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Abstract

We introduce the concept of strongly approachable sets in two-player repeated

games with vector payoffs. A set in the payoff space is strongly approachable by a

player if the player can guarantee that from a certain stage on the average payoff

will be inside that set, regardless of the strategy that the other player implements.

We provide sufficient conditions that ensure that a closed convex approachable set

is also strongly approachable in the expected deterministic version of the game.
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1. Introduction

Two-player repeated games with vector payoffs are repeated games in which the stage

outcome is described by a vector in a Euclidean space Rd. These games were introduced

by Blackwell [3] as a generalization of two-player zero-sum repeated games. In a repeated

game with vector payoffs, a set in Rd is approachable by a player if he has a strategy

that ensures that the distance between the long-run average payoff and the set goes

to 0, whatever the other player plays. In his seminal paper [3] Blackwell provides a

geometric condition that guarantees that a set is approachable by a player. Hou [8]

and later Spinat [17] proved that every approachable set contains a subset that satisfies

Blackwell’s sufficient condition, thus completing the characterization of approachable

sets.

Repeated games with vector payoffs have been applied in various areas in game

theory; they were used to construct optimal strategies for the uninformed player in two-

player zero-sum repeated games with incomplete information on one side (Aumann and

Maschler [1, 2] and subsequent work, e.g., Kohlberg [9] and Rosenberg, Solan, and Vieille

[15]); to construct regret-free strategies (Foster and Vohra [5]); and to construct processes

that converge to a correlated equilibrium in multiplayer strategic-form games (Hart and

Mas-Colell [7]). The theory has been extended to repeated games in which the payoffs

lie in an infinitely dimensional space (Lehrer [10]) and has been applied outside game

theory, to provide an algorithm that generates normal numbers (Lehrer [11]).

In this paper we define a refinement of the concept of approachability termed “strong

approachability.” A set in the payoff space Rd is strongly approachable by a player if he

has a strategy that guarantees that the long-run average payoff lies inside the set from

some stage on, whatever the other player plays. Thus, every strongly approachable set

is approachable, yet the converse need not hold. There are applications in which the

concept of strong approachability is more natural than the concept of approachability.

For example, a sales manager may need to meet projected sales in each region, and not

only get close to projected sales. A second example is the House of Representatives; to

have a majority in it a party must have the majority in majority of districts, and not

only be close to the majority in majority of districts.

In the present paper we provide conditions that guarantee that a closed convex ap-

proachable set is strongly approachable in the expected deterministic version of the

game, in which the mixed actions of the players are observed. The analog question for

the original game seems to be much harder, see Remarks 2 and 24 below. Our results
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also hold when the repeated game is played in continuous-time. In this case the proofs

are significantly simpler.

It is well known that in general the optimal rate of convergence of the average payoff

to an approachable set is O(n−1/2) (see, e.g., Cesa-Bianchi and Lugosi, [4], Remark 7.7).

Strong approachability can thus be viewed as approachability in finite time. Mannor

and Perchet [12] provide conditions on the target set that ensure that it is approachable

at a rate O(n−1).

The paper is arranged as follows. The model and the concept of strong approachabil-

ity are presented in Section 2, where we also provide few simple sufficient conditions for

strong approachability and introduce our main results. Proofs are provided in Section

3. In Section 4 we discuss the results and the assumptions they rely on, as well as open

questions.

2. The Model and Main Results

2.1 Strong Approachability

We study two-player repeated games with d-dimensional vector payoffs. Such a game G

is given by two finite sets of actions I and J , one for each player, and a payoff function

u : I × J −→ Rd. The function u is extended multilinearly1 to ∆(I)×∆(J ) by

u(p, q) := Ep,q[u(i, j)] =
∑
i∈I

∑
j∈J

piu(i, j)qj.

The game G is played as follows. At each stage n ∈ N the two players, simulta-

neously and independently, choose (mixed) actions pn ∈ ∆(I) and qn ∈ ∆(J ). The

corresponding payoff is u(pn, qn) and the pair of actions (pn, qn) is announced to both

players. Perfect recall is assumed for both players. The game G is called in [16] the

expected deterministic repeated game.

For every n ≥ 1 let Hn−1 := (∆(I)×∆(J ))n−1 be the set of all possible histories at

stage n. Let HN := (∆(I)×∆(J ))N be the set of all possible plays in G. A strategy of

Player 1 is a function σ1 :
⋃∞
n=1Hn−1 −→ ∆(I) and a strategy of Player 2 is a function

σ2 :
⋃∞
n=1Hn−1 −→ ∆(J ). We will study pure strategies in the expected deterministic

game G. The interpretation of strategies σ1 and σ2 is that at each stage n, given the

1For every finite set X denote by ∆(X) the set of probability distributions over X, that is, ∆(X) :=

{p ∈ [0, 1]|X| |
∑
x∈X px = 1}.
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history hn−1 ∈ Hn−1, Player 1 plays the action pn = σ1(hn−1) and Player 2 plays the

action qn = σ2(hn−1).

Every pair of strategies (σ1, σ2) uniquely determines a play path. The average payoff

in the first N stages is denoted by ḡN :

ḡN :=
1

N

N∑
n=1

u(pn, qn).

When i ∈ {1, 2} is a player, −i is the other player. Blackwell [3] introduced the

notion of approachability. Translated to the expected deterministic game, a nonempty

set A ⊆ Rd is approachable by player i if there exists a strategy σi of player i such that

for every ε > 0 there exists N ∈ N such that for every strategy σ−i of the other player,2

d(ḡn, A) < ε, ∀n ≥ N.

The solution concept that we study in this paper is the following strong version of

approachable sets.

Definition 1 A nonempty set A ⊆ Rd is strongly approachable by player i if there is a

strategy σi of player i and N ∈ N such that for every strategy σ−i of the other player,

ḡn ∈ A, ∀n > N.

We say that such a strategy σi strongly approaches the set A.

In words, a set is strongly approachable by a player, if the player can guarantee that

the average payoff will be in that set from a certain stage on, for every strategy of the

other player.

Remark 2 The concept of strong approachability can be defined for standard repeated

games (rather than for the expected deterministic repeated game). However, the char-

acterization of strongly approachable sets in this case is significantly harder since the

expected stage payoff is uniquely determined by the players’ mixed actions, while the re-

alized stage payoff is random. For example, in the Matching Pennies that appears in

Figure 1, the set {0} is strongly approachable by Player 1 in the expected deterministic

game using the stationary strategy [1
2
T, 1

2
B]. However, this set is not strongly approach-

able in the original game, because the stage payoff is either 1 or -1, and therefore the

2The distance and the norm referred to throughout the paper are defined by the Euclidean norm:

d(x, y) := ‖x − y‖, where ‖x‖ :=
√
〈x, x〉 and the inner product of two vectors x, y ∈ Rd is defined by

〈x, y〉 :=
∑d
i=1 xiyi. The distance between a vector x and a set A is defined by d(x,A) := infa∈A d(x, a).

4



average payoff cannot be equal to 0 from some point on. We elaborate on this issue in

Remark 24.

Player 1

Player 2

B

T

L R

−1

1

1

−1

Figure 1: The payoff matrix in the Matching Pennies.

Example 3 For d = 1, the model reduces to standard repeated games with scalar payoffs.

Consider then a two-player zero-sum repeated game, and denote by v its value. The set

[v,∞) is strongly approachable by Player 1 (with any strategy that plays at every stage

an optimal strategy of the one-shot game), and the set (−∞, v] is strongly approachable

by Player 2.

Example 4 Since in the definition of approachability the convergence to A is uniform

over the strategies of the other player, if some set A ∈ Rd is approachable by a player

then for every ε > 0 the set B(A, ε) := {x ∈ Rd | d(x,A) < ε} is strongly approachable

by that player.

Plainly every set that is strongly approachable by a player is approachable by him.

As the following example shows, the converse does not hold: there are sets that are

approachable by a player but not strongly approachable by him. Below we identify

conditions that ensure that an approachable set is strongly approachable.

Example 5 Consider the game in Figure 2, where payoffs are one-dimensional.

Player 1

Player 2

B

T

L R

−1

1

−1

2

Figure 2: The payoff matrix in Example 5.

By Theorem 8 below, the set {0} is a B-set (see Definition 7) and therefore approach-

able. Nevertheless, the set {0} is not strongly approachable. Indeed, assume that there is

a stage such that the average expected payoff is 0. Since Player 1 cannot guarantee the

payoff 0 in the one-shot game, for every mixed action p ∈ ∆(I) that Player 1 would play
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at the next stage, there is a mixed action q ∈ ∆(J ) of Player 2 such that the expected

payoff is not 0. Therefore the average expected payoff at the next stage is not 0 and in

particular not in the set {0}. That is, for every strategy of Player 1 there is a strategy

of Player 2 such that if the average expected payoff at some stage is in {0}, then the

average expected payoff at the next stage is not in {0}, so that the set {0} is not strongly

approachable.

2.2 Sufficient Conditions for Strong Approachability

In this section we provide two simple sufficient conditions for strong approachability

that are analogous to sufficient conditions for approachability provided by Blackwell [3].

These conditions will motivate the main results, which will be presented in Section 2.3.

For every action p ∈ ∆(I) of Player 1 denote R1(p) := {u(p, q) | q ∈ ∆(J )}, and

for every action q ∈ ∆(J ) of Player 2 denote R2(q) := {u(p, q) | p ∈ ∆(I)}. The set

R1(p) (resp. R2(q)) is the set of all payoffs that might be realized when Player 1 plays

the action p (resp. q).

Let M be the greatest norm of a payoff vector in the game:

M := max
i∈I

max
j∈J
‖u(i, j)‖.

Denote by F the set of all feasible payoffs in the repeated game:3

F := Conv({u(i, j) | i ∈ I, j ∈ J }).

The definitions imply that ‖ḡn‖ ≤M and ḡn ∈ F for every n ∈ N.

A hyperplane H in Rd is a (d − 1)-dimensional affine subset of Rd. For α ∈ Rd and

β ∈ R, the hyperplane H(α, β) is defined by

H(α, β) := {x ∈ Rd | 〈α, x〉 = β}.

A hyperplane divides Rd into two half-spaces. The closed half-spaces determined by

H(α, β) are the two closed sets

H̄+(α, β) := {x ∈ Rd | 〈α, x〉 ≥ β} and

H̄−(α, β) := {x ∈ Rd | 〈α, x〉 ≤ β}.
3Denote by Conv(X) the convex hull of the set X.
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The open half-spaces determined by H(α, β) are the two open sets

H+(α, β) := {x ∈ Rd | 〈α, x〉 > β} and

H−(α, β) := {x ∈ Rd | 〈α, x〉 < β}.

For an hyperplane H, we denote by H+ and H− (resp. H̄+ and H̄−) the two open

(resp. closed) half-spaces that H determines. As is well known, for every x, y ∈ Rd the

hyperplane H(x − y, 〈x − y, y〉) is the hyperplane through y perpendicular to the line4

segment xy.

Definition 6 Let A and B be two nonempty sets and H = H(α, β) be a hyperplane in

Rd.

i. H is called a supporting hyperplane of A if A is contained in one of the two closed

half-spaces determined by H and there is at least one point of A in H.

For a point a ∈ A, we say that H supports A at a if H is a supporting hyperplane

of A and a ∈ H.

ii. H is called a separating hyperplane for the sets A and B if one of the sets is con-

tained in one of the open half-spaces determined by H and the other set is contained

in the other closed half-space, e.g., A ⊆ H− and B ⊆ H̄+, or A ⊆ H̄− and B ⊆ H+.

We say that H separates A and B if H is a separating hyperplane for A and B.

Blackwell [3] provided a geometric sufficient condition for approachability. Denote

by πA(x) the set of closest points to x in A.

Definition 7 A closed set A ⊆ Rd is a B-set for Player 1 (resp. Player 2) if for every

x ∈ F \ A there exists y ∈ πA(x) and an action p ∈ ∆(I) (resp. q ∈ ∆(J )) such that

the hyperplane H(x− y, 〈x− y, y〉) separates x and R1(p) (resp. R2(q)):

R1(p) ⊆ H̄−(x− y, 〈x− y, y〉),

and

x ∈ H+(x− y, 〈x− y, y〉).

The following result follows from Blackwell [3], and either Hou [8] or Spinat [17].

4For two vectors x, y ∈ Rd, denote by xy the line segment between x and y, that is, xy := {αx +

(1− α)y | α ∈ [0, 1]} ⊆ Rd.
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Theorem 8 A closed set is approachable by player i if and only if it contains a B-set.

Let H be a supporting hyperplane of the set A. We say that H is in direction λ, and

denote it by Hλ, if λ is an outer-pointing normal vector to A at a point a ∈ A ∩H. For

a supporting hyperplane H of a B-set, we denote by pH ∈ ∆(I) the action of Player 1

such that the set R1(p
H) is contained in H̄−.

If B is a closed set that is contained in the interior of some set A, then

d(B,Ac) = infb∈B d(b, Ac) > 0. The next result follows (see Example 4).

Proposition 9 Let A ⊆ Rd. If there exists a B-set B ⊆ Int(A) for player i, then A is

strongly approachable by player i.

The case in Example 5 can be generalized. A set that contains only one point x ∈ Rd

is strongly approachable by Player 1 if and only if Player 1 can guarantee the payoff x,

that is, if there is an action p ∈ ∆(I) such that R1(p) = {x}. Indeed, assume that Player

1 cannot guarantee the payoff x. Then at any stage n such that ḡn = x and for every

action of Player 1, Player 2 has an action such that the expected payoff at stage n + 1

does not equal x, and therefore ḡn+1 6= x.

Similarly, if A ⊆ Rd is a set of dimension less than d, then to strongly approach A

the player must play from some stage on actions pn such that R1(p
n) is contained in the

affine subspace that is spanned by A. For this reason we are interested in sets of full

dimension in Rd. For the rest of the paper we consider strong approachability of closed

convex sets. Blackwell [3] further proved that a closed convex set A is approachable by

Player 1 if and only if A ∩R2(q) 6= ∅ for every q ∈ ∆(J ).

Together with Proposition 9 this implies the following.

Corollary 10 Let A be a closed convex set. If Int(A) ∩R2(q) 6= ∅ for every q ∈ ∆(J ),

then A is strongly approachable by Player 1.

For every λ ∈ Rd, consider the two-player one-shot zero-sum auxiliary game Gλ

where the sets of actions are I and J and the payoff function w is defined by w(i, j) :=

〈λ, u(i, j)〉,∀i, j. From the Minmax Theorem, this game has a value, denoted by Vλ.

Blackwell (Corollary 2 in [3]) proved that A ∩ R2(q) 6= ∅ for every q ∈ ∆(J ) if and

only if Vλ ≥ infa∈A〈λ, a〉 for every λ ∈ Rd. His arguments, together with Corollary 10,

deliver the following.
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Proposition 11 Let A be a closed convex set with nonempty interior. If

Vλ > inf
a∈A
〈λ, a〉, ∀λ ∈ Rd \ {0},

then A is strongly approachable by Player 1.

Since A is convex we abuse notations and for every x denote by πA(x) the unique

point in A that is closest to x. Let A be a closed convex set, x /∈ A, and y = πA(x).

Then in particular we have x ∈ H+(x− y, 〈x− y, y〉).

Remark 12 Let A be a closed convex set with nonempty interior. Standard continuity

and compactness arguments imply that if Vλ > infa∈A〈λ, a〉, for every λ ∈ Rd \ {0}, then

there exists δ > 0 such that for every supporting hyperplane H of A there exist p ∈ ∆(I)

such that:

1. R1(p) ∈ H−.

2. d(R1(p), H) ≥ δ.

A set A that satisfies this condition is called a strict B-set for Player 1.5

Remark 13 Blackwell’s condition for approachability of closed convex sets requires that

the condition Vλ ≥ infa∈A〈λ, a〉 will hold for every λ ∈ Rd. Since both Vλ and 〈λ, a〉 are

homogeneous in λ, it is sufficient to require that this inequality holds for every λ ∈ Sd−1,
where Sd−1 := {x ∈ Rd | ‖x‖ = 1} is the unit sphere in Rd.

2.3 Main Results

Since every strongly approachable set is also approachable, a necessary condition for

strong approachability of a closed convex set A is that Vλ ≥ infa∈A〈λ, a〉, for every

λ ∈ Rd. As Example 5 shows, this condition is not sufficient. As shown in Proposition

11, if Vλ > infa∈A〈λ, a〉, for every λ ∈ Rd \ {0}, then A is strongly approachable. It

therefore remains to study the case that Vλ ≥ infa∈A〈λ, a〉, for every λ ∈ Rd \ {0}, yet a

strict inequality does not always hold.

Theorem 14 provides a sufficient condition when there is exactly one direction λ′ ∈
Sd−1 in which a weak inequality holds. Theorem 15 provides a sufficient condition when

there is more than one such direction λ′.

5Notice that if B ⊂ A and B is a strict B-set, then A is strict a B-set.
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Theorem 14 Let A be a closed convex approachable set with nonempty interior. Assume

that there exist

• exactly one direction λ′ ∈ Sd−1 that satisfies Vλ′ = infa∈A〈λ′, a〉;

• among all sets {R1(p), p ∈ ∆(I)} there is exactly one6 set R1(p
∗) in the closed

half-space H̄−λ′; and

• every point in R1(p
∗) ∩Hλ′ ∩ A is a smooth boundary point of A.

The set A is strongly approachable by Player 1 if and only if the set R1(p
∗) satisfies the

following two conditions:

C1 R1(p
∗) ∩Hλ′ ∩ A 6= ∅, and

C2 every point in R1(p
∗) ∩Hλ′ has a neighborhood N such that R1(p

∗) ∩N ⊆ A.

The generalization of Theorem 14 to the case where there is more than one direction

λ′ ∈ Sd−1 that satisfies the first bullet in the statement of Theorem 14 is the following.

Theorem 15 Let A be a closed convex approachable set with nonempty interior. Denote

by S the set of all λ′ ∈ Sd−1 that satisfy Vλ′ = infa∈A〈λ′, a〉. Assume that for every λ′ ∈ S,

among all sets {R1(p), p ∈ ∆(I)} there is exactly one7 set R1(pλ′) in the closed half-space

H̄−λ′. Moreover, assume that every point in R1(pλ′)∩Hλ′ ∩A is a smooth boundary point

of A. The set A is strongly approachable by Player 1 if and only if there exist a set

R1(p
∗) such that for every λ′ ∈ S the following hold:

C0 R1(p
∗) = R1(pλ′).

C1 R1(p
∗) ∩Hλ′ ∩ A 6= ∅.

C2 Every point in R1(p
∗) ∩Hλ′ has a neighborhood N such that R1(p

∗) ∩N ⊆ A.

To keep the formulation of Theorems 14 and 15 rather simple, we imposed the smooth-

ness condition in both theorems. In Section 4 we weaken the assumptions of Theorems

14 and 15.

6While we assume the uniqueness of R1(p∗) as the only set R1(p) ⊆ H̄−λ′ , the action p∗ need not be

unique. That is, there might be p 6= p∗ ∈ ∆(I) such that R1(p) = R1(p∗).
7As in Footnote 6, the action pλ′ does not have to be unique.
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2.4 Examples

In this subsection we provide two examples. In the first, the conditions of Theorem 14

are not met and the set is not strongly approachable, while in the second the conditions

of this theorem hold and the set is strongly approachable. These example illustrate the

ideas that underlie the proof of the main results.

Example 16 Consider the game in Figure 3.

Player 1

Player 2

B

T

L R

(0, 0)

(1, 0)

(0, 1)

(0, 0)

Figure 3: The payoff matrix in Example 16.

In this game the set of feasible payoff vectors is F = Conv({(0, 0), (1, 0), (0, 1)}) (see

Figure 4). By Proposition 14.37 in [13], the set A =
[
0, 1

4

]2
is approachable by Player 1.

Nevertheless, as we now show, the set A is not strongly approachable by Player 1.
  

  

 

  

  

 

      

      

      

 

  

        

         

 

Figure 4: The sets F and A in Example 16.

Since each player has only two pure actions, we denote by p (resp. q) the probability

to play the pure action T (resp. L), and therefore the probability to play the pure action

B (resp. R) is 1− p (resp. 1− q). R1(p) is the set of all possible expected payoffs when

Player 1 plays the mixed action [pT ; (1−p)B], that is, R1(p) = Conv({(p, 0), (0, 1−p)}).

Three of the sets R1(p) are depicted in Figure 5.
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Figure 5: The sets A and three of the sets R1(p).

The set R2(
1
2
) is the line segment Conv({(0, 1

2
), (1

2
, 0)}). If at stage N the average

payoff is above this line segment, that is, if ḡN1 + ḡN2 > 1
2
, then, by playing the mixed

action [1
2
L; 1

2
R] in every subsequent stage Player 2 guarantees that the average payoff will

remain above this line segment, and, in particular, will never get into A. We call the

open half space H+ = {x ∈ R2 : x1 + x2 >
1
2
} a dead zone: once the average payoff gets

into this half space, Player 2 can ensure that it will never get into A. Therefore, if A is

strongly approachable, Player 1 must be able to ensure that the average payoff will never

get into this dead zone.

  

  

       

      

      
 

 

 

   
 

 
  

      

     

  

 

Figure 6: A dead zone determined by R2(
1
2
).

We now argue that in this particular example, this goal is impossible. Indeed, for

every p 6= 1
2

the set R1(p) contains a point q′p in the dead zone H+. In addition, If

Player 1 plays [1
2
T ; 1

2
B], the pure action L of Player 2 guarantees a payoff (1

2
, 0) that is

not in A. Therefore, the following strategy of Player 2 ensures that the long-run average

payoff would always be outside of the set A:

• As long as pn = [1
2
T ; 1

2
B], play L.
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• For the first n ∈ N for which pn 6= [1
2
T ; 1

2
B] play qn = q′pn. For m > n play

qm = [1
2
L; 1

2
R].

In particular, A is not strongly approachable by Player 1. Note that in this example,

Condition C2 does not hold, and therefore by Theorem 14 the set A is not strongly

approachable by Player 1.

Remark 17 The boundary of the set A in Example 16 is not smooth. One can pro-

vide in this example an approachable set A with a smooth boundary that is not strongly

approachable.

Example 18 Consider the game in Figure 7 and let A be the closed disk with radius 1

around (0, 0).

Player 1

Player 2

B

M

T

L N R

(−13,−7)

(11,−3)

(0,−1)

(−14,−5)

(12,−5)

(−1, 4)

(−15,−7)

(13,−4)

(1, 4)

Figure 7: The payoff matrix in Example 18.

The half space H− = {x ∈ R2 : x2 < −1} is a dead zone: once the payoff is in it,

that is, once ḡN2 < −1, Player 2 can play L and ensure that the average payoff remains

in H−. Figure 8 depicts the sets R1(T ), R1(M), R1(B), A, and the dead zone.

 

  

  

 

   

  

 

   

  

 

  

  

 

  ( ) 

 

  ( ) 

 
  ( ) 

 

Figure 8: The set A and the sets R1(p) in Example 18.
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We now explain how Player 1 can ensure that the average payoff will get into the set

A and remain there. Assume that the stage N is large enough, so that the change in the

average payoff in a single stage, which is of the order of 1
N

, is small. Once the payoff is

in A, Player 1 can ensure that it will remain there, by properly playing the pure actions

T , M , and B: if the average payoff is in the lower half of A, he plays T ; if it is in the

upper-left quarter, he plays M ; and it is in the upper-right quarter, he plays B.

The question then is how to make the average payoff move into A when it is outside

of this set. To this end we define the concept of the shade. Consider the set R1(p) as

a source of light, and the set A as an opaque object. The shade of A relative to R1(p)

is the set of all points x in Rd such that all line segments that connect x and a point in

R1(p) pass through A. The shade of A relative to the set R1(M) is denoted Ã0
M in Figure

9.

 

  

  

 

   

  

 

   

  

   ( ) 

 
  ( ) 

 

 ̃ 
  

   

 

  ( ) 

 

Figure 9: The set Ã0
M , which is the shade of A relative to R1(M).

If N is large enough, and if the average payoff is in the shade Ã0
M , then, by repeatedly

playing the action M , Player 1 can make the average payoff move towards A, and even-

tually get into it. Unfortunately there is an exception to the last statement: the average

payoff might “jump” over A, and, in fact, might get into the dead zone. To overcome

this difficulty we will not consider the shade of A, but the shade of a subset of A that

does not intersect the boundary of A.

Suppose now that the average payoff is not in the shade Ã0
M , but is in the shade of

the union A∪ Ã0
M relative to R1(B) (in fact, it is enough to consider the intersection of

A∪ Ã0
M with the set of feasible payoff vectors; see the set Ã1

B in Figure 10). In this case,

Player 1 can repeatedly play the action B until the average payoff moves inside A∪ Ã0
M ,
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and, in case the average payoff enters the set Ã0
M , play M until it enters A.
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Figure 10: The set Ã1
B, which is the shade of (A ∪ Ã0

M) ∩ F relative to R1(B).

To show that in general Player 1 can ensure that the average payoff enters A, we will

construct a specific increasing sequence of sets, the first8 being A, such that each set in

the sequence is the union of the previous one and its shade relative to one of the sets

R1(p). We will also uniformly bound the number of stages required to move from one set

to a set that precedes it in the sequence.

To summarize, the strategy that Player 1 will use will be to play the action T for many

stages, until the stage N is large enough, and then to play mixed actions that ensures

that the average payoff moves to lower sets in the sequence of shades, until it reaches

A. Once the average payoff reaches A, Player 1 will play in a way that ensures that the

payoff remains within this set.

3. Proofs

Throughout this section we fix a repeated game G and a closed convex set A with

nonempty interior that is approachable by Player 1.

To ensure that the average payoff will get inside the set A, we will use the following

idea: for every p ∈ ∆(I) consider the set R1(p) as a source of light. Let D ⊆ Int(A) be

a full-dimensional set in Rd. The set D is thought of as a body that casts shade. The

line segment between any point in the shade of D (relative to the source of light R1(p))

8In fact, as mentioned before, the first set in the sequence will be a certain subset of A.
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and any point in R1(p) intersects D, and therefore also Int(A). Hence, if at some stage

the average payoff is in the shade and Player 1 repeatedly plays the action p for a proper

number of stages, then whatever Player 2 plays, provided the stage t is large enough, the

average payoff will move into A. If the average payoff is not in the shade of D relative

to R1(p), we can define the set D̂ to be the union of D and its shade relative to R1(p),

and consider its shade relative to some other source of light R1(p
′) with p′ ∈ ∆(I). If

the average payoff is in the shade of D̂ relative to R1(p
′), then by playing repeatedly the

action p′ for a proper number of stages, Player 1 can ensure that the average payoff will

get close to D̂, from where he can guarantee that it will get into A.

We will show that it is possible to form a sequence of shades, whose union covers all

feasible vector payoffs that are not in D. Since D ⊆ int(A) this will imply that Player 1

can ensure that the average payoff gets into A. Finally, we will show that Player 1 can

ensure that the average payoff will stay inside the set A.

3.1 The Shades

Throughout this section we fix a full-dimensional convex strict9 B-set D ⊆ Rd. We

now formally define the shade Dp of D relative to a “source of light” R1(p). For every

p ∈ ∆(I) denote by Dp the set of all points, which are not in D and for which the line

segment that joins them with any point in R1(p) intersects D. That is,

Dp := {x ∈ Rd \D | xz ∩D 6= ∅,∀z ∈ R1(p)}.

The set Dp is the shade that D casts when the unique source of light is R1(p).

We now prove that the union of a convex set with its shade is convex.

Lemma 19 Let D ⊆ Rd be a convex set and let p ∈ ∆(I). The set D ∪Dp is convex.

Proof. Denote D̂ := D ∪ Dp and let x, y ∈ D̂. Fix a point z in the line segment xy

(see Figure 11). We will show that z ∈ D̂. To this end, we fix r ∈ R1(p) and show that

the line segment rz intersects D. The three points x, y, r define a two-dimensional plane

P ⊆ Rd. Since x, y ∈ D̂ there are points x′ ∈ xr and y′ ∈ yr such that x′, y′ ∈ D. Since

D is convex the line segment x′y′ is contained in D. The line segments xy, xr and yr are

all contained in the plane P , so that z, x′, y′ ∈ P as well, and therefore the line segment

x′y′ is also in P . The line which is spanned by rz divides P into two half-planes, one

9A strict B-set is defined in Remark 12 in page 9.
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contains x, x′ and the other contains y, y′. Therefore the line segment x′y′ intersects the

line segment zr. Since x′y′ ⊆ D, the line segment zr intersects D, as desired.
  

  
 

  
  

 

 

 

  

   

  

   

Figure 11: The points in the proof of Lemma 19.

Let ε > 0 and recall that B(F, ε) is the set of all points whose distance from at least

one point in the set of feasible payoffs F is less than ε. Lemma 19 implies that the

set (D ∪ Dp) ∩ B(F, ε) is convex since it is the intersection of two convex sets. Since

D ⊆ B(F, ε), it follows that

(D ∪Dp) ∩ B(F, ε) = D ∪ (Dp ∩ B(F, ε)).

We will be interested only in the intersection of the shade Dp with B(F, ε). The next

lemma states that if D is full-dimensional and convex then there always exists p ∈ ∆(I)

relative to which the shade is not empty.

Lemma 20 Let D ⊂ B(F, ε) be a full-dimensional convex strict B-set. Then there exists

p ∈ ∆(I) such that Dp ∩ B(F, ε) is not empty.

Proof. Since D is convex, the set of its smooth boundary points is dense10 in ∂D (see,

for example, [14], pp. 241–250). Let y be a smooth point of ∂D \ ∂B(F, ε), and denote

by λ ∈ Sd−1 the direction of the supporting hyperplane Ĥ of D through y. Since D is

a strict B-set, by Remark 12, the distance between Ĥ and R1(p
Ĥ) is positive. We will

show that the shade DpĤ is not empty.

Let {yk} be a sequence of point on the outer-pointing normal to D at y such that

yk → y. Assume that yk /∈ DpĤ for every k ∈ N, i.e., for every k ∈ N there is a point

rk ∈ R1(p
Ĥ) such that the line segment ykrk does not intersect D. A standard continuity

argument implies that there is a point r ∈ R1(p
Ĥ) such that the line segment yr intersects

D only at y, that is, yr supports D at y. Since y is a smooth point of ∂D, there is only

one supporting hyperplane of D at y, which is Ĥ. We deduce that the line segment ry

10∂A is the boundary of A, that is, the set difference of the closure of A and the interior of A.
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lies in Ĥ, and therefore r ∈ Ĥ. Thus, the distance between Ĥ and R1(p
Ĥ) is zero, which

is a contradiction to the fact that the distance between Ĥ and R1(p
Ĥ) is positive.

We now construct inductively a nondecreasing sequence of convex sets (D̃i) as follows.

Denote D̃0 = D, and assume that the sets D̃0, ..., D̃i−1 are already defined. For every

p ∈ ∆(I) denote by D̃i−1
p the shade of D̃i−1 relative to R1(p). Choose p = pi ∈ ∆(I)

that maximizes11 the volume of D̃i−1
p ∩ B(F, ε). Denote this maximal volume by V i−1.

By Lemma 20 the maximal volume is positive, provided that D̃i−1 ⊂ B(F, ε). Denote

D̃i := D̃i−1 ∪ (D̃i−1
pi
∩ B(F, ε)). That is, D̃i is the union of D̃i−1 with its maximal shade

restricted to B(F, ε). See Figure 12 for a schematic construction of some sets in this

sequence.

  

       

  

    
  

       
       

    
  

    
  

Figure 12: The set D̃3 = D ∪ D̃0
p1
∪ D̃1

p2
∪ D̃2

p3
,

formed by R1(p1), R1(p2) and R1(p3), with p3 = p1.

By Lemma 19, each set in the sequence (D̃i) is convex. Using transfinite induction

it follows that one can cover F , the set of feasible payoff vectors, with a transfinite

sequence of shades. However, the proof of the main theorem requires this process to be

finite. The following lemma shows that in fact the iterative process we presented covers

F with finitely many shades.

Lemma 21 There exists K ∈ N such that F ⊆ D̃K.

Proof. Stage 1:
⋃
k∈N D̃

k = B(F, ε).

The sequence (D̃k)k∈N is a nondecreasing sequence of sets. Let D̂ :=
⋃
k∈N D̃

k and assume

that D̂ ( B(F, ε). As a union of a nondecreasing sequence of convex sets, D̂ is a convex

set. Let x′ ∈ B(F, ε) \ D̂. By [6], the point x′ can be separated from D̂ by a supporting

11Note that the function that assigns to each p ∈ ∆(I) the volume of D̃i−1
p might have a discontinuity

at a point p0 ∈ ∆(I) if an extreme point of R1(p0) lies on ∂D̃i−1.
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hyperplane Ĥ of D̂ at a smooth point d ∈ ∂D̂. Since D̃0 = D is a strict B-set, so is D̂,

and therefore as shown in the proof of Lemma 20, there is an action pĤ ∈ ∆(I) such

that the shade D̂pĤ is not empty. In particular, the volume VpĤ of D̂pĤ is positive.

For every k ∈ N we have D̃k ⊆ B(F, ε). Since B(F, ε) is bounded, D̂ is also bounded.

Because the sets (D̃k
pk+1

)k∈N are disjoint, the sequence of their volumes (V k)k∈N converges

to zero. In particular there is some N ′ ∈ N such that V k < VpĤ for every k > N ′.

Consider the shade D̃k

pĤ
of D̃k relative to R1(p

Ĥ), and denote its volume by V k

pĤ
. For

every k > N ′, V k is the maximal volume of a shade of D̃k, hence V k

pĤ
≤ V k. It follows

that limk→∞ V
k

pĤ
= 0.

For every p ∈ ∆(I) the set R1(p) is convex. Hence, for a convex set E the shade of

E relative to R1(p) can be defined by the set of all points such that the line segment

that joins them with any extreme point of R1(p) intersects E. The set R1(p
Ĥ) is convex

and has finitely many extreme points, u(p, j1), ..., u(p, j|J |) where J = {j1, ..., j|J |}. For

every extreme point u(p, j) of R1(p
Ĥ), if u(p, j) ∈ Int(D̂), then there is Nj ∈ N such

that u(p, j) ∈ Int(D̃k) for every k > Nj. Therefore there exists N ′ ∈ N such that for

every 1 ≤ j ≤ |J |, the vector u(p, j) is either in Int(D̃k) for every k > N ′ or in the

complement of Int(D̃k), denoted by (Int(D̃k))c, for every k > N ′. If u(p, j) ∈ Int(D̃k)

then u(p, j) has no effect on the shade D̃k

pĤ
, since the line segment that joins any point

in Rd and u(p, j) intersects D̃k; if u(p, j) is in (Int(D̃k))c, then it is either in ∂D̃k or in

B(F, ε) \ D̃k. From the continuity of the line segments through each such u(p, j) that

intersect each D̃k

pĤ
, the sequence of shades D̃k

pĤ
that is formed by R1(p

Ĥ) converges to

D̂pĤ , and therefore V k

pĤ
→ VpĤ , which is a contradiction to the fact that VpĤ > 0.

Stage 2: There exists K ∈ N such that F ⊆ D̃K .

Assume to the contrary that for every k ∈ N there is a point xk ∈ F such12 that xk ∈ Dmk

for mk ≥ k. The sequence of points xk is bounded, and therefore it has a convergent

subsequence. Let x′ be the limit point of that subsequence. The set F is closed, and

therefore x′ ∈ F . In particular, x′ ∈ Int(B(F, ε)). Since limk→∞ D̃
k = B(F, ε) it follows

that there is m ∈ N such that x′ ∈ Int(D̃m). Therefore for a small enough neighborhood

of x′ all the points in the subsequence are in D̃m, which is a contradiction to the way we

choose the points xk.

12Since it is possible that for some k the set Dk is contained in B(F, ε) \ F , we do not take xk ∈ Dk

for every k ∈ N.
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3.2 The Dead Zone

Fix x ∈ F \ A, let y = πA(x), and denote λ = y − x. Assume that Vλ = infa∈A〈λ, a〉.
Then, there exists an action q∗ = q∗λ ∈ ∆(J ) such that R2(q

∗) ⊆ H̄+(x − y, 〈x − y, y〉).
Note that R2(q

∗) * H+(x−y, 〈x−y, y〉), otherwise A would not have been approachable.

In other words, there exists p ∈ ∆(I) such that u(p, q∗) ∈ H(x−y, 〈x−y, y〉) (See Figure

13).

  

                  

      

  
 

  
   

    
         

Figure 13: The hyperplane H = H(x− y, 〈x− y, y〉)
and the sets R1(p) ⊆ H̄− and R2(q

∗) ⊆ H̄+.

If ḡn, the average payoff at stage n, were in H+(x − y, 〈x − y, y〉), then by playing

the action q∗ in all stages after stage n, Player 2 could have guaranteed that for every

m ≥ n the average payoff ḡm would remain in H+(x− y, 〈x− y, y〉), and, in particular,

outside A. Hence we deduce the following conclusion.

Corollary 22 Let A ⊆ Rd be a closed convex set that is strongly approachable by Player

1, let x /∈ A, let y = πA(x), and let λ := y − x. Assume that Vλ = infa∈A〈λ, a〉. Let σ1

be a strategy of Player 1 that strongly approaches A. Then ḡn /∈ H+(x− y, 〈x− y, y〉) for

every strategy σ2 of Player 2 and every n ∈ N.

With the notations of Corollary 22, we deduce that once the average payoff lies in

the open half-space H+(x − y, 〈x − y, y〉), it will never get out of it, provided Player 2

plays properly. This observation leads us to the following definition.

Definition 23 Let A ⊆ Rd be a closed convex set that is strongly approachable by Player

1, let x /∈ A, let y = πA(x), let λ := y− x, and assume that Vλ = infa∈A〈λ, a〉. The open

half-space H+(x− y, 〈x− y, y〉) is called a dead zone for Player 1.
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Remark 24 (Remark 2, continued) One of the main reasons that the characteriza-

tion of strongly approachable sets is significantly harder for standard repeated games than

for the expected deterministic repeated game, is that in the standard game the dead zone

loses its meaning: When Player 1 plays a mixed action p such that R1(p) ⊂ H̄−, the

stage payoff might not be in the set R1(p), and therefore the stage payoff might be in

the dead zone, so that the average payoff might get into the dead zone. Similarly, when

Player 2 plays the action q∗, the stage payoff might not be in the set R2(q
∗), and therefore

as above the average payoff might leave the dead zone.

3.3 An Auxiliary Result

Let x ∈ Rd, and let t ∈ N. Denote by Gx,t the variation of G in which the play starts

at stage t + 1 and the average payoff in the first t stages is taken to be x. That is, a

strategy of Player 1 (resp. Player 2) is a function σ1 :
⋃∞
n=t+1Hn−1 −→ ∆(I) (resp.

σ2 :
⋃∞
n=t+1Hn−1 −→ ∆(J )), and if (pn, qn)Nn=t+1 are the actions taken by the players at

stages t+ 1, t+ 2, ..., N , then

ḡN =
tx+

∑N
n=t+1 u(pn, qn)

N
.

Assume for a moment that there is exactly one dead zone H+
λ′ , defined by a supporting

hyperplane Hλ′ of A. Roughly speaking, we will show that it is possible to form a

sequence of shades, whose union covers all feasible vector payoffs that are in the half-

space H−λ′ that contains A. We will then show that we can control the pace of progress

inside each shade, in such a way that the average payoff does not ‘jump’ over A. Thus, if

the average payoff is not inside the dead zone, Player 1 can ensure that it will eventually

get into A. We will finally prove that Player 1 has a strategy that ensures that the

average payoff remains inside the set A.

It turns out that this procedure also works when there are several dead zones, that

is, several λ ∈ Rd \ {0} for which Vλ = infa∈A〈λ, a〉. This observation will be the main

ingredient of the proof of Theorem 15.

The following auxiliary result plays a major role in the proof of Theorem 14; its proof

is the most challenging part of the proof of this theorem.

Proposition 25 Let A be an approachable convex set with nonempty interior. Assume

that there exist exactly one direction λ′ ∈ Sd−1 such that Vλ′ = infa∈A〈λ′, a〉. Denote
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by p∗ an optimal strategy (action) in the auxiliary13 game Gλ′, so that R1(p
∗) is in the

closed half-space H̄−λ′. Assume that every point in R1(p
∗)∩Hλ′ ∩A is a smooth boundary

point of A; and

C1 R1(p
∗) ∩Hλ′ ∩ A 6= ∅; and

C2 every point in R1(p
∗) ∩Hλ′ has a neighborhood N such that R1(p

∗) ∩N ⊆ A.

Then for every x ∈ (F ∩H−λ′) \ A and every t ∈ N there exist a strategy σ1 of Player 1

and n̂ ∈ N such that under σ1 the average payoff ḡn̂ in the game Gx,t belongs to Int(A)

for every strategy σ2 of Player 2.

In words, if there is only one dead zone, then Player 1 has a strategy such that,

regardless of the stage of the game or the strategy of Player 2, and provided the current

average payoff is not in the dead zone, the average payoff will get inside A after a finite

time.

Remark 26 Proposition 25 is more general than what we really need, since the claim is

true for every x ∈ (F ∩H−λ′)\A. In the proofs of Theorem 14 and Theorem 15, the point

x will be some point in R1(p
∗).

3.4 Proof of Proposition 25

Define C := Conv({x} ∪ R1(p
∗)), i.e., C = Conv({x, u(p∗, j1), ..., u(p∗, j|J |)}) where

J = {j1, ..., j|J |} is Player 2’s set of pure actions. Since x /∈ Hλ′ it follows by Assumption

C2 that

C ∩Hλ′ = R1(p
∗) ∩Hλ′ ⊆ A. (1)

Fix ε > 0 and denote by Nλ′ the open ball of radius ε > 0 around λ′ in the unit sphere

Sd−1, that is, Nλ′ = B({λ′}, ε) ∩ Sd−1.

Definition 27 Denote by Y = Y (Nλ′) the set of all points y ∈ F for which there exists

a separating hyperplane for y and A in some direction λ ∈ Nλ′.

Notice that Hλ′ separates A and H+
λ′ , and therefore H+

λ′ ⊆ Y . It follows that any point

x′ ∈ F \ Y satisfies x′ ∈ H̄−λ′ (see Figure 14). From Assumptions C1 and C2 it follows

that R1(p
∗) ∩Hλ′ ⊆ A and since every point in R∗1(p) ∩Hλ′ ∩ A is a smooth boundary

point of A it also follows that δ1 := d(C \ A, Y ) > 0.

13Recall that the game Gλ′ is the one-shot game in which the payoff function is u, projected in the

direction λ′; see page 8.
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Figure 14: The sets C and Y = Y (Nλ′).

Lemma 28 For any open ball Nλ′ ⊆ Sd−1 around λ′ there exists δ2 > 0 such that if H

is a supporting hyperplane of A in direction λ ∈ Sd−1 \Nλ′, then the distance between H

and R1(p
H) is at least δ2.

Proof. Since the direction λ of H is different than λ′, it follows that Vλ > infa∈A〈λ, a〉.
Therefore, from Remark 12, there exists δλ > 0 such that the distance between H

and R1(p
H) is at least δλ. Since the set Sd−1 \ Nλ′ is closed, standard continuity and

compactness arguments imply that there exists δ2 > 0 such that for every supporting

hyperplane H of A in direction λ ∈ Sd−1 \ Nλ′ , the distance between H and R1(p
H) is

at least δ2.

Lemma 29 There exists an open ball Nλ′ ⊆ Sd−1 around λ′ such that C\A ⊆ F \Y (Nλ′).

Proof. Eq. (1) implies that for any x′ ∈ C \ A the distance between x′ and Hλ′ is

greater then zero, so that x′ ∈ H−λ′ . Since A ⊆ H̄−λ′ it follows that Hλ′ does not separate

x′ and A. From continuity of the supporting hyperplanes of the convex set A it follows

that there exists an open ball Nλ′,x′ ⊆ Sd−1 around λ′ such that for every λ ∈ Nλ′,x′ the

supporting hyperplane of A in the direction λ does not separate x′ and A. The set C is

the convex hull of a finite set of points. Denote by {zi} those points which are not in

A. Every point zi determines a corresponding ball Nλ′,zi of λ′. Define Nλ′ :=
⋂
zi
Nλ′,zi .

The set Nλ′ satisfies that for every λ ∈ Nλ′ the supporting hyperplane of A in direction

λ does not separate A and each zi. From the convexity of C, and since the extreme

points of C that are not {zi} are in A, it follows that for every λ ∈ Nλ′ the supporting

hyperplane of A in direction λ does not separate any x′ ∈ C \ A and A. It follows that

C \ A ⊆ F \ Y (Nλ′).
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Let δ ≤ min{ δ1
2
, δ2

2
}, and let a ∈ Int(A). For every δ′ ∈ (0, 1) define a set B = Bδ′

by shrinking the set A relatively to the point a by a scale factor of 1 − δ′, that is,

B = Bδ′ := {x(1 − δ′) + δ′a | x ∈ A}. For every y ∈ ∂A let y′ := (1 − δ′)y + δ′a ∈ ∂B.

Since the set A is convex, B = Bδ′ ⊆ A. From continuity, there exists a sufficiently small

δ′ > 0 such that for every y ∈ ∂A, the distance between y and y′ is not greater than δ,

that is, supy∈∂A d(y, y′) ≤ δ.

Fix a neighborhood Nλ′ of λ′ that satisfies Lemma 29 and denote by Ŷ = Ŷ (Nλ′ , δ′)
the set of all points y ∈ F such that there exists a separating hyperplane for y and B

in direction λ ∈ Nλ′ . The direction of every supporting hyperplane Ĥ of the set B that

separates B and any point x′ ∈ F \ Ŷ is in Sd−1\Nλ′ . Assume Ĥ supports B at the point

(1 − δ′)y. The direction of the parallel hyperplane H that supports A at the point y is

also in Sd−1\Nλ′ , and therefore by Lemma 28 the distance between H and R1(p
H) ⊆ H−

is greater than or equals to δ2 ≥ 2δ. The distance between H and Ĥ is less than δ, so

that R1(p
H) ⊆ Ĥ−, and the distance between Ĥ and R1(p

H) is greater than or equals to

δ.

Lemma 30 C \ A ⊆ F \ Ŷ (Nλ′ , δ′).

Proof. Since supy∈∂A d(y, y′) ≤ δ, the set Ŷ contains points whose distance from Y is

not greater than δ ≤ δ1
2

. The distance between C \ A and Y is δ1, and therefore there

are no points of C \ A in Ŷ .

Similarly to the way we have constructed the sequence of shades over a strict B-set,14

we now construct inductively a nondecreasing sequence of convex sets (B̃i) where B̃0 = B

and each B̃i is the union of B̃i−1 with its maximal shade restricted to B(F, ε), that is,

B̃i := B̃i−1 ∪ (B̃i−1
pi
∩ B(F, ε)). From Lemma 19 we get that each set in the sequence

(B̃i) is convex. From Lemma 20 we deduce that as long as B̃i−1 + B(F, ε) \ Ŷ , each

shade Bi is not empty. The proof of the latter claim follows from the proof of Lemma

20, where instead of choosing any smooth point of ∂B̃i−1 \ ∂B(F, ε), we choose a smooth

point y of ∂B̃i−1 \ ∂(B(F, ε) \ Ŷ ) such that the supporting hyperplane Ĥ through y is in

the direction λ for some λ ∈ Sd−1 \Nλ′ . Such a smooth boundary point exists since B̃i−1

is convex, and therefore, as mentioned before, the set of its smooth boundary points is

dense (see, for example, [14], pp. 241–250). From Lemma 21 we deduce that there exists

K ∈ N such that F \ Ŷ ⊆ B̃K . The proof of this claim is similar to the proof of Lemma

21, when replacing B(F, ε) by B(F, ε) \ Ŷ and F by F \ Ŷ .

14See page 17. Recall that B̃i depends on ε.
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The sets A and B are convex and satisfy that B ⊆ Int(A) and ∂B ∩ ∂(A) = ∅.
Hence there exists a minimal distance η′ between ∂A and ∂B. Denote η = η′

2K
. Since

the distance between two points (payoffs) in F is bounded by 2M , it follows that for

N ′ > 2M
2η

, the distance between the average payoff at stage n and the average payoff at

stage n+ 1 is at most 2η for every n > N ′.

We now describe a strategy σ1 of Player 1 in the game Gx,t. We will then show that

this strategy guarantees that the average payoff will get inside A. Let N ′ be the first

integer that is greater than or equal to 2M
2η

. For every n ≥ t+ 1, the strategy σ1 plays at

stage n as follows:

• If n ≤ N ′, the strategy σ1 plays the action p∗.

• If n > N ′, let k, 1 ≤ k ≤ K, be the minimal natural number such that

ḡn ∈ Cl(B(B̃k, k · η)). The strategy σ1 plays the action pk.

If t ≤ N ′, the action p∗ is played (at least) N ′− t+ 1 times. By playing the action p∗

at the first N ′ − t + 1 times, the average payoff stays in C = Conv({x} ∪ R1(p
∗)), and

by Lemma 30, it is in A or in F \ Ŷ . We will show that if the average payoff is in F \ Ŷ ,

then the strategy σ1 of player 1 ensures that there exists n sufficiently large such that

ḡn is in A.

To simplify the notations, denote by Bk the shade of B̃k−1 relative to R1(pk). Notice

that if the average payoff is very close to the boundary (or in the boundary) of Bk for

some 1 ≤ k ≤ K, then by playing the action pk Player 1 cannot guarantee that the

average payoff would not ‘jump’ over B̃k−1. For example, in Figure 15, if Player 1 plays

the action p4 and Player 2 plays the pure action j1, the average payoff might jump to

the other side of the set B̃3 = B ∪B1 ∪B2 ∪B3.
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Figure 15: A case where the average payoff ḡn is in the boundary of B̃4,

and the sets E4 (thick curve) and Ê4 (bounded by the dashed lines).

Nevertheless, as we argue now, by repeatedly playing the action pk, Player 1 can guaran-

tee that the average payoff would not be very far from B̃k−1. We will show that Player

1 can guarantee that the average payoff would be in a closed M
n+1

-neighborhood of B̃k−1,

that is, in Cl(B(B̃k−1, M
n+1

)).

The set Bk was ‘built upon’ B̃k−1, and therefore the set Ek := ∂Bk ∩ ∂B̃k−1 is not

empty, and every point in this set is on the line segment that joins a point in Bk and

a point in R1(pk) (see the thick curve in Figure 15). The set Ek is a subset of ∂B̃k−1,

and therefore every point in this set is contained in a hyperplane15 that supports B̃k−1,

and every such hyperplane divides the space into two half-spaces, one contains B̃k−1.

Denote by Êk the intersection of all these half-spaces that contain B̃k−1. Notice that

R1(pk) ⊆ Êk (see Figure 15).

Assume ḡN
′
/∈ A. As mentioned above it follows that ḡN

′ ∈ F \ Ŷ . By Lemma 21,

there exists k ≤ K such that ḡN
′

is in the shade Bk. Without loss of generality assume

that ḡN
′ ∈ BK . Since R1(pK) ⊆ ÊK , there is n̄1 ∈ N, independent of ḡN

′
, such that by

playing n1 times the action pK , for some n1 ≤ n̄1, the average payoff ḡN
′+n1 would be

in an η-neighborhood of EK . Since EK ⊆ ∂B̃K−1, the average payoff would be in an

η-neighborhood of B̃K−1, i.e., in Cl(B(B̃K−1, η)).

The point πB̃K−1(ḡN
′+n1) is the closest point in B̃K−1 to the average payoff at stage

N ′ + n1. Assume without loss of generality that πB̃K−1(ḡN
′+n1) is in BK−1. Then the

15Recall that for each k ∈ N the set B̃k is convex.
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average payoff is in an η-neighborhood of BK−1. For every 1 ≤ k ≤ K denote by Sk

the set of all points that lie on some line segment from the shade Bk to R1(p
k), that

is, Sk := {x ∈ br | b ∈ Bk, r ∈ R1(p
k)}. The set Bk is a subset of Sk, for every

1 ≤ k ≤ K. Since the set BK−1 is the shade of B̃K−2 relative to R1(pK−1), for every

payoff in R1(pK−1) that is obtained at stage N ′+n1 + 1, the (N ′+n1 + 1)-stage average

payoff will get closer to SK−1, that is, if the action pK−1 is played at stage N ′ + n1 + 1,

then

d
(
ḡN
′+n1+1, SK−1

)
≤ d

(
ḡN
′+n1 , SK−1

)
.

Indeed, for a given payoff in R1(pK−1) the line segment that joins it with the average

payoff ḡN
′+n1 , and the line segment that joins it with the point in SK−1 closest to the

average payoff πSK−1
(ḡN

′+n1) intersect at that payoff, so ‘walking along’ that lines, the

points get closer to each other (see Figure 16).
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Figure 16: For any u(p3, q) played at stage N ′ + n1 + 1, ḡN
′+n1+1 would be

on the (dashed) line segment that joins ḡN
′+n1 and u(p3, q).

It follows that for any s ∈ N, by playing s times the action pK−1 the distance between

the (N ′ + n1 + s)-stage average payoff and SK−1 is at most η:

d
(
ḡN
′+n1+s, πSK−1

(ḡN
′+n1+s)

)
≤ η. (2)

Since for every m ≥ N ′ the distance between the average payoff at stage m and the

average payoff at stage m+1 is at most 2η, and since R1(pK−1) ⊆ ÊK−1, there is n̄2 ∈ N,

independent of ḡN
′+n1 , such that by playing n2 times the action pK−1, for some n2 ≤ n̄2,

the closest point in SK−1 to the (N ′ + n1 + n2)-stage average payoff would be in an
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η-neighborhood of EK−1, i.e.,

d
(
πSK−1

(ḡN
′+n1+n2), EK−1

)
≤ η. (3)

From Eqs. (2) and (3) and the triangle inequality we deduce that the distance between

the (N ′ + n1 + n2)-stage average payoff and EK−1 satisfies

d
(
ḡN
′+n1+n2 , EK−1

)
≤ d

(
ḡN
′+n1+n2 , πSK−1

(ḡN
′+n1+n2)

)
+ d

(
πSK−1

(ḡN
′+n1+n2), EK−1

)
≤ η + η = 2η.

Since EK−1 ⊆ ∂B̃K−2, this implies that ḡN
′+n1+n2 ∈ Cl(B(B̃K−2, 2η)). Proceeding in-

ductively we deduce that there is a collection (n̄k)
K
k=1 of natural numbers and there

exists t <
∑K

k=1 n̄k such that the average payoff ḡN
′+t is in a (K · η)-neighborhood of

B̃K−K = B.

Since η = η′

2K
this implies that there is a finite number n̂ ∈ N such that

ḡn̂ ∈ Cl(B(B, η
′

2
)) ⊆ Int(A), as desired.

This concludes the proof of Proposition 25.

Proposition 25 shows that for any point x ∈ F \ Ŷ we can reach the interior of A in

the game Gx,t after a finite number of stages. The proof of Proposition 25 shows that

the time period until getting into A is uniformly bounded by n̄ := n̄1 + ...+ n̄K . Hence,

we get the following result.

Proposition 31 Let A be an approachable convex set with nonempty interior that sat-

isfies the assumptions of Proposition 25, let δ > 0, and16 let B = Bδ. Let η′ and Ŷ be

as in the proof of Proposition 25. For every t ∈ N there exists n̄ ∈ N such that for any

point x ∈ F \ Ŷ , the average payoff ḡn in the game Gx,t is in an η′

2
-neighborhood of B, for

some t ≤ n ≤ n̄, when Player 1 plays the strategy described in the proof of Proposition

25 and for every strategy of Player 2.

3.5 Proof of Theorem 14

In this section we prove Theorem 14, that takes care of the case in which there is exactly

one direction λ′ ∈ Sd−1 for which Vλ′ = infa∈A〈λ′, a〉. In this case, Player 1 should ensure

that the average payoff stays away of only one half-space (dead zone).

Assume that Conditions C1 and C2 are satisfied. It follows that R1(p
∗) ∩Hλ′ ⊆ A.

The following lemma shows that there exists δ′ > 0 such that all the points in R1(p
∗)

16Recall that Bδ := {x(1− δ′) + δ′a | x ∈ A}, where a is a predetermined point in the interior of A.
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whose distance from R1(p
∗) ∩Hλ′ is at most δ′ are in A, and the points that are not in

R1(p
∗) ∩Hλ′ are in Int(A).

Lemma 32 There exists δ′ > 0 such that for every point x in R1(p
∗) ∩ Hλ′ the ball

B(x, δ′) satisfies (B(x, δ′) ∩R1(p
∗)) \ (R1(p

∗) ∩Hλ′) ⊆ Int(A).

Proof. R1(p
∗) is a convex polytope whose extreme points are u(p∗, j1), . . . , u(p∗, j|J |),

where J = {j1, ..., j|J |} is Player 2’s pure action set, and so it has a finite number of

faces and edges. Since the set A is convex, it is sufficient to show that every face or edge

of R1(p
∗) that intersects Hλ′ , but is not contained in it, intersects Int(A). Such faces

and edges satisfy that they support R1(p
∗) at an extreme point in Hλ′ and at an extreme

point not in Hλ′ . Since R1(p
∗) has finitely many faces and edges, the lemma will follow.

Let u(p∗, jk) and u(p∗, jk′) be extreme points of R1(p
∗) such that u(p∗, jk) ∈ Hλ′

and u(p∗, jk′) /∈ Hλ′ . By Condition C2, the point u(p∗, jk) has a neighborhood N such

that R1(p
∗) ∩ N ⊆ A. Recall that by assumption every point in R1(p

∗) ∩ Hλ′ ∩ A is

a smooth boundary point of A. Therefore, u(p∗, jk) is a smooth boundary point of A,

so there is only one supporting hyperplane of A through u(p∗, jk), which is Hλ′ . Since

u(p∗, jk′) /∈ Hλ′ , the line segment that joins u(p∗, jj) and u(p∗, jj′) is not contained in

Hλ′ and therefore R1(p
∗) ∩N \ (R1(p

∗) ∩Hλ′) ⊆ Int(A).

From Condition C2 we get that every face or edge of the polytope R1(p
∗) that

intersects Hλ′ also intersects A in a sufficiently small neighbourhood. Furthermore by

Lemma 32, every such face or edge either lies in ∂A ∩ Hλ′ or intersects Int(A). Since

R1(p
∗) has finitely many faces and edges, there is δ > 0 such that every such face or edge

that intersects Int(A) also intersects B = Bδ. An example is provided in Figure 17.

 

  

    

  

    
   

 

    

  

    
   

   

Figure 17: R1(p
∗) intersects B. Figure 18: The set B̂.

In the proof of Proposition 25 we have shown that for every open ball Nλ′ = B(λ′, ε)

around λ′ there exist δ, δ′ > 0 such that the set B = Bδ′ satisfies the following condition:
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for any supporting hyperplane H of B in a direction in Sd−1 \Nλ′ there exists an action

pH ∈ ∆(I) such that R1(p
H) ⊆ H−, and the distance between H and R1(p

H) is greater

than or equals to δ. Consider the set B̂ = Conv(B,R1(p
∗) ∩Hλ′) (see Figure 18).

Lemma 33 Provided ε is sufficiently small, any supporting hyperplane H of B̂ in direc-

tion λ ∈ Nλ′ satisfies that R1(p
∗) ⊆ H̄−.

Proof. If ε is sufficiently small,17 then any supporting hyperplane of B̂ in direction

λ ∈ Nλ′ and any facet of R1(p
∗) that intersects Hλ′ but not contained in it do not

intersect in H−λ′ . Let H be a supporting hyperplane of B̂ in direction λ ∈ Nλ′ . The

hyperplane H supports B̂ either only at points of R1(p
∗)∩Hλ′ , at a point of R1(p

∗)∩Hλ′

and also at a point of B, or only at points of B.

• If H supports B̂ only at points of R1(p
∗) ∩Hλ′ , the claim clearly holds.

• Suppose now that H supports B̂ at a point of R1(p
∗) ∩ Hλ′ and also at a point

of B, and assume that R1(p
∗) * H̄−. Then there is an extreme point u(p∗, jk)

of R1(p
∗) in H+. In particular, there is an extreme point of R1(p

∗) that belongs

to R1(p
∗) ∩ Hλ′ such that the line segment that joins it with u(p∗, jk) does not

intersect B, which is a contradiction to the fact that every facet of R1(p
∗) that

intersects Hλ′ but not contained in it also intersects B.

• Suppose now that H supports B̂ only at points of B, and assume that R1(p
∗) *

H̄−. As above, there must be an extreme point u(p∗, jk) of R1(p
∗) in H+. Since

R1(p
∗) ∩ Hλ′ ⊆ B̂ and since H supports B̂, each extreme point of R1(p

∗) that

belongs to R1(p
∗)∩Hλ′ is contained in H−. Therefore there is an extreme point of

R1(p
∗) that belongs to R1(p

∗) ∩Hλ′ such that the line segment that joins it with

u(p∗, jk) intersects H. Since R1(p
∗) is convex, it follows that there exists a facet

of R1(p
∗) that intersects Hλ′ but not contained in it such that the hyperplane it

induces intersects H in H−λ′ . Therefore H is in direction λ /∈ Nλ′ , a contradiction

to the way have selected H.

17Recall that an angle between two hyperplanes is the angle between their two normal unit vectors.

Denote by γ1 the minimal angle between Hλ′ and a facet of R1(p∗) that intersects Hλ′ but not contained

in it, and by γ2 the maximal angle between λ ∈ Nλ′ and λ′. Any ε such that γ2 is smaller than γ1 would

be sufficient.
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It follows that the set B̂ is a B-set for Player 1, since each supporting hyperplane of B̂

is either in direction λ ∈ Sd−1 \ Nλ′ or λ ∈ Nλ′ . In particular, the set B̂ is approachable

by Player 1.

Let η = d(A,B) be the distance between ∂A and ∂B. The set B̂ is approachable

by Player 1, and therefore there is a strategy σ′1 and N ′ ∈ N such that if Player 1

implements σ′1, then whatever Player 2 plays, the average payoff at each stage n ≥ N ′ is

in Cl(B(B̂, η
2
)) (see Figure 19). The strategy σ′1 may play actions that cause the average

payoff to enter the dead zone. To ensure that this does not happen, we define a strategy

σ1 that slightly differs from σ′1. By σ′1, at each stage n, the average payoff ḡn has a

corresponding hyperplane Hn that supports B̂ at the closest point to ḡn. The strategy

σ1 plays as follows at each stage n: if the hyperplane Hn is in direction λ ∈ Nλ′ , then σ1

plays p∗; otherwise it plays the same action that σ′1 would play. By Lemma 33, for every

supporting hyperplane Hn of B̂ in direction λ ∈ Nλ′ , the set R1(p
∗) is in H̄n−. Since

R1(p
∗) is in the intersection of H̄n− and H̄−λ′ , the (expected) payoff when Player 1 plays

the action p∗ is also in the intersection of H̄n− and H̄−λ′ . Thus, the strategy σ1 approaches

B̂, and therefore there is N ′ ∈ N such that if Player 1 implements σ1, then whatever

Player 2 plays, the average payoff after stage N ′ is in B̂′ := Conv(B(B, η
2
), R1(p

∗)∩Hλ′)

(see Figure 20). This set is contained in A.
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Figure 19: Two examples of a η
2
-neighborhood of B̂ calculated with R1(p

∗) from Figure 20.
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Figure 20: The set B̂′, which is contained in A.

Let σ∗1 be the following strategy for Player 1.

• In the first N ′ stages play the action p∗.

• For n > N ′; at stage n play as follows:

– If ḡn ∈ F \ B̂′, play the corresponding action from the strategy in Proposition

25, with x = ḡN
′

and t = N ′;

– If ḡn ∈ B̂′ \ B̂, play the corresponding action from the strategy σ1 that ap-

proaches B̂;

– If ḡn ∈ B̂, play p∗.

The strategy σ∗1 plays the action p∗ in the first N ′ stages, so that from that stage

on the difference between the average payoff at a stage and the average payoff in the

following stage is relatively small. Then, if the average payoff is not in B̂′ (in particular

not in Hλ′) the strategy plays according to the strategy in Proposition 25, so that the

average payoff gets into B(B, η
2
) and in particular into B̂′; if the average payoff is in B̂′

but not in B̂, the strategy plays according to σ1, so that the average payoff stays in

Cl(B(B̂, η
2
)), but never gets into the dead zone; if the average payoff is in B̂, the strategy

plays the action p∗.

The following lemma shows that the set A is strongly approachable by Player 1.

Lemma 34 Under the strategy σ∗1, there exist N ∈ N such that ḡn ∈ A for every n ≥ N

and every strategy σ2 of Player 2.

Proof. Set N = N ′ + n̄, where n̄ is given in Proposition 31. After playing N ′ times the

action p∗, the average payoff is either in B̂′ or in F \ B̂′.

• If ḡN
′ ∈ F \ B̂′, then from Proposition 31, there exists n ≤ n̄ such that

ḡN
′+n ∈ B(B, η

2
) when Player 1 implements the strategy from Proposition 25.

• If ḡn ∈ B̂′ \ B̂ for n ≥ N ′, then by playing the strategy σ1 that ensures that the

average payoff stays in Cl(B(B̂, η
2
)), but never gets into the dead zone, we deduce

that ḡn+1 ∈ B̂′ ⊆ A.
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• If ḡn ∈ B̂ for n ≥ N ′, then the strategy that approaches B̂ allows Player 1 to

choose any action. Playing the action p∗ ensures that the average payoff does not

get into the dead zone. In particular, ḡn+1 ∈ B̂′, since the difference between ḡn

and ḡn+1 is less than η
2
.

That is, from stage N onward the average payoff is in A.

The first bullet shows that until the N ′ + n̄-th stage, the average payoff will be in

B̂′ ⊆ A, and the other two bullets shows that after the average payoff gets into B̂′, it

will stay there.

We deduce that for every n ≥ N , ḡn ∈ A, so A is strongly approachable. This

completes the proof of one direction of Theorem 14.

We now prove the other direction of Theorem 14. First notice that if Player 1 does

not play the action p∗ in the first stage, then Player 2 can play an action such that the

expected payoff is in H+
λ′ . Moreover, as long as the average payoff is in Hλ′ , if Player 1

does not play the action p∗, then Player 2 can play an action such that the expected payoff

is in H+
λ′ , and then the average payoff up to that stage would be in H+

λ′ . As mentioned

above, if the average payoff at some stage n is in H+
λ′ , Player 2 has a continuation strategy

such that the long-run average payoff stays in H+
λ′ , and in particular it does not get into

the set A. We can therefore assume that p1 = p∗, and pn+1 = p∗ as long as ḡn ∈ Hλ′ .

• Assume that R1(p
∗) ∩ Hλ′ ∩ A = ∅. From the definition of a dead zone,

R1(p
∗) ∩ Hλ′ 6= ∅. Consider the strategy of Player 2 in which he plays an ac-

tion q such that u(p∗, q) ∈ Hλ′ as long as ḡn ∈ Hλ′ . As long as Player 1 plays p∗

the average payoff is u(p∗, q) ∈ Hλ′ \ A, and therefore the long-run average payoff

would not get into A. If Player 1 plays a different action p, Player 2 has an action

q′ such that u(p, q′) ∈ H+
λ′ . From that stage on Player 2 will play the optimal

strategy in the auxiliary game Gλ′ , so that the average payoff will stay in H+
λ′ , and

in particular would not get into A.

• Assume that there is a point z ∈ R1(p
∗) ∩Hλ′ that does not have a neighborhood

N such that R1(p
∗) ∩ N ⊆ A, i.e., there is a point z′ ∈ R1(p

∗) such that the

line segment zz′ intersects A only at z. Assume to the contrary that the set A

is strongly approachable, i.e., there exists N ∈ N such that for every strategy of

Player 2 and for every n > N , one has ḡn ∈ A. As mentioned above, Player 1

needs to play the action p∗ as long as ḡn ∈ Hλ′ . Consider the strategy of Player 2
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in which he plays in the first N stages an action q∗ satisfying u(p∗, q∗) = z. Then

the average payoff at stage N is z, so that Player 1 needs to play the action p∗ at

stage N + 1. At stage N + 1 the strategy of Player 2 indicates to play an action

q′ such that u(p∗, q′) = z′. Therefore, the average payoff at stage N + 1 will be in

the open line segment zz′, which is outside of A, a contradiction to the assumption

that A is strongly approachable.

This concludes the proof of Theorem 14.

Remark 35 As mentioned above, if Condition C1 does not hold, Player 2 can prevent

Player 1 from making the average payoff get into the set A at any stage of the game:

Player 2 has a strategy the guarantees that the average payoff is either in Hλ′ \ A or in

H+
λ′, so it never gets into A. On the other hand, if Condition C1 holds and Condition C2

does not hold, then Player 1 can eventually make the average payoff get into A: Indeed,

as mentioned above, Player 1 can ensure that the average payoff stays in H̄−λ′. Once it is

in H−λ′ \ A she can use the strategy described in the proof of Theorem 14 to ensure that

it gets into A and remains there.

Remark 36 Does the fact that a player can strongly approach a certain set in the game

Gx,t depend on x? The answer to this question is positive: It is possible that a certain set

will be strongly approachable by a player in the game Gx,t but not strongly approachable

by him in the game Gx′,t, for x′ 6= x. This happens, for example, if x is not in a dead

zone while x′ is in a dead zone.

3.6 The General Case

In the general case, where there are several directions λ ∈ Sd−1 for which

Vλ = inf
a∈A
〈λ, a〉 (4)

Player 1 should ensure that the average payoff stays away of more than one half-space

(dead zone).

As follows from the proof of the second direction of Theorem 14, if the set A is

strongly approachable by Player 1, then the action p that he plays in the first stage

must satisfy that R1(p) ⊆ H̄−λ for every λ that satisfies Eq. (4). In other words, there

is p∗ ∈ ∆(I) that is optimal in the game Gλ for every λ that satisfies Eq. (4). The

condition in the statement of the Theorem implies that this p∗ is unique.

34



A dead zone is defined by a direction λ for which Vλ = infa∈A〈λ, a〉. Since p∗ is

unique, each such direction is determined by an extreme point of R1(p
∗). The number of

such directions can be finite, for example, if the set A has a smooth boundary, or infinite

(uncountable), if one of the extreme points of R1(p
∗) is on a non-smooth boundary point

of A.

To prove Theorem 15 we need a generalization of Proposition 25, which is the follow-

ing.

Proposition 37 Let A be a closed convex approachable set with nonempty interior. De-

note by S the set of all λ′ ∈ Sd−1 that satisfy Vλ′ = infa∈A〈λ′, a〉 and let

H :=
⋂
λ′∈S

H−λ′ .

For every λ′ ∈ S denote by pλ′ an optimal strategy (action) in the auxiliary game Gλ′, so

that R1(pλ′) is in the closed half-space H̄−λ′. Assume that every point in R1(pλ′)∩Hλ′ ∩A
is a smooth boundary point of A; and

C1 R1(pλ′) ∩Hλ′ ∩ A 6= ∅, and

C2 every point in R1(pλ′) ∩Hλ′ has a neighborhood N such that R1(pλ′) ∩N ⊆ A.

Then for every x ∈ (F ∩ H) \ A and every t ∈ N there exists a strategy σ1 of Player 1

and n̂ ∈ N such that under σ1 the average payoff ḡn̂ in the game Gx,t belongs to Int(A)

for every strategy σ2 of Player 2.

In Proposition 25 and in Theorem 14 we did not rely on the condition that there is

only one direction λ satisfying Eq. (4). Therefore the generalizations of Proposition 25

and Theorem 14 to the case of more than one direction λ satisfying Eq. (4) (i.e. more

than one dead zone), which are Proposition 37 and Theorem 15 respectively, hold with

similar proofs.

4. Discussion

4.1 Exactly One Set R1(pλ′) in Every Complement of a Dead Zone

The main results are valid when we assume that for every direction λ′ ∈ Sd−1 for which

Vλ′ = infa∈A〈λ′, a〉, among all sets {R1(p), p ∈ ∆(I)} there exists exactly one set R1(pλ′)

in the closed half-space H̄−λ′ . We used this assumption to show that each of the two

following conditions is necessary:

35



1. R1(pλ′) ∩Hλ′ ∩ A 6= ∅.

2. Every point in R1(pλ′) ∩Hλ′ has a neighborhood N such that R1(pλ′) ∩N ⊆ A.

We do not know whether these conditions are necessary in the case where the number

of sets among all sets {R1(p), p ∈ ∆(I)} that are contained in the closed half-space H̄−λ′

is not restricted to one. While exploring this issue we encountered the following obstacle.

From Proposition 25 and its generalization, Proposition 37, we know that if the average

payoff is in the open half-space H−λ′ , then Player 1 has a strategy such that the average

payoff would get into the desired set, regardless of the number of sets R1(pλ′). Therefore,

it seems that one should study a restricted game in which Player 1 is restricted to mixed

actions that ensure that the expected stage payoff is in the closed half space H̄−λ′ , and for

every such mixed action of Player 1, Player 2 is restricted to mixed actions that ensure

that the expected stage payoff is on the hyperplane Hλ′ . Regarding this restricted game

we should ask whether Player 1 can strongly approach the set A ∩ Hλ′ . The problem

with this approach is that there are examples in which, when Player 1 plays in this way,

for any stage n Player 2 can ensure that the average payoff remains in A ∩ Hλ′ until

stage n, moves to H−λ′ \A in stage n+ 1, from where Player 1 can ensure that eventually

the average payoff would get into A. However, the definition of strong approachability

requires that the average payoff gets into A in a bounded time, and this approach does

not delivers such a uniformity property.

4.2 Smoothness of R1(p
∗) ∩Hλ′ in ∂A

To keep the formulation of Theorems 14 and 15 rather simple, we assumed that every

point in R1(p
∗)∩Hλ′∩A is a smooth boundary point of A. In fact, we could have assume

a weaker assumption on R1(p
∗), which is that every face or edge of R1(p

∗) that intersects

Hλ′ , but not contained in it, is not a subset of ∂A in any small enough neighborhood of

the intersection point.

The original assumption was used in the proof of Lemma 32. We now argue that

the weaker assumption also satisfies Lemma 32. Recall that by Condition C2 the point

u(p∗, jk) has a neighborhood N such that R1(p
∗) ∩ N ⊆ A. Therefore, if u(p∗, jk) is

a vertex (nonsmooth boundary point) of A, then in a small enough neighborhood of

u(p∗, jk), the line segment that joins u(p∗, jk) and u(p∗, jk′) intersects either Int(A) or

∂A. From the assumption on the faces and edges of R1(p
∗), and since u(p∗, jk′) /∈ Hλ′ , in a

small enough neighborhood of u(p∗, jk), the intersection of that line and the neighborhood

N is not contained in ∂A, and therefore the line intersects Int(A).
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The above weaker assumption is not the weakest we can assume. It is possible to

weaken the assumption on the faces and edges of R1(p
∗) by the following iterative process.

i. Let f be a face or an edge of R1(p
∗) that intersects Hλ′ but not contained in it. If

(f ∩ ∂A) \Hλ′ 6= ∅, then f is contained in ∂A.

ii. The condition in (i) is satisfied when replacing the hyperplane Hλ′ with f .

iii. Bullet (ii) holds for every replaced face or edge, and so on.

Since R1(p
∗) has finitely many faces (and therefore edges), this iterative process is

finite. The proof of Theorems 14 and 15, with proper adjustments, remain valid under

the new assumptions.

Figure 21 provides a graphic example of the weaker assumption; The boundary of A

is not smooth in f0 := R1(p
∗)∩Hλ′ ∩A. The faces f0 and f1 of R1(p

∗) intersect at some

point. The face f1 is contained in ∂A in every neighborhood of the intersection point,

and therefore the face f1 is contained in ∂A. Similarly, the face f2 is contained in ∂A,

since it is contained in ∂A in every neighborhood of the intersection point of the faces

f1 and f2. The set B̂ would be as in Figure 22. It still holds that B̂ ⊆ A.

  

      

      

     

 

 

  

   

   

   

Figure 21: A set R1(p) that satisfies the weaker assumption.
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Figure 22: The set B̂ when R1(p) satisfies the weaker assumption.

The question whether this assumption is necessary is open and left for future research.

Remark 38 As mentioned before (see Remark 26), Proposition 25 (resp. Proposition

37) is more general than what we need, since in the proof of Theorem 14 (resp. Theorem

15) the point x is restricted to the unique set R1(p
∗) = R1(pλ′). We assumed that every

point in R1(pλ′)∩Hλ′ ∩A is a smooth boundary point of A, and used this assumption to

show that δ1 := d(C \A, Y ) > 0. Since in this section we no longer make the smoothness

assumption, we cannot use it to show that δ1 > 0. Nevertheless, since the point x is in

R1(pλ′), this claim still holds.
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