary) that is close to the original problem. We

prove that when the state and action spaces are finite, an optimal strategy is robust if

and only if it is the unique optimal strategy.
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1 Introduction

Sequential decision problems are used by practitioners in various areas. To properly analyze

such a problem, and to find an optimal strategy, one needs to provide the stage payoff,

the transitions, and the discount factor after every possible history. In many cases, it is

impossible or too costly to know the data of the problem precisely, and then only estimation

of the data is available to the decision maker. Thus one cannot analyze the actual decision

problem, but only an approximating one, and an optimal strategy in the model that is

studied might be suboptimal in the actual one. We say that an optimal strategy in a given

decision problem P is robust if it remains optimal in every decision problem that is close to

P.

In many cases, to simplify the analysis one approximates a nonstationary decision prob-

lem by a stationary one. This way one smooths out fluctuations in stage payoff, transitions,

or discounting that are due to predictable or unpredictable changes in the environment.

For example, consider a lake that is used for fishing, and suppose that the increase rate

of the population is stationary and known. The fishermen can then predict the evolution

of the fish population as a function of the amount of fish they extract, yet the fish prices

as well as the interest rate in the market fluctuate randomly. If these last two variables

are approximately stationary, then any robust optimal strategy in the fictitious stationary

problem is also optimal in the actual one.
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In this note we prove that an optimal strategy in a stationary decision problem with

finitely many states and actions is robust if and only if it is the unique optimal strategy,

and by virtue of an example we show that this result does not extend to decision prob-

lems with countably many states or actions. This result highlights the extent to which

an optimal strategy remains optimal when the data of the decision problem is known only

approximately.

2 The Model and the Main Result

A decision problem is defined over a finite set of states S. In each state s ∈ S the decision

maker has a finite collection of available actions, denoted by As. Denote A = (As)s∈S . We

let Ξ := {(s, a) : s ∈ S, a ∈ As} be the set of all pairs of state and an action available at that

state. Set HS,A := ∪∞n=0 (Ξn × S) be the space of all finite histories, and H+
S,A := ∪∞n=1Ξ

n be

the space of all histories including the current action. The notation hn = (s1, a1, . . . , sn) ∈
Ξn−1 × S will always denote a possible history at stage n. Given an infinite play h∞ =

(s1, a1, s2, a2, . . .) ∈ Ξ∞ and n ∈ N, we denote by hn = (s1, a1, . . . , sn) ∈ Ξn−1 × S the

possible history at stage n that h∞ induces. For every finite set S denote by ∆(S) the set

of probability distributions over S.

Definition 1 A decision problem over the set of states S and the sets of actions A =

(As)s∈S is a triplet P = (q, r, λ) where

• q : H+
S,A → ∆(S) is a transition function;

• r : H+
S,A → R is a bounded payoff function; and

• λ : HS,A → (0, 1) is a discounting function.

A decision problem evolves as follows. The initial state s1 ∈ S is given. At each stage

n ≥ 1, given the history so far hn = (s1, a1, · · · , sn) ∈ HS,A, the decision maker chooses an

action an ∈ Asn , receives the stage payoff r(hn, an) and a new state sn+1 is chosen according

to q(hn, an). The decision maker’s goal is to maximize the discounted sum

∞∑
m=1

(
r(hm, am)λ(hm)

∏
k<m

(1− λ(hk))

)
. (1)

Because the payoff function r is bounded, so is the sum in (1). Note that the transition and

stage payoff depend on the current action of the decision maker while the discount factor

does not depend on it. Nothing in what follows would have changed if the discount factor

depended on the decision maker’s current action.

Definition 2 A strategy is a function σ that assigns an action in Asn to every history

hn = (s1, a1, · · · , sn) ∈ HS,A.
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Denote by S the set of all strategies.

Every strategy σ, together with the initial state s1, induces a probability distribution

Ps1,σ over the space of plays Ξ∞ endowed with the σ-algebra generated by all finite cylinders.

Denote by Es1,σ the corresponding expectation operator. The expected payoff induced by

a strategy σ is

γ(s1, σ) := Es1,σ

[ ∞∑
m=1

r(hm, am)λ(hm)
∏
k<m

(1− λ(hk))

]
.

We will also be interested in the expected payoff given a history hn ∈ HS,A, which is

γ(hn, σ) := Es1,σ

[ ∞∑
m=n

r(hm, am)λ(hm)
∏
k<m

(1− λ(hk)) | hn
]
.

This is the expected total payoff assuming that the history hn occurred. Note that the

payoff γ(hn, σ) is discounted to stage n.

The value is the maximal payoff that the decision maker can guarantee.

Definition 3 The value of the decision problem P at the history hn ∈ HS,A is

v(hn) := sup
σ∈S

γ(hn, σ).

A strategy σ∗ that attains the supremum in the definition of v(hn) is called an optimal

strategy at hn. A strategy is optimal if it is optimal at all finite histories in HS,A.

Because the sets S and A are finite, the space of all strategies is compact in the product

topology (when S and A are endowed with the discrete topology). Moreover, the payoff

function σ 7→ γ(s1, σ) is continuous in this topology for every s1 ∈ S. It follows that an

optimal strategy exists. Since the payoff function r is bounded, our model is equivalent

to a Markov decision problem with positive bounded payoffs, and therefore by Theorem

7.2.5 in [3] the set of optimal strategies can be characterized using Bellman’s Principle of

Optimality.

Theorem 1 The strategy σ∗ is optimal if and only if for every history hn ∈ HS,A the action

σ∗(hn) attains the maximum in

max
a∈Asn

(
λ(hn)r(hn, a) + (1− λ(hn))

∑
s∈S

q(hn, a)[s]v(hn, a, s)

)
. (2)

As mentioned before, in applications we usually do not know the exact payoffs, transi-

tions, and discounting function. The L∞ metric between decision problems is one way to

measure the discrepancy between an actual decision problem and an approximating one.
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Definition 4 Let P = (q, r, λ) and P̂ = (q̂, r̂, λ̂) be two decision problems defined over the

same set of states S and sets of actions A = (As)s∈S. The distance between P and P̂ is

d(P, P̂) := max{ sup
hn∈HS,A

|λ(hn)−λ̂(hn)|, sup
(hn,an)∈H+

S,A

‖q(hn, an)−q̂(hn, an)‖∞, sup
(hn,an)∈H+

S,A

|r(hn, an)−r̂(hn, an)|}.

In this definition, ‖ · ‖∞ is the supremum norm: ‖x‖∞ = maxdi=1 |xi| for every vector

x = (xi)
d
i=1 ∈ Rd.

The value function is continuous with respect to the distance d(·, ·). We now define the

concept of a robust optimal strategy, which is the main interest of this note.

Definition 5 An optimal strategy σ∗ is robust in the decision problem P if it is optimal in

every decision problem P̂ that is close to P: there is δ > 0 such that σ∗ is optimal in every

decision problem P̂ that satisfies d(P, P̂) < δ.

As the next example shows, an optimal strategy, even when it is unique, need not be

robust.

Example 1 Suppose that S = N = {1, 2, 3, . . .} and As = {α, β} for every s ∈ S. Let

λ0 ∈ (0, 1) be arbitrary and consider the decision problem P = (q, r, λ) defined by

• q(hn, a)[n + 1] = 1 for every hn ∈ HS,A and a ∈ A: transition is deterministic and

independent of the decision maker’s action.

• r(hn, α) = 1 and r(hn, β) = 1− 1
n for every hn ∈ HS,A.

• λ(hn) = λ0 for every hn ∈ HS,A.

The unique optimal strategy σ∗ is to play α after every history; this strategy guarantees payoff

1. However, since the payoffs (r(hn, β))n∈N converge to 1 as the history’s length increases,

for every ε > 0 there is a decision problem P̂ = (q, r̂, λ) that satisfies (a) d(P, P̂) < ε, (b)

r̂(hn, α) = 1 for every hn ∈ HS,A, and (c) r̂(hn, β) > 1 for every history hn ∈ HS,A for

which n is sufficiently large. By Theorem 1 the strategy σ∗ is not optimal for P̂.

In Example 1, the number of states is countable and there are two actions in each state.

One can easily construct an analog example with two states and countably many actions.

As we now argue, though in general an optimal strategy may fail to be robust, when

the decision problem is stationary there is a simple criterion for determining whether an

optimal strategy is robust.

Definition 6 A decision problem is called stationary if the functions q, r, and λ depend

on hn only through sn; that is, q(hn, a) = q(ĥn̂, a), r(hn, a) = r(ĥn̂, a), and λ(hn) = λ(ĥn̂)

for every two histories hn = (s1, a1, · · · , sn) ∈ HS,A and ĥn̂ = (ŝ1, â1, · · · , ŝn̂) ∈ HS,A for

which sn = ŝn̂, and every action a ∈ Asn.
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A strategy σ is stationary if σ(hn) depends on hn only through sn, that is, σ(hn) =

σ(ĥn̂), for every two histories hn = (s1, a1, · · · , sn) and ĥn̂ = (ŝ1, â1, · · · , ŝn̂) for which

sn = ŝn̂. By [1], a stationary decision problem has a stationary optimal strategy.

Our main result is the following.

Theorem 2 An optimal strategy σ∗ of a stationary decision problem with finitely many

states and actions P is robust if and only if it is the unique optimal strategy in P.

As mentioned before, the value function is continuous with respect to the distance d(·, ·).
To prove Theorem 2 we need the following result, which bounds the derivative of the value

function at stationary decision problems. Its proof is similar to that of Theorem 4.3.7 in [2]

(see Eq. (4.20) on page 186). In the statement of this theorem and later, whenever P and

P̂ are two decision problems, we denote their value functions by v and v̂ respectively.

Theorem 3 Let P = (q, r, λ) be a stationary decision problem and P̂ = (q̂, r̂, λ̂) be a

decision problem that are both defined over the same set of states S and sets of actions

A = (As)s∈S. Then for every history hn ∈ HS,A we have

|v(hn)− v̂(hn)| ≤ 3 max

{
1,

2‖r̂‖∞
mins∈S λ(s)

}
d(P, P̂).

Proof of Theorem 2. Since P is stationary, we can denote its transitions and payoffs

by (q(s, a), r(s, a))s∈S,a∈As and the discounting function by (λ(s))s∈S . Suppose first that σ∗

is the unique optimal strategy in P. In particular, σ∗ is stationary, and therefore we can

denote it by σ∗ = (σ∗(s))s∈S . By Theorem 1 this implies in particular that for every s ∈ S
there is a unique action as ∈ As that attains the maximum in

max
a∈As

(
λ(s)r(s, a) + (1− λ(s))

∑
s′∈S

q(s, a)[s′]v(s, a, s′)

)
, (3)

and, moreover, σ∗(s) = as. We will now show that σ∗ is robust.

Set

ε := min
s∈S

{
v(s)− max

a∈As\{as}

(
λ(s)r(s, a) + (1− λ(s))

∑
s′∈S

q(s, a)[s′]v(s, a, s′)

)}
. (4)

Because as is the unique maximizer in (3), and because S and {As, s ∈ S} are finite sets,

it follows that ε > 0. Let P̂ be a decision problem whose distance from P is less than δ,

where δ satisfies (a) δ ≤ ε
9 , (b) 6δ ‖r‖∞+δ

mins∈S λ(s)
≤ ε

3 , and (c) 2δ(1 + ‖r‖∞(|S| + 2) + δ) < ε
12 .

By Theorem 3 and conditions (a) and (b),

|v(hn)− v̂(hn)| ≤ 3 max

{
1,

2‖r̂‖∞
mins∈S λ(s)

}
d(P, P̂) ≤ ε

3
,

for every hn ∈ HS,A. Fix hn ∈ HS,A. We will show that asn is the unique maximizer in (2)

for P̂, so that σ∗ is the unique optimal strategy for the decision problem P̂. Set

D := δ(1 + ‖r‖∞(|S|+ 2) + δ) +
ε

3
.
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By the definition of the distance,

λ̂(hn)r̂(hn, asn) + (1− λ̂(hn))
∑
s′∈S

q̂(hn, asn)[s′]v̂(hn, asn , s
′)

≥ λ(sn)r(sn, asn) + (1− λ(sn))
∑
s′∈S

q(sn, asn)[s′]v(s′)−D

≥ max
a∈Asn\{asn}

(
λ(sn)r(sn, a) + (1− λ(sn))

∑
s′∈S

q(sn, a)[s′]v(s′)

)
−D + ε. (5)

As above, for every a ∈ Asn \ {asn} we have(
λ(sn)r(sn, a) + (1− λ(sn))

∑
s′∈S

q(sn, a)[s′]v(s′)

)

≥

(
λ̂(hn)r̂(hn, a) + (1− λ̂(hn))

∑
s′∈S

q̂(hn, a)[s′]v̂(hn, a, s′)

)
−D,

and therefore it follows that the quantity in (5) is at least

max
a∈Asn\{asn}

(
λ̂(hn)r̂(hn, a) + (1− λ̂(hn))

∑
s′∈S

q̂(hn, a)[s′]v̂(hn, a, s′)

)
− 2D + ε,

which, by condition (c), is at least

max
a∈Asn\{asn}

(
λ̂(hn)r̂(hn, a) + (1− λ̂(hn))

∑
s′∈S

q̂(hn, a)[s′]v̂(hn, a, s′)

)
+
ε

4
,

so that asn is the unique maximizer of

max
a∈As

(
λ̂(hn)r̂(hn, a) + (1− λ̂(hn))

∑
s′∈S

q̂(hn, a)[s′]v̂(hn, a, s′)

)
.

Because this holds for every hn ∈ HS,A, Theorem 1 implies that the strategy σ∗ is indeed

optimal in P̂.

Suppose now that σ∗ is not a unique optimal strategy in P. We will show that it is

not robust. Indeed, since there are two distinct optimal strategies, Theorem 1 implies that

there is a state s0 ∈ S in which there are two distinct actions, denoted as0 and âs0 , which

attain the maximum in

max
a∈As0

(
λ(s0)r(s0, a) + (1− λ(s0))

∑
s′∈S

q(s0, a)[s′]v(s0, a, s
′)

)
,

Assume w.l.o.g that σ∗(s0) = as0 . Fix now δ > 0. We will define a (nonstationary) decision

problem P̂ = (q̂, r̂, λ̂) that is δ-close to P and in which σ∗ is not optimal. To this end,

define
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• q̂(hn, an) = q(sn, an) for every hn = (s1, a1, . . . , sn) ∈ HS,A and every an ∈ Asn ,

• λ̂(hn) = λ(sn) for every hn = (s1, a1, . . . , sn) ∈ HS,A,

• r̂(s0, âs0) = r(s0, âs0) + δ, and r̂(hn, an) = r(hn, an) for every (hn, an) ∈ H+
S,A \

{(s0, âs0)}.

That is, the decision problem P̂ is similar to P, except that in the first stage, the payoff

when playing âs0 at s0 increases by δ. Plainly d(P, P̂) = δ.

Let σ̂ be the strategy that coincides with σ∗, except that in the first stage it plays âs0
at state s0. We argue that γ(σ̂, s0) > γ(σ∗, s0), so in particular σ∗ is not optimal. Indeed,

since from the second stage on the two strategies σ̂ and σ∗ coincide, and since σ∗ is optimal,

we have

γ(h2, σ̂) = γ(h2, σ∗) = v(h2),

for every history h2 ∈ HS,A. In particular

γ(s0, σ̂) = λ̂(s0)r̂(s0, âs0) + (1− λ̂(s0))
∑
s′∈S

q̂(s0, âs0)[s′]v(s0, âs0 , s
′)

= λ(s0)(r(s0, âs0) + δ) + (1− λ(s0))
∑
s′∈S

q(s0, âs0)[s′]v(s0, âs0 , s
′)

= γ(s0, σ
∗) + λ(s0)δ > γ(s0, σ

∗),

as desired. Since this is true for every δ > 0, the strategy σ∗ is not robust.

The reason that the conclusion of Theorem 2 holds for stationary decision problems

and not for general decision problems is that in stationary problems there are finitely many

effective histories, so that the minimum in (4) is positive, while in nonstationary problems

there are infinitely many histories, so that even when all terms in the minimization (4) are

positive, the minimum may not be attained, and the infimum may be 0.

Note that the determination of whether a stationary decision problem has a unique

optimal strategy can be done in a polynomial time in
∑

s∈S |As|. Indeed, the calculation of

the value function can be done by a linear program, so that the determination of whether

there is a unique maximizer to (3), for every s ∈ S, can also be done in a polynomial time.

Theorem 2 leads us to the definition of the following concept. Let the robustness radius

of P be the maximal δ such that σ∗ is optimal in every decision problem P̂ whose distance

from P is below δ. Similarly to the previous paragraph, the proof shows that a lower bound

on the robustness radius can be calculated in a polynomial time. The determination of the

exact robustness radius seems a challenging open problem.
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