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Abstract

We embed a model of normal form games, where players act simultaneously,

in a standard model of an asynchronous distributed system, where simultaneous

play is impossible due to the lack of a global clock. We show that despite the

lack of simultaneous play, the concept of Nash equilibrium can be salvaged.

1 INTRODUCTION

The standard model of non-cooperative games with complete information is that of

extensive form games. Such modelling enables us to analyze the interaction among

players who move simultaneously or at different times (turns) and who have varying

degrees of information on past actions. Among the set of such games, the subset as-

suming all players have a single turn and move simultaneously is most widely explored.
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Such simultaneous move interactions are often modelled in matrix form and referred

to as games in normal form.

In the analysis of games in normal form, the notion of Nash equilibrium is used to

predict and explain behavior. Underlying the use of Nash equilibrium (and in particular

that of a mixed-strategy equilibrium) is the assumption that the opponents’ choice of

action is not available to a player when he takes his action. In reality, this can be

achieved if players play simultaneously, or, alternatively, if another trustworthy party

is involved in the game. This new player discretely collects all players’ actions and

reveals them (or just the final outcome of the chosen actions) truthfully only after all

players have submitted their actions. In particular, it is assumed that the new player

has no incentives of his own.

Whereas the latter explanation has an obvious weakness (ie., the need to assume a

particular type of player N + 1 when modelling an N -player game), the former expla-

nation, on the other hand, has traditionally been satisfactory for modelling economic

markets, political conflicts, etc. However, when one considers the computer-based

forms of interaction available today, the need to enforce simultaneous action becomes

a major limitation.

Example 1 Consider two players engaged in a game of matching pennies, via the

internet (for simplicity, think of the game played via e-mail). If they have no third party

to rely on, then suddenly the (0.5, 0.5) strategy is not an equilibrium strategy. In fact,

assuming that players cannot coordinate on the same split second for announcing their

respective chosen actions, the optimal behavior of the player that matches, assuming

his opponent does play (0.5, 0.5), is to wait and see his opponent’s chosen action and

immediately reply with an action that matches it.

In fact, this paper deals with a problem raised when one considers the actual imple-

mentation of a game (in normal form) over a network of computers. Thus, our paper

joins the recent strand of literature on ‘internet games’. This literature has focused on

analyzing games played by economic agents, interacting via a “web” of computational
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devices (i.e., a distributed system). The introduction of a distributed system adds

various ‘engineering’ difficulties to the analysis of games. Some examples for this are

the difficulties due to the communication structure (e.g., Monderer and Tennenholtz

[18]), computational complexity (e.g., Nissan [21]), issues of communication complexity

(e.g., Shoham and Tennenholtz [27] and Holzman et al. [14]), cost of communication

(e.g., Blumrosen and Nissan [6]), etc. This paper focuses on the inherent difficulty in a

practical setting to enforce truly simultaneous actions by the different players. In fact,

in a realistic model of a distributed system, it is impossible to perfectly synchronize

clocks, and so players cannot fully coordinate on some pre-specified time (even if they

all wish to do so).

For game theorists, the most fundamental result in the theory of normal form games

is the existence of a Nash equilibrium. The standard proof of this result depends,

however, in a strong way on the assumption that players move simultaneously. This

suggests that, in the absence of a trusted incentive-free party, the existence of equilibria

may be jeopardized once we take into account the lack of simultaneity which is inherent

in distributed systems.

In this paper we show that not all is lost. The main contributions of this paper can

be summarized as follows.

• Within the context of a distributed computer system, we define a setting that

allows an analysis of behavior in terms of selfish interest and rational decision

making.

• In this setting, we define solution concepts that are the asynchronous versions of

various types of equilibria in normal form games, and in particular we define the

asynchronous equivalent of a Nash equilibrium.

• Finally, we describe ways to embed the strategic structure of a game in normal

form in a distributed system setting, and show that strategies in the normal

form game can be “translated” into protocols in the distributed system. Dif-

ferent embeddings are shown to preserve different notions of equilibrium. Thus,
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for example, strategies that are in Nash equilibrium in the game translate into

protocols that are in (protocol-)Nash equilibrium in the distributed system. This

shows both that the concepts of equilibrium in distributed systems are not vac-

uous, and that the traditional game theory literature promises to be applicable

in a practical distributed system setting.

From the computer-scientific perspective, this paper focuses on how a player can

commit to his strategy without revealing it. While this question has received extensive

treatment in the area of cryptography (e.g., Goldreich et al. [9]), the economic dimen-

sion changes the problem in some ways. Specifically, we restrict attention to deviations

from the protocol that offer the deviating players a positive expected utility. Such

“rationality” criteria impose weaker constraints on the protocol than standard criteria

used in cryptography and in the literature on fault-tolerance in distributed computing.

Consequently, the protocols complying with them can be simpler.

The normal form model is not applicable to the context of asynchronous distributed

protocols. Thus, the framework we choose for describing asynchronous games is the

one used by researchers dealing with distributed systems. It is worth noting that the

model of extensive form games provides a setting that is somewhat closer in spirit to

distributed protocols. However, our modelling choice has two notable properties:

• Cultural - The natural and standard way to model behavior in a network is by

way of protocols. By relating games to protocols, we are striving to make a

small contribution to the task of bridging the cultural gap between the scientific

disciplines that treat games and those that design distributed protocols.

• Randomness - In extensive form games, each random choice is modelled by way

of a random variable. Such a random variable is motivated by an objective prior

(e.g., the roll of a die) or by subjective beliefs. However, in a computer network,

nature will typically play a compound and multi-dimensional role. It can govern

standard probabilistic events such as a lottery, but it will also affect when players

can move, how long it will take for messages to reach their destinations, etc. We
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will typically be able to provide the protocol with probabilistic priors regarding

some of the events at hand, such as lotteries, while priors for other aspects of

nature’s behavior may not be available. Our definitions and the modelling of

distributed systems that we use will facilitate such a view. The analysis we

provide does not assume anything on this randomness. Indeed, most protocols

are expected to be used in many different instances and settings, without the

need to obtain detailed statistics about the properties of nature. The definitions

provided in this paper and the notions of equilibrium considered have the property

that they depend only on the player’s randomization, and are robust under a wide

variety of choices of nature’s properties. Thus, our protocols are often guaranteed

to be in equilibrium regardless of how nature schedules the timing of message

delivery and/or the rate at which players operate.

1.1 An Anecdotal Story of an Asynchronous Setting

To motivate the study of asynchronous settings we refer to a story (possibly a myth)

on the accumulation of wealth by the Rothschild family, as told by SEC Staff, Paul

F. Roye (Director, Division of Investment Management) in a speech carried out in the

2000 Mutual Funds and Investment Management Conference Palm Desert, Calif., [23]:1

”In following such distinguished speakers as Marianne Smythe and Matt Fink, I

pondered long and hard what I could say that would be as profound and insightful

as their remarks. After some thought, I determined that I would focus on what we

might learn from the use of ”pigeons,” a much maligned bird, which I have often heard

referred to as ”rats with wings.” I don’t even think they have pigeons in Palm Desert

they can’t afford the nests. But seriously, Nathan Rothschild, one of the greatest

financiers in history, discovered that he could use carrier pigeons to obtain a higher

quality of information, faster than anyone else. These carrier pigeons, which were like

an early intranet, or a pre-electronic e-mail system, kept Rothschild hours, days, even

1The story is also told in Fredric Morton’s, The Rothschilds - A Family portrait, Atheneum New

York ,1962.
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weeks ahead of what his competitors were doing in the early banking days in Europe.

As a result, he utilized that information to make better financial decisions.

You history buffs know that the battle of Waterloo was fought in June of 1815. In

February of 1815, Napoleon escaped from Elba and assembled what was viewed as an

invincible army. The Allies, having fought Napoleon’s armies for fifteen years, were

nearly bankrupt. The Allies, however, conscripted another rag-tag army and sent it

to Belgium under Wellington’s command to meet Napoleon’s large and seasoned on-

coming forces. But no one including those in the financial markets believed the Allied

Army would defeat Napoleon.

Napoleon’s victory seemed all too likely and the price of British government bonds

reflected that prospect. Now we all know what the outcome of the Battle of Waterloo

was but so did Nathan Rothschild. As the story goes, flocks of carrier pigeons kept him

apprised of the battle, allowing him to buy British government bonds at rock bottom

prices, thereby enabling him to create another fortune when news of the victory arrived

by normal means to Britain’s shores. Rothschild realized that using the most advanced

means available to quickly secure information was critical to success in the securities

markets. Then, as now, innovation was key. But even the Rothschilds were overtaken

by it. Their control over the flow of information through a network of couriers and

carrier pigeons was so effective for a time, that Europe’s heads of state relied on it.

But after the telegraph rendered this network obsolete, James Rothschild, brother of

Nathan, complained that now “anyone can get the news.” It is clear that the mutual

fund industry must innovate, embrace technology and use it to remain competitive.”

The story above is an excellent example of the possible implications of asymmetric

information that is induced by asynchronous systems. In this example it was commonly

known that Nathan Rothschild had the information first. However in today’s electronic

networks there is non commonly known agent which has an advantage. It depends on

uncontrolled parameters of the information network. Our model accounts for this

consideration.

The next section presents the model of communication and asynchronous games.

Section 3 provides the main results and section 4 discusses the intuition behind the
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results. Section 5 compares the model and results to related literature and, finally,

section 6 discusses directions for future research.

2 THE MODEL

The model we describe has three components. First, the game-theoretic component

that consists of a game in normal form. This is given by a set of strategies available

to each player and the payoff function which maps tuples of players’ strategies into

payments. Second, we have a communication network over which the players interact.

This is an asynchronous distributed system that contains a shared resource in the form

of a public electronic bulletin board. Corresponding to a player in the game, we have

a process that represents this player in the distributed system, and the analogue of a

strategy for the player is a protocol for the corresponding process. Finally, our model

describes a way of mapping the game into the distributed system, so that behavior

that corresponds to a possible choice of strategies in the original game yields similar

payoffs to the participants in the distributed system.

2.1 The Game

Let N = {1, 2, . . . , n} be the set of players. For each player i ∈ N , let Si denote the

(finite) set of strategies available to i. For ease of exposition, we assume without loss of

generality that Si = S = {s1, s2, . . . , sK} for all i ∈ N . Let Sn be the set of all strategy

tuples. For every i ∈ N , let Ui : Sn → R denote player i’s payoff function. A game is

defined by a pair G = (Sn, {Ui}n
i=1), where Sn is as before, and {Ui}n

i=1 is a vector of

payoff functions, one for each player. A game is said to be individually rational (IR) if

each of the Ui’s is strictly positive (i.e., Ui(s) > 0 for all s ∈ Sn and all i). In an IR

game, every player gains something by participating in the game. Thus, the players

all have an incentive to play, if we assume that non-participation yields a payment of

zero. In this paper we will focus on IR games. One of the consequences will be that in
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a distributed computation corresponding to a game, no participant will be motivated

to opt out by stopping to play his role.

A mixed strategy for player i is a probability choice, σi ∈ ∆(Si), over the set S. A

Nash equilibrium is a vector of strategies {σi}n
i=1, such that

σi ∈ arg max
τ∈∆(Si)

Eτ,σ−i
(Ui(si, s−i)).

In other words, if each player chooses a strategy according to the distribution of σi,

then no player has an incentive to deviate.

2.2 Communication

The notion of Nash equilibrium is valid in a world where all players announce their

chosen strategies prior to learning anything about other players’ strategies. One possi-

ble implementation of such a constraint is by having players announce their strategies

simultaneously. However, it is more realistic to assume that players do not have a

global clock and therefore cannot choose or announce strategies simultaneously. The

problem becomes more acute when the players interact over a computer network, in

which case it is reasonable to assume that all actions are asynchronous. This is the

setting that we are interested in modelling now.

We assume that the players have two ways to communicate with each other: First,

there are private point-to-point communication channels over which pairs of players

can communicate. Every message sent via such a channel is guaranteed to be delivered

intact eventually. Moreover, the messages that a player sends over a given channel are

guaranteed to be delivered in the order in which they are sent. There is no a priori

bound on the time the message spends in transit, however (this is called asynchronous

communication.) Second, there is a bulletin board (BB) to which players may post a

message.2 Posting a message m on the bulletin board is done by sending a post(m)

message to the board. We assume that the bulletin board consists of the list of messages

2E.g., chat or message board, as are currently popular on the internet.
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that were posted to the board, in the order they arrived at the board; no messages are

ever erased or deleted from the bulletin board. To read (perhaps an update on) the

messages posted on the bulletin board, a process sends a read message to the board.

Once this message arrives, the board immediately responds by sending the process a

message describing the current contents of the board. Just like communication between

players, communication to and from the BB is assumed to be reliable but asynchronous.

2.3 Protocols

The notion of a protocol in a distributed system plays a role similar to that of a strategy

in a game. Since we think of an interaction in a distributed system as consisting of an

execution that proceeds over a number of steps, this is closer to a strategy in a game

in extensive form. Intuitively, a protocol specifies the actions that a process (or player;

we use the terms interchangeably) should take, at every stage of the execution.

In order to formalize this, we ascribe to every process a local state at any instant of

time. In addition, each process i has a set Ai of potential actions it can perform. In

our case, an action a ∈ Ai can include one or more read, post or send actions, as well

as local steps. It is also convenient to assume that a process can perform a halt action,

after which it performs no action. A deterministic protocol for process i is a function

Di : Li → Ai, from the set Li of local states of i to Ai.

A joint deterministic protocol is a tuple D = (D1, . . . , Dn) consisting of a protocol

for each process. We denote by D the set of (individual) deterministic protocols for the

processes.

Often protocols are based on random choices (e.g., an execution of a mixed strat-

egy). Intuitively, this means a process should have access to a source of randomness.

We can think of a process using randomization as performing a preliminary action of

choosing a probability space, (Ωi,Fi, Qi), where Fi is a σ-field over a state space Ωi

and Qi is a probability measure. As a result, a certain ωi is realized that the player

can access.
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Formally, we define a (randomized) protocol for process i, to be a pair Pi =

(Pi, (Ωi,Fi, Qi)), consisting of a probability space (Ωi,Fi, Qi), and a function, Pi,

from all states in Ωi into the set of deterministic protocols for i. Let Pi(ωi) de-

note the deterministic protocol at ωi and let P (ω) be the joint deterministic protocol

(P1(ω1), . . . , Pn(ωn)), where ω = (ω1, . . . , ωn).

Without loss of generality, we assume that processes have perfect recall. We capture

this formally by assuming that the local state of a process is a list consisting of all

actions it performed and all messages received (content, source, and type). The items

in the list appear in the order in which they took place. Our assumptions imply, in

particular, that the processes start out with an empty list as their initial local state.

The local history hi of a process i is defined to be the sequence of local states it goes

through. This records all changes that the process is able to observe. Similarly, the

local history hBB of the BB is the sequence of states the bulletin board goes through

over time. A run captures the history of a computation. It is defined to be an (n + 1)-

tuple r = (hBB, h1, . . . , hn) consisting of the local histories of the BB and of all n

processes.

2.4 Nature’s Role

While deterministic protocols resemble the actions (or pure strategies) available to

players, protocols resemble strategies in a game, and runs resemble the history of a

game, there is a subtle point worth noting. We are implicitly assuming the existence

of a “hidden” player participating in the execution of any deterministic protocol in a

distributed system. We may call it nature (or alternatively others refer to it as the

environment, or the scheduler). Its role is to determine various aspects of the run

that the deterministic protocols do not control. In our case, these are the lengths of

time that each message spends in transit, and the times at which each of the processes

“moves”. The deterministic protocol of a process is applied to its local state only when

the process is scheduled to move. We will assume that nature schedules every process
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to move an infinite number of times in any given run. (Of course, a process that has

halted will not perform an action when it is scheduled.)

Formally, an action of nature is composed of an infinite sequence of the form

{(tk, φ(tk), {τm(tk)}n
m=0)}∞k=1, where {tk}∞k=1 is an increasing sequence of positive num-

bers, denoting the times (according to nature’s own internal clock) at which players’

moves take place. φ(tk) ∈ N is the player assigned to move at time tk. We require φ

to be such that every player is assigned a move infinitely often. {τm(tk)}n
m=0 is a finite

sequence of positive numbers denoting the following: For m = φ(tk), τm(tk) denotes the

processing time needed for player φ(tk) to perform its move at time tk (it completes the

move at time tk + τm(tk)). For a player m 6= φ(tk), τm(tk) denotes the time that it will

take a message sent by φ(tk) to m, in case one is sent in its move at tk, to be delivered

(again, the message is delivered to m at time tk + τm(tk)). Finally, τ0(tk) denotes the

time that it will take a message sent by φ(tk) to the BB, in case one is sent in its move

at tk, to be delivered (the message is delivered to the BB at time tk + τ0(tk)). We shall

denote by A the set of all possible actions of nature.

Given the powers of nature to affect the course of events, a given set of deterministic

protocols D = (D1, . . . , Dn) for the n players does not uniquely determine a run that

will result when the players follow their respective protocols. Rather, it determines a

set of runs, which we will denote by R(D). However, once nature’s action, γ ∈ A, is

determined, a unique run, denoted r(D, γ), is defined. This fact will have an impact

on how we relate the strategies in our game to protocols, which is the subject of the

next section.

2.5 An Asynchronous Model of a Game

Formally, a clearing mechanism, V = (V1, V2, . . . , Vn), is a mapping from the set of

possible runs into individual payoffs. It ascribes to each player i its payoff Vi(r) in

the run r. For the purposes of this paper, we assume that the outcome of the clearing

mechanism depends only on the local history of the BB in the run.
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A (joint) protocol (Pi)
n
i=1 is called a Nash equilibrium with respect to a clearing

mechanism V if for every pair of actions of nature, γ1, γ2 ∈ A, every process i and

protocol P̂i = (P̂i, (Ω̂i, F̂i, Q̂i)) for i,

E(Q1,...,Qn)[Vi(r(P (ω), γ1))] ≥ E(Q̂i,Q−i)
[Vi(r((P̂i(ω̂i), P−i(ω−i)), γ

2))].

Thus, in a Nash equilibrium, regardless of nature’s behavior in the run, no process

can expect to gain by deviating from its protocol if all the others behave according to

the joint protocol.3

2.6 Embedding Games in an Asynchronous Model

Let G = (S, U) be an arbitrary game in normal form. Our goal is to describe a

mapping from mixed strategies in G to protocols that the players could use in order

to, intuitively, simulate a play of the game on an asynchronous system. Rather than

working at the level of mixed strategies, we will typically map each of the strategies in S

(the pure strategies) to a protocol. To obtain behavior akin to that of a mixed strategy,

we will have the player mix over the protocols corresponding to the pure strategies.

More formally, if π(si) = (Psi
, (Ωsi

,Fsi
, Qsi

)) is the (possibly randomized) protocol

corresponding to pure strategy si, then the protocol (Pσi
, (Ωσi

,Fσi
, Qσi

)) corresponding

to a mixed strategy σi is described as follows. Ωσi
= {(si, ωsi

) : si ∈ Si and ωsi
∈ Ωsi

},

Qσi
(si, ωsi

) = σi(si)Qsi
(ωsi

) and Pσi
(si, ωsi

) = Psi
(ωsi

). One can think of this as a

protocol by which player i chooses a strategy si according to σi as its first step, and

then follows π(si). The result is clearly a randomized protocol. In this fashion, a

mapping π associating a protocol to each pure strategy in S induces a mapping from

every mixed strategy σi to a protocol Pπ(σi).

The following lemma captures the idea that the induced protocol behaves as in-

tended:

3A natural way to weaken this definition is to assume a distribution over the way runs are deter-

mined and take an expectation in the inequality. Note that the suggested definition circumvents the

need to model nature’s random behavior explicitly.
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Lemma 1 Let G = (S, U) be a game, and let π be a mapping from S to protocols. If

U(s) = EQπ(s)
[Vi(r(Pπ(s)(·), γ))]

for every action of nature γ and every pure strategy tuple s = (s1, . . . , sn) ∈ Sn, then

Eσ(U(·)) = EQπ(σ)[Vi(r(Pπ(σ)(·), γ))]

for every action γ and mixed strategy tuple σ = (σ1, . . . , σn) ∈ ∆(Sn).

Proof Fix γ and suppose σ = (σ1, . . . , σn) ∈ ∆(Sn). In the initial step of a run

of π(σ), each player i chooses a strategy independently according to σi. The tuple

of strategies is obtained according to probability distribution σ. For every tuple s of

strategies thus chosen, we have by assumption that EQπ(s)
[Vi(r(Pπ(s)(·), γ))] = U(s). It

follows that

EQπ(σ)
[Vi(r(Pπ(σ)(·), γ))] = E(s∈σ)(EQπ(s)

[Vi(r(Pπ(s)(·), γ))]) = E(s∈σ)(U(s)) = Eσ(U(·)),

as desired. 2

Definition 1 Let V be a clearing mechanism, and let π = (π1, . . . , πn), where each πi

is a mapping from S to protocols. The pair (π, V ), is a proper representation of

the game G = (S, U) if

EQπ(s)
[V (Pπ(s)(·), γ)] = U(s)

holds for all s ∈ Sn and all actions γ ∈ A.

In other words, a proper representation is a representation that preserves the payoff

structure of any strategy tuple, regardless of what action nature ends up performing.

3 MAIN RESULTS

The main issue we cope with in this article, beyond a definition of an asynchronous

game, is the possibility (or impossibility) of having proper representations for normal
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form games in an asynchronous setting such that the major game theoretic concepts

are preserved. In this chapter we provide some positive results. All the results are

based on existing ideas from the theory of cryptography.

Our first result shows that for games of three or more players, a proper representa-

tion exists for which Nash equilibria are preserved. The proof of this result is based on

a simple application of “secret-sharing.” Using the same concept, we can extend the

result to preserve other notions of equilibria, namely N-equilibrium (where deviations

of coalitions of size N or less are not incentive compatible) and Correlated equilibria.

3.1 Nash Equilibrium

The following theorem shows that there is a general scheme to embed a standard game

model in its strategic form into an asynchronous extension of the game, in a way that

preserves Nash equilibria.

Theorem 1 Let G be an IR game of n ≥ 3 players. There is a proper representa-

tion Gasynch = (π, V ) of G such that for every Nash equilibrium {σi}n
i=1 of G, the

corresponding protocol {π(σi)}n
i=1 is a Nash equilibrium of (π, V ).

Proof: We will start by defining a mapping π for pure strategies, and show that

U(s) = EQπ(s)
[Vi(r(Pπ(s)(·), γ))] for every action of nature γ and every pure strategy

tuple s = (s1, . . . , sn) ∈ Sn.

Step 1 - Commitment.

This step is based on a simple but elegant scheme for secret sharing. Recall that si

is an integer between 1 and K = |S|.

(i) Send αi to player i + 1 and βi = αi + si mod(K + 1) to player i + 2. Recall that

n ≥ 3 and so i, i + 1 and i + 2 are 3 different players.4 Note that the posterior

distribution for players i + 1 and i + 2 regarding player i’s chosen strategy, given

their information at any point in time during the first step, equals the prior.

4Obviously, the computation of i + 1 and i + 2 is done modulo n, the number of players.
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(ii) Wait for a message from i − 1 containing some number α′
i−1, and for a message

from i−2 containing a number β′i−2. Then send a “ready” message to the bulletin

board.

Step 2 - Announcements.

Wait to see a “ready” message from all n players posted on the BB. Then send a

message stating (si, α
′
i−1, β

′
i−2) to the bulletin board.

Step 3 - Final step.

Wait until a message of the form (sj, α
′
j−1, β

′
j−2) is on the BB, for all j, then halt.

This completes the description of the protocol πi(si).

We now define the clearing functions Vi. Let R be a particular run of this protocol.

We call the depiction of a player j by the BB consistent if it has only posted one

message on the BB of the form (sj, α
′
j−1, β

′
j−2), and if the strategy sj it reports is

compatible with the values of α′
j and β′j that are reported on its behalf.

• If the depictions of all players by the BB are consistent, then let Vi(r) = Ui(s),

where s = (s1, . . . , sn) is the sequence of strategies reported by players 1, . . . , n

respectively.

• Otherwise set Vi(r) = 0 for i = 1, . . . , n.

Notice that the above clearing mechanism depends, as required, only on the history

of the BB. 5

Obviously, if σ = {σi}n
i=1 is a Nash equilibrium of G and all players follow the

suggested protocol, then the distribution of the outcome in Gasynch follows σ. It is

5Notice that this clearing mechanism guarantees that all players have access to the outcome of the

run, since they all receive reports describing the history of the BB.
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now sufficient to show that no player has an incentive to deviate from the suggested

protocol, assuming all other players follow that protocol.

Assume player i has sent messages αi and βi to players i+1 and i+2 respectively. It

is obvious that from now on, it is optimal for him to follow the protocol and eventually

submit to the BB, in the last step, the message (βi − αi, α
′
i−1, β

′
i−2). By doing so i

expects to receive E(βi−αi,σ−i), the expected value in the strategic form game G, where

i plays the pure strategy βi − αi and all other players, denoted −i, play according to

σ−i. This is true because the secret sharing mechanism ensures that at the point in

time i submits the messages βi and αi his distribution over the protocols of the strategy

chosen by the other players is still σ−i, even though he might have accumulated extra

data, such as βi−1 or αi−2. By deviating in a non-observed way i will not improve his

situation, whereas by deviating in an observed way i can expect to receive zero.

We finish by noting that due to the properties of the Nash equilibrium, the above

expectation is maximized (in the weak sense) in case si is chosen according to the

distribution σi, αi is chosen according to a uniform distribution and βi is set to equal

αi + si mod(K + 1). 2

3.2 Correlated Equilibrium

Assume players’ strategies are correlated. For example, consider a situation where a

trusted party chooses a random outcome that has no impact on the payment structure

(e.g., a sun-spot) and sends each of the players a signal about the chosen outcome. If

players base their strategy choice on the signal, then their strategies become correlated.

Aumann [1] captures a natural equilibrium for such a situation in his definition of a

correlated equilibrium.

Barany [3] discusses correlated equilibrium, where the distribution has rational

probabilities (we refer to this as correlated equilibrium in rationals). Barany provides

a distributed protocol, for 4 players or more, where players can mimic the actions of

the trusted party by communicating amongst themselves. Furthermore, any unilateral
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deviation will either (a) go unnoticed by other players and will also not affect the

marginal distribution of signals on the non-deviating players; or (b) will be noticed by

all players.

Assume players engage as proposed by Barany. Once this distributed computation

is done players proceed as follows: If a deviation was detected then all players halt.

Otherwise players proceed according to the distributed protocol described in the proof

of Theorem 1. This combined protocol provides a proof to the following:

Theorem 2 Let G be an IR game of n ≥ 4 players. There is a proper represen-

tation Gasynch = (π, V ) of G such that for every correlated equilibrium in rationals,

{σi}n
i=1 of G, the corresponding protocol {π(σi)}n

i=1 is a correlated equilibrium in ratio-

nals of (π, V ).

3.3 N̄-equilibria

The demand underlying the notion of a Nash equilibrium is that no single player will

have an incentive to deviate. However, a Nash equilibrium does not rule out the possi-

bility that a coalition consisting of more than one player may gain by (simultaneously)

deviating from equilibrium play.

In a distributed system (one may think of a virtual community over the internet),

it is natural to assume that coalitions may communicate without the knowledge of the

other players, and consequently, may all deviate from their pre-designated protocol.

However, it may be natural to assume that such coalitions are able to collude only if

they are not too big. This induces the following definition. Let σ = (σ1, . . . , σN) be a

vector of strategies and let τC = (τj)j∈C be a collection of strategies for members in a

coalition of players, C ⊂ N . We denote by (τC , σ−C) the vector of strategies derived

from σ by replacing the strategies of members of C by τ .

Definition 2 A vector of strategies σ = (σ1, . . . , σN) of a game G is an N̄-equilibrium

if for every coalition, C, of size N̄ or less, and for every τC either E(τC ,σ−C)(Uj(sC , s−C)) =
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Eσ(Uj(sC , s−C)) ∀j ∈ C or there exists a member j of C such that

E(τC ,σ−C)(Uj(sC , s−C)) < Eσ(Uj(sC , s−C)).

We modify the notion of Nash equilibrium in protocols to N̄ -equilibrium in the

following natural fashion:

Definition 3 A (joint) protocol (Pi)
n
i=1 is called an N̄ -equilibrium with respect to a

clearing mechanism V if for every pair nature’s actions, γ1, γ2 ∈ A, every subset of

processes C ⊂ N and every set of protocols P̂i = (P̂i, (Ω̂i, F̂i, Q̂i)) for i ∈ C, either

E(Q1,...,Qn)[Vi(r(P (ω), γ1))] = E(Q̂C ,Q−C)[Vi(r((P̂C(ω̂C), P−C(ω−C)), γ2))]

or there exists a process i ∈ C for which

E(Q1,...,Qn)[Vi(r(P (ω), γ1))] > E(Q̂C ,Q−C)[Vi(r((P̂C(ω̂C), P−C(ω−C)), γ2))].

The following is natural extension of Theorem 1:

Theorem 3 Let G be an IR game of n ≥ 3 players and let N̄ < n − 1. There is

a proper representation Gasynch(N̄) = (π, V ) of G such that for every N̄-equilibrium

{σi}n
i=1 of G, the protocol {π(σi)}n

i=1 is an N̄-equilibrium of Gasynch. In fact, there

exists a single representation satisfying the claim for all N̄ < n− 1 simultaneously.

Proof: We adapt the techniques used to prove Theorem 1. To do so, we make use

of a secret sharing scheme in which each player distributes his secret among a set of

more than N̄ players, in such a way that no coalition of size N̄ or less can obtain any

information about the secret. This can be implemented using the secret sharing scheme

devised by Shamir ([26]). We now provide an overview of this scheme, which works

for all cases of N̄ < n − 1. Recall that we assume the pure strategies are numbered

1, . . . , K. Since K is known in advance, we fix a prime number q > max{K + 1, n}.

Each process i (privately) chooses n − 1 natural numbers a1, . . . , an−1 in the range

[0, q − 1] independently and uniformly at random. This defines the polynomial

Qi(x) = si + a1x + a2x
2 + · · ·+ an−1x

n−1.
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This is a polynomial whose free term is si—the index of i’s chosen pure strategy. For

every one of the processes j 6= i, process i evaluates Qi(x) at the point x = j over the

finite field Fq, thereby obtaining a “share” (j, Qi(j)). Given all n− 1 shares produced

by Qi, it is possible to reconstruct the polynomial completely, and recover si. However,

any set of ` < n−1 of the shares provides no information whatsoever about the identity

of si (as proven in [26]). Formally speaking, at any point up to the end of the secret

sharing phase, and every subset C of fewer than n− 1 processes, the posterior on s−C ,

given all of the information available to the players in C, is the same as the prior.

The rest of the protocol is completely analogous to that in the proof of Theorem 1.

In the first step, every process constructs its polynomial as described above and sends

its shares to the other processes. Once a process has sent its messages and has received

a share from each of the remaining n− 1 processes, it sends a “ready” message to the

bulletin board. Once n “ready” posts appear on the board, the first step ends and

the second step begins. In the second step, each process i posts a message of the form

(si, {(j, i, Qj(i))}j 6=i) revealing both si and all n− 1 shares it has received.

As before, the processes receive a payment of V (s1, . . . , sn) in case all of the infor-

mation revealed is consistent (i.e., for every j the shares (j, i, Qj(i)) posted on the BB

extrapolate to a polynomial whose free term is equal to the posted sj), and they all

receive payments of 0 in case there is an inconsistency.

The secrecy guaranteed by Shamir’s scheme makes the analysis of this protocol

coincide with the one in the case of simple Nash equilibria. 2

A strong equilibrium (see Aumann [2]) is an N̄-equilibrium with N̄ = N , the number

of players in the game. In other words, in a strong equilibrium no coalition has an

incentive to deviate, even not the grand coalition. Theorem 3 and the techniques of its

proof apply only for N̄ < N − 1. In particular, they do not map a strong equilibrium

of G into a strong equilibrium in Gasync.
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4 DISCUSSION

Intuitively, we can think of the protocol constructed in the proof of Theorem 1 as

consisting of two stages: The first stage is a commitment stage, where each of the

players chooses a strategy and commits to it by sending its “shares” to a pair of other

players. Receiving a single share from a couple of players does not, in that setting,

enable a player to obtain information about the others’ strategies. In the second stage,

a revelation stage, players reveal their secrets and the shares they received from other

players in the first stage. The secret sharing scheme we used had the property that as

long as at most one player deviated from the protocol, a player could not succeed in

claiming that it committed to a value that differs from the one it sent out in the first

phase.

It turns out that the way players commit in the first stage is of importance and

one should be careful about the requirements from such a commitment stage. The

following example highlights another aspect of the desired technique.

Example 2 Consider the IR version of the two-player game of matching pennies, with

players ROW and COLUMN:

A B

A 0, 2 2, 0

B 2, 0 0, 2

Assume that, by some magic way, the ROW player can commit to some strategy

(without loss of generality, assume it is A) by sending some encrypted message, say

M(A), to the BB. This means that, by reading M(A), COLUMN has no information

on the strategy of ROW (i.e., he still believes ROW plays A with probability 0.5),

yet ROW cannot claim to play B at the revelation stage. However, COLUMN player

can now read M(A) from the BB and send it as his commitment as well (note that

COLUMN has committed to a strategy he does not know). Once ROW reveals his

strategy A, COLUMN immediately reads that strategy and claims it as his own as well.

Consequently COLUMN is always able to match ROW and win.

20



What the example shows is that the commitment stage must be constructed with

sufficient secrecy so that opponents will obviously have no additional information and

furthermore opponents will not be able to correlate their own strategy with that of the

player. We note that the commitment stage used in our proofs has this property as

well.6

5 RELATED RESEARCH

5.1 Mental Games

The problem of making a ‘game’ playable, in particular over a communication network,

without the help of an extra player, has been raised by computer scientists for a while

now. Goldreich, Micali and Wigderson [9] may be one of the earliest papers in which

this issue is discussed. Moreover, Goldreich, Micali and Wigderson, and later others

(e.g., Ben-Or et al. [5], [22] and [4]) discuss optimal play by players in synchronous, as

well as asynchronous settings.

This literature, however, has a different focus than ours. Broadly speaking, its

emphasis has been on devising ways in which a protocol that employs a trusted dealer

can be faithfully simulated by one in which such a dealer does not exist. A main tool

for this is the implementation of a joint computation by the players of an arbitrary

function of their individual secrets (e.g., secret strategies) without any player obtaining

any information about the secrets beyond the value of this function. In contrast, our

focus has been on relating equilibria of normal form games and an analogous notion

we defined for protocols. Our model is not concerned with ultimate secrecy beyond

insisting that no strategically relevant information is obtained that can modify the

6One natural way to achieve such a commitment scheme is by requiring each player to ’prove’ he

knows the value he has committed to. Obviously it is important that such a proof will not disclose

additional information about the secret, beyond the mere fact that the player himself actually knows

the value of the secret. This is the essence of Zero Knowledge Proofs introduced by Goldwasser, Micali

and Rackoff [11].
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player’s behavior. Moreover, our approach assumes that players are rational, so that

they will deviate from their original strategy only if they can expect to gain from such

deviation. As a result, the computations that our solutions required have much lower

complexity than that typically required in the cryptography literature.

Our results make extensive use of the assumption of individual rationality of games

in order to ensure the existence of an equivalence-preserving implementation of the

game by distributed protocols. This allows us to motivate (or rather coerce) a rational

player not to default in the midst of the execution of a protocol if it expects a negative

payoff at some point. In most of the protocols considered in the cryptographic litera-

ture, there is a point in the execution after which a player’s defaulting will not affect

the final outcome. Moreover, before that point the player is as motivated to participate

in the protocol as she is when facing a trusted dealer. However, the setting does not

address the question of why, in the setting with the trusted dealer, the player would

go along to begin with. We are faced with this issue because we start from the normal

form game in an economically motivated setting.

5.2 Replacing Cryptography with Rationality

The idea of considering distributed protocols, whilst replacing cryptography by ratio-

nality in such protocols, taking into account the structure of communications, has been

discussed in an unpublished manuscript by Monderer and Tennenholtz (see [18] for an

extended abstract).

In their paper, Monderer and Tennenholtz focus on issues related to mechanism

design and show that in various communication topologies (2-connected graphs and

in particular rings) one can leverage on the rationality of agents and use light-weight

cryptographic schemes while ensuring the execution of the distributed protocol (the

mechanism) in a satisfactory way. In a related paper [19], Monderer and Tennenholtz

define an intriguing model of distributed games that is intended to capture games played

over a rich asynchronous setting such as a distributed system.
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In oontrast, this paper does not deal with the issue of mechanism design. Moreover,

rather than defining a new model of activity as Monderer and Tennenholtz do, we set

out to relate in a more or less direct fashion well established existing models in game

theory and distributed systems. Our definitions introduce notions of equilibria at the

protocol level. There is undoubtedly a close connection between distributed games

and standard distributed systems, the precise structure of which should be better

understood with time.

5.3 Extensive Form Description of Normal Form Games

Kalai [15, 16], although with very different motivation, uses an approach related to ours.

He considers the question of how robust a Nash equilibrium of a game in normal form

is. An equilibrium is robust if it is guaranteed to emerge in extensive form descriptions

of the game. Thus, Kalai looks at embeddings of a normal form game to an arbitrary

extensive form of the same game and shows that for ’large and anonymous’ games,

Nash equilibrium is always mapped to an equilibrium of the extensive form game.

In our setup, a normal form game is mapped into a game involving time and turn-

based playing. In an asynchronous model different behavior of nature (determining

message delays, when players are able to move, etc.) results in a different game history.

Nevertheless, similar to Kalai, we show that there is a way to map a Nash equilibrium

into an equilibrium of the asynchronous game.

5.4 Knowledge of Payoffs

In the models we have considered so far, the payoffs, at the end of the run, depend on

the history of the execution as recorded on the bulletin board. In Nissan [21] results are

required to be public knowledge in a similar setting. A more general definition could

have the payoffs be a function of all external, or observable events, such as the messages

communicated. Thus, for example, if player 1 needs to lie according to a particular
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strategy, this fact could affect the player’s overall payoff. Since communication among

players is in large part a private matter, such a general definition would suffer from

the problem that payoffs need not necessarily be known to the players themselves.

Moreover, in an asynchronous setting, without a central entity such as the bulletin

board, it is impossible to make the outcome common knowledge, due to results of

Halpern and Moses [12].

6 FUTURE RESEARCH

This paper presents a preliminary framework relating the classical game theoretic mod-

elling with that of asynchronous distributed systems. The issues discussed here should

be further extended in a variety of directions. We now consider a number of directions

worthy of further investigation.

6.1 Two-Player Games and ε-equilibrium

The secret sharing technique we used in Section 3.1 allowed us to obtain a representa-

tion that preserves Nash equilibria for games with N > 2 players, but not for two-player

games. In the secret sharing schemes we have considered, each player must send shares

of his secret to a minimum of two other players. Hence, they are not applicable to

two-player games. In fact, we assess that the two-player case is impossible.

However, there may be some good news. Assuming players are computationally

limited, we can resort to well-known cryptographic algorithms (e.g., as in Goldreich

[10]) which almost have the desired properties. Roughly speaking, players commit

to their strategies by sending each other encrypted messages stating their choices.

After both have received the encrypted messages, they each “reveal” their strategies

by showing what has been encrypted and how. Under widely accepted cryptographic

assumptions, such algorithms exist that are guaranteed to have the desired properties

with high probability. Information is “leaked” during the commitment process only
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with negligibly small probability. Consequently, the results we showed for N > 2

players can be extended to the two-player case provided equilibrium is replaced with

the weaker notion of ε-equilibria. In fact, the same is true also for strong equilibria in

N -player games for general N .

6.2 Dropping the IR Assumption

Throughout the paper we assumed the games to be IR. We note that this can be

relaxed in two ways.

The first relaxation is straightforward. An equilibrium of a game G is called ex-Post

IR if the payments to all players in the support of the equilibrium (i.e., in any strategy

tuple which is played with positive probability) is nonnegative.

Remark: In Theorems 1–3, we may substitute the assumption that G is IR with the

quantifier for every ex-Post IR equilibrium of G.

Consider a mixed-strategy equilibrium of a game G that may lead to negative pay-

ments, but on average leads to nonnegative payments. Such an equilibrium is called

ex-ante IR. Can Theorems 1–3 be relaxed in order to accommodate ex-ante IR equilib-

ria in non-IR games? We assert this is possible, assuming players are computationally

limited. In this case, one can probably leverage on techniques of verifiable secret sharing

introduced by Chor et al. [8] to achieve such proofs.

6.3 Subgame-Perfect Equilibrium

The implementation of a game in an asynchronous distributed system automatically

induces a game that is played a long time, and so players can rethink their strategy

during the course of a run if they observe that their opponents do not play as antici-

pated. Selten [24, 25] introduced the notion a Subgame-Perfect Equilibrium in models

of extensive form games to capture this intuition. Two natural questions are whether

‘subgame perfect equilibria’ can be naturally ported to the asynchronous setup and

whether Nash (or ε) equilibria can be mapped into such a stronger notion of equilib-

rium. This is a subject of further investigation.
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6.4 Different Models for the Asynchronous Setup

In this work we chose one specific model for the asynchronous setup. However, there

are various variations on our model.

1. Bulletin Board - Can one dismiss the bulletin board and make use only of the

N original players? An intermediate model in this case could be one without the

bulletin board but with some form of a broadcast channel that guarantees that

identical messages are delivered to all players. A most likely candidate for this

would involve replacing the act of posting a message to the BB by performing a

so-called Atomic broadcast of the message to all players [17]. Notice that every

attempt to replace the BB would require, in addition, an alternative definition

of the basis for the payoffs in a run. In our definitions, the payoffs in a given run

are determined as a function of the history of the BB.

2. Clearing Mechanism - In our setup the clearing mechanism is a function of the

history recorded in the BB. What if we allow it to take into account additional

information, as discussed above, such as the contents of the communication taking

place over private channels?

3. Private Channels - Can our results be replicated when private channels are not

fully reliable? What can be achieved in the absence of such channels?
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