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THREE-PLAYER ABSORBING GAMES

EILON SOLAN

An n-player absorbing game is an n-player stochastic game where all the states but one are
absorbing (a state is absorbing if once it is reached, the probability to leave it is zero, whatever the
players play).

We prove that every three-player absorbing game has an undiscounted equilibrium payoff.

1. Introduction. An n-player absorbing game can be described as follows. A fixed
one-shot game is played over and over again. However, for every action combination, there
is a probability that once it is played the game is terminated (or is absorbed), and an absorbing
payoff vector which the players receive at every future stage if the game is absorbed by this
combination.

A payoff vector g € R” is an e-equilibrium payoff if there exists a strategy profile
o. = (ol) such that if the players follow . then the expected payoff for each player i in
every sufficiently long game, as well as the expected liminf of his average payoffs in the
infinite game, is at least ¢ — €, while if any player i deviates from ¢., then his expected
payoff in every sufficiently long gamec, as well as the expected limsup of his average payoffs
in the infinite game, is at most g’ + €. The profile o, is an e-equilibrium profile for g.

The payoff vector g is an equilibrium payoff if it is an e-equilibrium payoff for every € > 0.

It is well known (see, e.g., Blackwell and Ferguson 1968) that O-equilibrium profiles need
not exist, and that stationary and Markov profiles are not sufficient to construct e-cquilibrium
profiles.

Kohlberg (1974) proved that every two-player zero-sum absorbing game has an equilib-
rium payoff, which is the value of the game. Vrieze and Thuijsman (1989) proved that cvery
two-player non zero-sum absorbing game has an equilibrium payoff. Moreover, the
e-equilibrium profiles can be chosen to be ‘almost’ stationary (i.e., they are given by a
stationary profile plus threat strategics). Recently Flesch et al. (1997) gave an example of a
three-player absorbing game where no ‘almost’ stationaty equilibrium payoff exists, and all
equilibrium profiles have a cyclic nature.

In the present paper we generalize the result of Vrieze and Thuijsman for three-player
games, i.e., we prove that every three-player absorbing game has an equilibrium payoff. By
Ncyman and Sorin (1998), our result implies that every three-player repeated game with
incomplete information and symmetric signaling has an equilibrium payoff.

The basic idea of the proof is, as in Vrieze and Thuijsman (1989), to consider a sequence
of discounted equilibria that converges to a limit as the discount factor goes to 1, and to
construct different types of e-equilibrium profiles according to various properties of this
sequence. Denote by x = (x') the limit of the discounted stationary equilibrium profiles, and
by ¢ = (g') the limit of the corresponding discounted equilibrium payoff vectors. The action
combination x will be viewed also as a stationary profile.

When there are two players, Vrieze and Thuijsman prove that three cases can occur. (i) x
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670 EILON SOLAN

is absorbing (that is, if the players play the stationary strategy x, absorption occurs eventually
with probability 1), and then, by adding threat strategies to the stationary profile x, one can
construct an e-equilibrium profile in the undiscounted game. (ii) x is nonabsorbing, but the
expected nonabsorbing payoff for the players if they follow the stationary profile x is at least
g. Then, by adding threat strategies to the stationary strategy x, one can construct an
e-equilibrium profile in the undiscounted game. (iii) x is nonabsorbing, but the nonabsorbing
payoff for one of the players, say player 1, if the players follow the stationary profile x, is
strictly less then g'. In this case Vrieze and Thuijsman prove that player 2 has an action a”
(or a perturbation) such that the stationary profile (x', a”) is absorbing, and it yields both
players a payoff which is at least g. Using this perturbation and threat strategies, one can
construct an e-equilibrium profile in the undiscounted game.

When trying to generalize this approach for more than two players, it turns out that if the
first two cases do not hold, then there does not necessarily exist a perturbation (of any subset
of the players), nor a convex combination of perturbations, which yields every player i a
payoff which is at least g'.

To overcome this difficulty, we define an auxiliary game, where the nonabsorbing payoffs
are bounded by the min-max value of the players in the original game, and the absorbing
payoff remains the same. We consider a sequence of discounted equilibria in the auxiliary
game, and denote by x the limit of the discounted stationary equilibrium profiles and by g the
limit of the corresponding discounted equilibrium payoffs. It turns out that the first two cases
of Vrieze and Thuijsman yield an ‘almost’ stationary e-equilibrium profile in the original
game as above, and, if they do not hold, then there exists a convex combination of some
absorbing perturbations that yields each player i a payoff which is at least g'. Since the
absorbing payoff in the auxiliary game is equal to the absorbing payoff in the original game,
this convex combination yields each player i a payoff which is at least g' in the original game
as well. When there are three players, one can construct, using this convex combination, an
e-equilibrium profile in the original game for every € > 0. Moreover, this profile has a cyclic
nature, but the length of the cycle may depend on e.

The existence of a “good” convex combination of absorbing perturbations turns out to be
useful in deriving various results for absorbing games, such as (i) existence of an equilibrium
payofl in games where the players are divided into two teams, and the players in each team
have the same payoff function (Solan 1997), and (ii) existence of an extensive-form
correlated equilibrium (for a more general result see Solan and Vieille 1998a).

In all the e-equilibrium profiles that we construct, the players play mainly the limit of the
discounted stationary equilibrium profiles, and perturb to other actions with a very small
probability, while checking statistically whether the other players do not deviate. Once a
deviation is detected, the deviator is punished with an e-min-max profile forever.

Unfortunately, our approach cannot be generalized for more than three players. In §9 we
give an example of a four-player absorbing game where there exists a sequence of discounted
equilibrium profiles that converges to a limit, but one cannot construct an e-equilibrium
profile where the players play mainly the limit mixed-action. It is currently not known
whether equilibrium payoff exists in every n-player absorbing game, for n = 4.

The paper is arranged as follows. In §2 we give three examples of three-player absorbing
games, show some of the equilibrium payoffs of these games, and illustrate the construction
of the e-equilibrium profiles for the general case. In §3 we define the model of absorbing
games and state the main result, and in §4 we state two additional theorems, that have their
own importance, and are crucial to the proof of the main result. In §5 we give four sets of
sufficient conditions for existence of an equilibrium payoff in absorbing games. Sections 6-8
are devoted to the proof of the first theorem, and §10 is devoted to the proof of the second
theorem.
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THREE-PLAYER ABSORBING GAMES 671

2. Examples. In this section we illustrate different types of e-equilibrium profiles that
can occur in absorbing games, by giving three examples.

ExampLr 1.

w E
L R L R
’70, 1, 0% 0, 1, 2% 1,0,0 0, 1,0
B 1,0,0 0,0,0 0,0,1 1, L]

In this game player 1 chooses a row, player 2 chooses a column and player 3 chooses a
matrix. An asterisked cell means that once this cell is chosen, the game is absorbed with
probability 1 and the absorbing payoff is as indicated by the cell. A nonasterisked cell means
that whenever this cell is chosen the game is not absorbed, and the nonabsorbing payoff is
as indicated by the cell. Note that the min-max value of each player is O.

One cquilibrium payoff in the game is (3, 5, 3). Consider the nonabsorbing stationary
profile G T + % B, 5L + iR, E). Player 1 is indifferent between his actions, but player 2 can
profit by playing always R. Hence players | and 3 must conduct a statistical test, check
statistically whether player 2 plays each action approximately half the time, and punish him
with a min-max strategy if a deviation is detected. In order to prevent player 3 from playing
always W (and receiving an expected payoff 1), players 1 and 2 threaten player 3 with a
min-max strategy if he deviates.

Another equilibrium payoff is (0, 1, 1), and an equilibrium profile is to play the stationary
absorbing profile (T, : L + 3R, W), while checking for a deviation of players | and 3 and
punish a deviator with a min-max strategy profile. Note that deviations of player 2 cannot be
detected, since it the other two follow this profile, then whatever he plays, the game is
absorbed at the first stage. However, player 2 is indifferent between his actions, since he
receives | whatever he plays; hence the fact that his deviations cannot be detected does not
affect this equilibrium. 0

These two types of equilibria were used by Vrieze and Thuijsman (1989) for two-player

games.
EXAMPLE 2.
%% E
L C R L C R
000 Tooo Toio w 7
T 0,0,0 0,0,0 0,1, 0% 0,0,0 0,0,0
0,0,0 1,4, 1% 3,0, 1*
B 1, -2, 3% ’

The empty cells may be arbitrary (both payoff and whether they are absorbing or not). Let
R be the maximal payoff (in absolute values). For the rest of the section we denote & = €/R.
Note that the min-max value of players 1 and 2 is at most 1, and the min-max value of player
3 is at most 0.

One equilibrium payoff is (1, 4, 1) and an e-equilibrium profile for it is to play at every
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672 EILON SOLAN

stage the mixed-action combination ((1 — 8)7 + M, (1 — &)L + 8C, W). Clearly if the
players follow this profile they receive the desired payoff, and neither player 1 nor player 2
can profit more than 6R = € by deviating. To deter player 3 from deviating, once he deviates
he is punished with his min-max value.

Absorption occurs at every stage with probability 8%, while perturbations of players 1 and
2 occur with probability 8. Therefore, if & is sufficiently small, the players can conduct
statistical tests to check whether player | plays the action M in frequency &, and whether
player 2 plays the action L with frequency 8. Though these tests are not necessary, since no
player can profit by deviating, they can still be employed.

Another equilibrium payoff is (2, 2, 1) = 3(1, 4, 1) + 4(3, 0, 1), and an e-equilibrium
profile for it is:

¢ At odd stages play ((I — &)T + oM, (1 — &)L + 3C, W).

e At even stages play ((1 — )T + oM, L, (I — &)W + 8E).

If the players follow this profile then their expected payoff is approximately (2, 2, 1). Since
player | prefers absorption by (M, L, E), while player 2 prefers absorption by (M, C, W),
the players should check statistically whether each of them follows this profile, and punish
a deviator with an e-min-max profile.

Yet a third equilibrium payoffis (1, 1,2) = 5(1,4, 1) + £(1, —2,3), and an e-equilibrium
profile for it is:

o At odd stages play ((1 — 8)T + 8M, (1 — &)L + 8C, W).

o At even stages play (I — 8)T + 8°B, L, W).

If the players follow this profile then their expected payoff is approximately (1, 1, 2). In
this case the players cannot check whether player 1 perturbs at even stages in the
pre-specified probability, since once he plays B the game is absorbed with probability of at
least 1 — &, and the probability that absorption occurs before he ever plays B is
approximately 5. However, player | has no incentive to deviate, and therefore such a check
is not needed. Nevertheless the players do need to check whether player 2 perturbs at odd
stages as he should.

Actually, every convex combination (g, g7, g7) of the four absorbing cells (1, —2, 3), (1,
4, 1), (0, 1,0) and (3,0, 1) in which g', g* = 1, ¢’ = 0 that satisfies:

e if (1, —2, 3) has a positive weight in this combination then g1 = 1;

o if (0, 1, 0) has a positive weight in this combination then g = 1; is an equilibrium
payoff. O

ExAMPLE 3.

L R L R

T 0,0,0 0,1,3*‘1 3,0, 1% | 1,1, 0%

# 1= | 0 *
1,3,0% [ 1,0, 1 \ 0.1, 0,0

L

This game was studied by Flesch et al. (1997). The game is symmetric in the sense that
for every player i and action combination ¢ = (a', a*, @’) # (T, L, W) we have
ui(al, aZ’ (13) — uH'lmodﬁ\(a3’ (1], a2),
where u'(a) is the absorbing payoff to player i if the action combination a is played, and we
identify T = L = Wand B = R = E.
Flesch et al. (1997) prove that the game possesses no stationary e-equilibrium. However,
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they prove that (1, 2, 1) is an cquilibrium payoff. The equilibrium profile that Flesch et al.
suggest is the following.

o At the first stage, the players play G T + 58, L, W).

o At the second stage, the players play (T, L + R, W).

o At the third stage, the players play (7, L, s W + 3 E).

o Afterwards, the players play cyclically those three mixed-action combinations, until
absorption occurs.

If the players follow this profile then their expected payoff is (1, 2, 1), and it can casily be
checked that no player has a profitable deviation. Note that this profilc guarantees that the
game will eventually be absorbed.

Let € > 0, 8 = €/3 and n € N satisfy that (1 — 8)" = 4. A more robust e-equilibrium
profile for this game, that does not depend on the payoffs of the cells (T, R, E), (B, R, W)
and (B, L, E) is the following:

e The players play ((1 — 8)7 + 8B, L, W) for n stages (thus, the overall probability to
be absorbed by the action combination (B, L, W) is .

e Then the players play (T, (1 — &)L + OR, W) lor n stages.

e Then the players play (7, L, (1 — 8)W + 8E) for n stages.

e Afterwards, the players play cyclically those three phases, until absorption occurs.

The exact conditions for existence of such an e-equilibrium profile appear in §5.

3. The model and the main result. An absorbing game is a 5-tuple G = (N, (A “h
u'),en, W) Where:

e N is a finite set of players.

e For every player i € N, A' is a finite set of pure actions available to player /. Denote
A= Xiew Al

e For every player i, h' : A — R is a [unction that assigns to each action combination
@ € A a nonabsorbing payoff for player i.

e For every action combination a € A, w(a) is the probability that the game is absorbed
if this action combination is played. If the game is absorbed, u'(a) is the payoff that player
i receives, at cach [uture stage.

We denote X' = A(A"), the set of all probability distributions over A, X = X oy X',
X" = X o, X foreach L C Nand X~ = X ., X. Let R = | be a bound on |A'] and |u’
for every i, and H = U .y A" be the space of all finite historics.

Dientrion 3.1, A (behavioral) strategy for player i is a function o' 1 H — X', A vector
o = (0'),ey where cach o is a strategy for player i is a strategy profile (or simply a profile).

Sometimes we view a mixed action combination x € X as a stationary strategy profile.

Every profile o induces a probability distribution over A™, the space of infinite histories
(equipped with the o-algebra that is spanned by all the finite cylinders). We denote
cxpectation according to this probability distribution by E,.

Let #; be the payoff that player 7 receives at stage t.

Durnition 3.2, A vector g € RY is an equilibrium payoff if for every € > 0 there exists
t, € N and a strategy profile o, such that
e For cvery player i € N,

] "r’i+r§+~~~+r/’ )
E, { lim inf =g' — ¢,

t

t—>%

and for every r > ¢,
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e For every player i and every strategy 7' of player i,

] A A 4 ,
E,- ;| lim sup =g'+ €,

t

1>

and for every ¢t > 1,

I A S _
E(,;"‘TV —<_g, + €.

The strategy profile o is an e-equilibrium profile for the payoff g.
The main result of the paper is:

Tucorem 3.3, Every three-player absorbing game has an equilibrium payoff.

4. An outline of the proof. The proof is divided into three main steps:

(i) We give four sufficient conditions for existence of an equilibrium payoff in absorbing
games.

(if) We prove that in any absorbing game there exists a mixed action combination that
satisfies one of three sets of properties. The first (resp. second) set of properties implies that
the first (resp. second) sufficient condition holds.

(iii) Only the third set of properties poses a difficulty. We then prove a geometric result
which implies that if the third set of properties is satisfied and |N| = 3, then one of the last
two sufficient conditions hold.

In this section we present two theorems that correspond to steps (ii) and (iii). The sufficient
conditions are given in the next section.

To prove the second step, we define an auxiliary absorbing game where the nonabsorbing
payoff of each player is bounded by his min-max value in the original game, and the
absorbing payoff remains the same. Every limit of discounted equilibria in the auxiliary game
defines a mixed action combination that satisfies (ii). An important step in the proof is to
prove that the discounted min-max values in the auxiliary game converge to the min-max
value of the original game.

We begin with some preliminary definitions. We denote the multilinear extensions of w
and # over X by w and h. We define an extension of u to X by

e iy xi,,)w(a)u(a)

w(x)

(1) u(x) =

whenever w(x) > 0 and 0 otherwise. Note that u is continuous at every point x such that
w(x) > 0, and that wu is multilinear over X. We identify each action ¢’ € A" with the
probability distribution over A’ that gives probability 1 to a'.

DerINITioN 4.1, The real number ¢’ € R is the min-max value of player i if for every e
> 0 there exist 1, € N and a profile o, of players N\{i} such that
e For every strategy o' of player i,

) rﬁ+r;+--~+r; )
E,-i ;| limsup =c'+ e,

t

1—0

and for every t > ¢,
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o For every strategy profile o' of players N\{i} there exists a strategy o' of player i such

that
A S R
E,| lim in{ =¢' — €,

!

1%

and for every ¢t > 1,

I N N _
E, ; Z ¢l - €

i

The profile o' is an e-min-max profile against player i.

Lemma 4.2, For every player i, the min-max value ¢" exists. Moreover, ¢ = limg._, (B,
where ¢'(B) is the min-max value of player i in the B-discounted game.

This result was proved by Mertens and Neyman (1981) for two-player stochastic games,
and an unpublished proof of Neyman (1996) that follows simjlar lines proves the result for
n-player stochastic games.

For every player i define the function ¢’ : X — R by

e'(x) = wu'(x) + (1 —wx))c'.

e'(x) is the maximal payoff that player i can reccive if at the current stage the players play
the mixed-action combination x, and from tomorrow on player i is punished with an
e-min-max profile (with an arbitrary small €).

Derinrrion 4.3, A mixed action combination x € X is absorbing if w(x) > 0 and
nonabsorbing otherwise.

Leta, b € RY. We say that a = b if a; = b, forevery i = 1, ..., d, and that g > b
ifa=band a + b.

As scen in Example 2, a basic notion is that of absorbing neighbors:

Drrintiion 4.4, Let x € X be a nonabsorbing mixed-action combination and L C V. An
action combination b* € X o, A’ is an absorbing neighbor of x by L if

o wix “, b > 0.

e w(x ™, hY) = 0 for every strict subset L’ of L.

If L = {i} the absorbing neighbor is called a single absorbing neighbor ol player i.

We denote by %B(x) the set of all absorbing neighbors of x, and by %B,(x) the set of all
single absorbing neighbors of player i. Note that B (x) is never empty (as long as there is an
absorbing action combination), but % ,(x) may be cmpty.

The following thcorem turns out to be very useful for absorbing games. In addition to its
crucial part in the proof of Theorem 3.3, it is used to prove the existence of an equilibrium
payoff in absorbing team games (the players are divided into two tcams, and the players in
cach team have the same payoff functions; see Solan 1997) and can be used to prove the
existence of an extensive-form correlated equilibrium in n-player absorbing games (for a
more general result, see Solan and Vieille 1998a).

Tneorem 4.5, There exist x € X, g € RY, u € AB(x)) and d - \J, A" — [0, ®) that
satisfy:
(@) ¢' = e'(x ', a) for every player | and action o' € A'.
(b) At least one of the following holds:
(1) x is nonubsorbing and hix) = g.
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676 EILON SOLAN
(it) x is absorbing, u(x) = g and u'(x"', a') = g' for every player i and every action d'
€ supp(x’) such that wix™, a") > 0.
(iif) (1) x is nonabsorbing.
(2) Average payoft condition: For every player i € N, Zcqn mbHu'(x™t, by =
g
(3) Vanishing action condition: For every player i and every action a’ ¢ supp(x)

2 b bl = ( 2 M(b"))g'?
bllicLbi=a’ bllieLbi=al
(4) Degree condition: d(a’) = 0 for every player i and every a' € supp(x).
Moreover, if there is a strict inequality in (b)(1i)(2) for at least one player, then
2, db)) = 1 for every b* € supp(iw).

Note that the second condition in (b)(ii) follows from the third condition in (b)(ii).
Condition (a) states that g is a “good” payoff vector; that is, no player can profit by deviating
and being punished from the second stage. Condition (a) and either (b)(i) or (b)(ii) imply that
there exists an equilibrium payoff of the types presented in Example 1.

If there is an equality in (b)(iii)(2) for all the players, we say that the average payoff
condition holds with equality. Otherwise we say that it holds with strict inequality. The
names of the last two conditions are taken from the proof of the theorem: we will consider
a sequence of discounted equilibria in the auxiliary game that converges to a limit, The
vanishing action condition will relate to actions that have positive probability in any
discounted equilibrium in this sequence, but vanish in the limit. The function  in the degree
condition will be defined as the degree of some power series.

For [N| = 2, Theorem 4.5 can be deduced by the results of Vrieze and Thuijsman (1989).
In this case, w is supported by single absorbing neighbors.

One should now consider the case that condition (b)(iii) holds. In that case, the following
theorem states that if there are only three players then there exists an equilibrium payoff of
the types presented in Examples 2 and 3.

To state the theorem, we need to make precise the conditions in which we have a cyclic
equilibrium payoff. It turns out that the following definition plays an important role:

DerniTion 4.6, Let a, b, ¢ € R, The three vectors (a, b, ¢) are left-cyclic if b, > a,
>y, ¢y, > by > a,and a; > ¢y > by, and right-cyclic it b, < a, < ¢y, ¢, < b, < a,
and a; < ¢3 < b;. They are cyclic if they are either left-cyclic or right-cyclic. They are
positive cyclic if they are cyclic and

0 by—a ¢ —a
det| a; — by 0 ¢y — by | >0.
ay— Cy by — oy 0

Whenever we say that three vectors are cyclic, it should be understood that the first vector
serves as the a in the above definition, the second vector serves as the b, and the third serves
as the c.

Note that if (a, b, ¢) are positive left-cyclic, then ((a,, a3, a,), (¢, ¢c1, ¢,), (b1, b3, by))
are positive right-cyclic.

Tueorem 4.7, If 4.5(b)(iii) holds and |N| = 3 then at least one of the following holds:

(a) There exists v € A(RB(x)) such thar supp(v) C supp(u), for every player i,

2) > w(bu'(x )y =g

1)[ Esupp(v)

and for every player i such that B, (x) N supp(v) # & there is an equality in (2).
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(b) For every player i there exists y' € A(B(x)) such that supp(y") C supp(u) and (u(x ',
YO, u(x 7y, u(x y‘x)) are positive cyclic vectors.

As we will see, if (a) (resp. (b)) holds then there exists an equilibrium payoft of the type
presented in Example 2 (resp. 3). The function 4 of the degree condition is essential to prove
this theorem.

Theorem 3.3 is an immediate consequence of Theorems 4.5, 4.7 and the four sufficient
conditions for existence of an equilibrium payoff that we provide in the next section.

5. Four types of equilibria. In this section we present four sets of sufficient conditions
for the existence of an equilibrium payoff in absorbing games. Three of the four sets are for
games with an arbitrary number of players, while the fourth is given only for three-player
games. With every set of sufficient conditions we give the corresponding e-cquilibrium
profiles. The profiles use various constants, which are chosen in such a way to insure that no
player can profit too much by deviating, and that a false detection of deviation occurs with
a small probability. The way to choose these constants appears in Appendix 1.

5.1. An ‘almost’ stationary nonabsorbing equilibrium.

Lemma 5.1, Let x € X be a nonabsorbing mixed action combination such that
Rix)=e'(x", a9 VieEN a' €A

Then h(x) is an equilibrium payoff.
Note that by the assumption it follows that A'(x) = ¢' for every i.

Proor.  Let € > 0 be fixed. Consider the following strategy profile o At every stage the
players play the mixed action combination x. In addition, the players conduct the following
statistical tests:

(1) EHach player is checked whether his past actions are compatible with o.

(2) Atevery stage r = t, {where ¢, is defined below), each player i is checked whether
the distribution of his realized actions is e-close o x'.

The first player that fails one of these statistical tests is punished with an e-min-max profile
forever. If more than one player fails one of these tests at the same stage, then the player with
the minimal index is punished.

The constant ¢, = ¢, is chosen sufficiently large such that the probability of false detection
of deviation is bounded by e; that is, for every i € N,

Pr(|X; — x| <e Ve>1)>1— ¢lN|

where X' = (1/1) et Xf and {X}} are i.i.d. r.v. with distribution x'.

It is casy to verify that by the condition no player can profit more than 2€R by deviating
in the infinite game, as well as in any f-stage game, for 1 = 2R1,/€, and therefore o is a
2eR-equilibrium profile for ~(x). For a more detailed analysis of this profile the reader may
refer to Vrieze and Thuijsman (1989). O

5.2.  An ‘almost’ stationary absorbing equilibrium.

Lemma 5.2, Let x € X be an absorbing mixed action combination that satisfies the
Sfollowing two conditions:

() u(x)yz=e(x,dYVieEN, a € A

(2) u'(x) = u'(x ', a") for every i € N and a' € supp(x’) such that w(x ', a')y > 0.

Then u(x) is an equilibrium payoff.
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Proor.  Let € > 0 be fixed. Consider the strategy profile o that was defined in the proof
of Lemma 5.1, where ¢ is sufficiently large to satisfy (1 — w(x))" < e€: absorption occurs
in the first ¢, stages with probability greater than 1 — .

If the players follow o then their expected payoff in the infinite game, as well as in every
f-stage game, for 1 = r,, is 2eR-close to u(x). By the first condition no player i can profit
more than 3€R by playing an action outside supp(x'), and by the second condition neither
can he profit more than 2€R by altering the probabilities in which he plays actions in
supp(x").

Therefore o is a 3eR-equilibrium profile for u(x). For a more detailed analysis of this
profile the reader may refer to Vrieze and Thuijsman (1989). O

5.3. An average of absorbing cells.

LemmMa 5.3, Let x € X be a nonabsorbing mixed action combination. Let . & A(B(x))
and denote § = Xcp w(bHu(x™", b"). Assume the following conditions hold:

() g =e(x',adYVieENa €A

() u'(x™', a'y = g for every player i and every action a' € B,(x) N supp().
Then g is an equilibrium payoff.

Proor. Let €, > 0 be sufficiently small, T € N sufficiently large, and f: [1, ..., T] —
- supp(u) such that

#lG) =1

T w(b™) < el3 Y b* € supp(p).

3

In words, f is a discrete approximation of w. Extend the domain of f to N by f(f)
= f(t mod T) for every f > T. Let L(¢) be the set of players for which f{(r) is an absorbing
neighbor of x.

In the sequel, & € (0, €) is sufficiently small, such that

(4) (1-8)">1—¢€3

and 1., t, = /e are sufficiently large. For every b* € supp(p) let 8(b") = (&8/w(x ",
b")) "™ Define a profile o as follows:

e Al stage 1 the players play the mixed action combination (I — 8(f(£H)))x
+ 3(fN(x", fln)).

It the players follow o then the probability of absorption at each stage ¢ is
S(AN (x| f(r)) = 8. Fix consecutive T stages. By (3) and (4), the probability that
the game is absorbed by a neighbor b* € supp(u), given absorption occurs in these T stages,
is eclose to w(h"). Hence, for every stage ¢, if absorption has not occurred before stage ¢
then the expected payoff for the players is €R close to g.

We add the following statistical tests to o. Each player i is checked for the following:

(1) Whether his realized actions are compatible with o.

(2) For every b & supp(u) such that i ¢ L, whether the distribution of his realized
actions, restricted to stages j such that f{(j) = b", is m-close to x’. This check is done only
after stage 1,7

(3) For every b* € supp(u) such that i € L, whether player i plays the action b' during
stages j such that f(j) = b" with probability (b") (that is, the realized probability p should
satisfy | — m/|N| < p/8(b") < 1 + x/|N|). This check is done only after stage 7,7

(4) If supp(p) C B, (x), whether the game was absorbed before stage r, (where 7, is
chosen below).

By the first condition no player can profit more than €R by playing an action which is not
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compatible with his strategy, while by the second condition no player i can profit more than
€R by altering the probabilities in which he plays at every stage any single absorbing
neighbor a' of x. The second and third statistical tests verify that the players indeed follow,
modulo statistical etrors, the prespecified profile. The last test deals with the case that all the
absorbing neighbors in supp(u) are single absorbing neighbors of some player /. If such a
case arises, it may be of interest to player i never to be absorbed, and to receive the
nonabsorbing payoff A'( x).

As we prove in Appendix 1, since absorption occurs at every single stage with probability
8 while for every b* € supp(w) with |L| = 2 the probability to play the action b' is 8(b"),
and & = 0(8(b")), the constants 8, f, and r, can be chosen in such a way to ensure that no
player can profit more than 2€eR by any deviation, and that the probability of false detection
of deviation is at most €. 0O

54. A cyclic equilibrium. The last sufficient condition is given only for three-player
absorbing games, hence we assume that N = {1, 2, 3}.

Lemma 5.4. If (a, b, ¢) are positive right-cyclic vectors then the system of equations

(s) u :Bb1+(1 “B)Ycl
) ] B+ (1—B)y
) Y + (1 — y)aa,
© RS (I
o o aas + (1 = a)Bb; ’

a+ (I —a)p

has a unique solution. Moreover, this solution satisfies «, 3, v € (0, 1).

Proor. Assume w.l.o.g. that a, = b, = ¢; = 0. Since the vectors are cyclic, it
follows that a,, as, b\, b, ¢,, ¢, # 0. Note that every solution («a, B, y) satisfies that
o, B,y #0, 1.

We are now going to calculate 8. Similar calculations can be done for « and -y. By (6) and
(7) we have

Y Bbs
8 = -
® “ (I =v)a, Bby—ay’

and by (5) we have

b,
© YT e

Substituting (9) in (8) and dividing by B yields

bic, bsa,

CIABC1+Bb1:Bb34a3’

Hence
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a2b3(,'] + a3b1C2
T bsbicy F aybsc, — asbsb,

B

is uniquely determined. Since (a, b, ¢) are right-cyclic it follows that the denominator is
positive, while since they are positive cyclic, the numerator is also positive. Hence 8 > 0.
To prove that 3 < [ it is sufficient to prove that b3b ¢, — a,bib, — a3b ¢, > 0, which
holds since (a, b, ¢) are right-cyclic. O

LemMma 5.5.  Let x € X be a nonabsorbing mixed action combination and for every i € N
let v' € X' such that

(1) foreachi =1,2,3, wx ', y) > 0 and u'(x"', y) = e'(x7, a') for every a' € A’

(2) @(x™", ", u(x> ¥5, u(x7, v) are positive cyclic vectors.

(3) For every player i and action a' € supp(y"), w(x ™, a') > 0 and u'(x~
y).

Then there exists an equilibrium payoff.

=i

s ai) = Mi(x 4

i

Proor. Assume w.lo.g. that (u(x™', v, u(x7?, y*), u(x *, y")) are right-cyclic
{otherwise, change the names of players 2 and 3, and recall the remark after Definition 4.6).
By condition (2) and Lemma 5.4 there exist «, 3, ¥ € (0, 1) such that

_ By A (1= Byu(x )

(10) u'(x', y') EN L ,
. - yu(x 7y + (1 = y)eu(x yl)

(1 uix 2 yh) = VR

and

(12) u»?(x*-"’ y3) = asz(Xil, yl) + (I o a)BMB(xiz’ yz)

a+ (1 —a)p

Let €, > 0 be fixed. Let 8, 3,, §; € (0, €) be sufficiently small and n,, n,, n; € N satisfy
the following

(I =8wkx LyN"=1-a,
(13) (I =8wx 4 y))"=1-p, and

(1 =8wlx % y)m=1-y.

Later we shall impose more conditions on {n;},-, and {§,} ..

Define a profile ¢ as follows:

e Phase 1: The players play the mixed action combination (1 — 8)x + §,(x ', y') for
n, stages.

e Phase 2: The players play the mixed action combination (1 — 8,)x + 8,(x
n, stages.

e Phase 3: The players play the mixed action combination (1 — 83)x + 8,(x 7, y*) for
n; stages.

e The players repeat cyclically these threc phases until absorption occurs.
If the players follow o then the probability that the game is absorbed during the first phase

2

,y?) for
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is1 = (1 —8w(x ', y")" = «. Similarly, the probability that the game is absorbed during
the second and third phases is § and vy respectively.
Hence by (10) the expected payoff for player | is

au'lc Ly (= @Bl Yy (L= @)l = By Ly
L= (=)=~

Moreover, for every j =< n, his expected payoff given absorption has not occurred in the first
jstages is u'(x ', y').

Similarly, the expected payoff of player 2, given absorption has not occurred during the
first n, stages, is u”(x %, y°). By condition 2, #”(x "', y') > u’(x "%, y*), and the expected
payoft of player 2 is

auw(x Ly )+ (= au’(x 7 yH) =t yY).

Moreover, for every j = n, the expected payoff for player 2, given absorption has not
occurred in the first j stages, is at least u”(x~°, y*).

In a similar way, the expected payoff of player 3, given absorption has not occurred during
the first n, + n, + n, stages, is u’(x ", y*). Since the profile is cyclic, it follows that his
expected payoff at the beginning of the game is «’(x ", y'). By condition 2, u'(x7", y")
< u'(x *,y"), and therefore for every j < n, his expected payoff, given absorption has not
occurred during the first j stages, is at least «’(x ™, y7).

By adding the following test to o,

o if at some stage any player plays an action which is not compatible with o, then this
player is punished with an e-min-max profile forever. If some players deviate at the same
stage, then the player with the minimal index is punished; it follows by the first condition that
no player can profit more than € by playing an action which is not compatible with o.

o By the third condition it foliows that player | cannot profit by changing the probabilities
in which he perturbs to actions in supp(y"').

o In order to prevent deviations within supp(x'), the players employ a similar statistical
test as in the proof of Lemma 5.1. That is, during each phase the players check whether the
distribution of the realized actions of each player i, when restricted to supp(x), is m-close
to x'.

o Since the profile is cyclic, no player can gain more than 2eR by any deviation, and, if
7 is sufficiently small, false detection of deviation occurs before absorption with probability
smaller than e. U

6. On the discounted game. For every 8 € (0, 1) let vy(x) be the expected
B-discounted payoff for the players if they follow the stationary profile x. The function vg(x)
satisfies the recursion formula:

(14) v(x) = (1 = B)halx) + Bwx)ulx) + B(1 — wx))vlx).
Solving (14) we get

(1 — BYh(x) + Bw(x)u(x)
= B0 —w)

(15) '”{3(9() -
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Since h, w and uw are multilinear, it follows that v, is continuous and semi-algebraic.
Moreover, it is quasi-concave. Indeed, if vy(x), vg(y) = ¢ for some ¢ € R then

(1 - B)akx) + Bwx)ulx) =c(l — B+ Bw(x)) and
(1= B)rky) + Bwu(y) = (1 = B+ pw(y)).
Therefore, by (15), for any A € [0, 1],
vs(hx + (1= A)y)

_ AU = Ba(x) + Bw(xulx)) + (1 — M((1 = B)Aly) + Bwly)u(y))
A(L = B+ Bw(x)) + (1 = M1 = B+ Bw(y)

= ¢

as desired. Let

6 = LB
1o R Y ()
then
a7 vg(x) = ag(x)h(x) + (1 — apx))ulx).

Vrieze and Thuijsman (1989) already derived this formula. a4(x) is defined only for
& (0, 1), but whenever w(x) > 0 we can define it continuously for 8 = 1.

If w(x) = 0 then ayz(x) = 1 for any B, and therefore v,(x) = h(x), while if w(x) > 0
then limg.,, ag(x) = 0, which means that if x is absorbing then lim,., vg(x) = u(x).

We now derive several properties of the limit of stationary equilibria in the discounted
game as the discount factor tends to 1. As we will see later, the rate at which the probability
to play different actions tends to 0 must be taken into account. Therefore we consider Puiseux
functions of the form B — x(3), where x(8) is a stationary equilibrium in the B-discounted
game, rather than just a sequence as is done in the literature. For a quick reminder on Puiseux
functions the reader is referred to Appendix 2. In the sequel, Puiseux functions are always
denoted with a hat.

DeriniTiON 6.1, Let [ be a finite set. A vector f” ( f Yier of Pulseux functions is a Puiseux
probability distribution if f~ = O for every i E I and E,E,}‘
For every Puiseux funct10nf we define f(l) = limg_, f(@) Clearly we have:

LemMa 6.2.  Let I be a finite set andfa Puiseux probability distribution over 1. Thenf'(])
is a probability distribution over I.

DEFINITION 6.3. A vector of Puiseux functions £ = (£));enwear 1S a Puiseux stationary
profile if £ is a Puiseux function for every i € N and a' €A’ and £(0) = ()24’;,-(0)),-@,“,@\,
is a stationary profile for every 8 € (0, 1).

For the rest of the section we fix a Puiseux stationary profile £ and we study the properties
of the vector of Puiseux functions § = (2") that are defined by 2(8) = v,(£(8)); that is,
the 0-discounted payoff that the stationary profile £(6) induces.

By (17), (1) = lim,_, v,(%(H)) is a convex combination of a nonabsorbing part and an
absorbing part. Lemma 6.4 below connects the weight of each part to the rate of absorption
induced by the Puiseux stationary profile £. Lemma 6.5 below gives us a condition when the
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weight of the absorbing part is 1, and Lemma 6.6 below provides an explicit expression of
the absorbing part of the payoff.

Since the set of Puiseux functions is a field, the function 8 — «,{(£(6)) is a Puiscux
function. If w(£(1)) > 0 then limy,, a,(£(0)) = 1, and thercfore in this casc
limy_, vy(£(0)) = u(2(1)).

The following lemma, which follows from Lemma 12.2, connects the degree of the
probability of absorption to Eq. (17).

Lemma 6.4, degw(X)) = 1 if and only if limg_,, ay(£(6)) € (0, 1). deg(w(X)) < | if and
only if lim, ,; a(£(0)) = 0. deg(w(£)) > 1 if and only if lim,.,, a,(£(0)) = 1.

We can now derive the following.

LEmMMA 6.5, Assume that lim,_, al(#(0)) < 1. Leti € Nand a' € A" such that deg(w(% ',
a")) < deg(w(£)). Then lim,_, a,(27(0), a') = 0.

Proor. By the assumption and Lemma 6.4 it follows that deg(w(£ ', )
< deg(w(X)) = 1. By a second use of Lemma 6.4 the result follows. 1
For every L. ¢ N and b" € A" we define the Puiseux function £, by:

o N
Xyt = H Xpie

IeL

A Puiseux stationary profile £ is absorbing if for every 6 sufficiently close to 1, £(6) is an
absorbing stationary profile.
Define for every L C N,

/Q(*/(H) = 2 x\u ’(9>

a " hesupp(e (1))
£, "(0) is the probability that the realized action of every player i € NM\L is in supp(£'(1)),
given they play the mixed action combination £ “(9). Note that £,"(1) = | for cvery L

C N.
Denote

def
BO=1{b" € AYLCN, wlx" b¥) >0} D BH(1)).

For any 6, £(6) induces a natural probability distribution v,, over %B":

202, Dw(x (1), b

V(b f) = w((8))

Clearly

w(&(0)) = 2 vug(b ult (1), b").

})IEO/’ 0
Define the probability distribution w, as the limit of (vg,)):

pe(b") = lim vy (b").
01

By the definition of B(x), if b* € BARB(£(1)) then there exists a strict subset L of L. such
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that b" & B(£(1)). In particular, lim,_, £,.(6)/£,.(8) = 0, and therefore supp(p,)
C B(L(1)). Hence one has:

LEmMma 6.6.  If £ is absorbing but w(£(1)) = O then

lim u(£(0) = > w(bHu(x7H1), bh).

0=1 brEB(I))

7. Proof of Theorem 4.5. Define the function 2 : X — R” by
fi(x) = min{h'(x), ¢?.

Note that / is not necessarily multilinear, but it is quasi-concave and semi-algebraic. We now
define an auxiliary absorbing game G, which is played as the original game, but has a
different nonabsorbing payoff function. Whereas in the original game the nonabsorbing
payoff at each stage ¢ is h(a,), where a, is the action combination that the players play at that
stage, the nonabsorbing payoff in G is /i(x,), where x, is the mixed action combination that
the profile that the players follow indicates them to play.

Formally, the expected B-discounted payoff for the players in G, if the players follow the
profile o, is:

(18) 7o) = (1 = B)EU( S B, ) + 1,":<,u<x,w>>>

where ¢, is the stage in which absorption occurs.

Exameir 4. Consider the following two-player zero-sum absorbing game:

y L=y
x [, -t !0, 0% ’
| — x —1,1 1] 0, 0% }

The min-max value of both players in this game is 0. Any stationary profile (x, y) where
x €[5, 1] and y = 0 is an cquilibrium profile.

Note that the equilibrium profiles mentioned above are equilibrium profiles in G too, for
every discount factor.

The stationary profile (x = %, y = 1) is also an equilibrium in G, since if player 1 plays
x = 1 then his expected B-discounted payoff in G is 0. Note, however, that if player 1 plays
x = 0 then his expected B-discounted payoff in G is strictly less than 0, though x = 0 is in
the support of his B-discounted stationary equilibrium strategy. 0

The equivalent of Eq. (17) for the game G is:

|

(19) Fp(x) = ap(x)h(x) + (1 — ap(x))u(x)

where ay is given in (16). Since /1 is quasi-concave it follows as before that 7y is continuous
and quasi-concave for every fixed .

Since the absorbing payoff in the auxiliary game is as in the original game, if £ is a Puiseux
stationary profile such that £(1) is absorbing, then for every player i,
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. A N N E(("Esupp(f’(l))ﬁili(])H/(XA "i(l>s a[)u()? i(l)v ai)
(20) 3»“}? (2(0)) = u(2(1)) = WG] .

Proor or Throrem 4.5, The idea is to consider a sequence of B-discounted stationary
equilibria in the auxiliary game G that converges to a limit. The values of x, g, w and d arc
derived from this sequence, and conditions (a) and (b) are proven using various incqualitics
that B-discounted equilibria satisfy, and by taking the limit § — 1.

Step 1 PrROPERTIES OF G.  Since 9, is continuous it follows that &(B), the min-max value
of player { in G, exists. Since 7 is continuous and quasi-concave, for every B3 there cxists
a stationary B-discounted equilibrium in G. It is clear that the corresponding B-discounted
equilibrium payoff is at least &(3).

Step 2: ¢ = lim,., ¢'(B). The proof of this result is long and independent of the other
results, hence it is postponed to the next section.

Strp 3: DEFINITION OF A Puiskux sTATIONARY PROFILE £.  Consider the set
€ ={(B.x) €(0, 1) X X[Tp(x) = Th(x ', y) VIEN,y €X'}

(B, x) € € if and only if x is a B-discounted stationary equilibrium profile in G. First we
note that € is a semi-algebraic set. Indeed, the functions w, / and u are semi-algebraic. By
(19) the function # : (0, 1) X X — R" is semi-algebraic. It follows that the function f{x) :
(0, 1) X X — R" that is defined by

J'(B.x) = sup Tylx ", y)

yiEX!

is semi-algebraic. Finally, € = {(B, x)|94(x) = AB. x)} is semi-algebraic.

By Step 1 the projection of € over the first coordinate is the interval (0, 1). By
Theorem 12.4 there exists a Puiseux stationary profile £ such that (B, £(B)) € € for
every 3 € (0, 1).

STEP 4: DEFINITION OF X, g, W, d. Define x = £(1), g = limg,, 9,(L(8)), p = pu; and
d(a"y = deg(£)) for every player i and every a’' € U A"

Since 7,(£(B)) is a Puiseux function in B, the limit g is well defined. By Lemma 4.2 and
Step 2,

2n g = lim 94(£(B)) = lim &(B) = c.
B! B—1
STEP 5: ASSERTION 4.5(a) HoLps.  Fix a player i and an action ¢ € A fw(x", ah =0
then 4.5(a) follows from (21). I, on the other hand, w(x ", ¢') > 0 then fimy, ap(R B,
a') = 0. Since £'(B) is a best reply against £ '(B8), by (19) and the continuity of u at
absorbing mixed action combinations, it follows that

(22) g'=lim #,(£(B)) = lim T,(£(B), a’) = lim u'(£7(B), «) = u'(x"", a').

g1 gl Bl

Assertion 4.5(a) follows from (21), (22) and the definition of ¢'.

StrP 6: THE DISTINCTION BETWEEN THE POSSIBILITIES IN 4.5(b).  Denote ¢ = limy.., o, (£()).
Substituting £(8) instead of x in (19) and taking the limit as 8 — | yields, by the continuity
of i and (21),
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(23) ¢ =g =lim #,(2(B)) = gh(x) + (1 — ¢) lim u(£(p)).
Bl Bt

If ¢ = 1 then h(x) = A(x) = g and w(x) = 0. Thercfore 4.5(b)(i) holds.

It w(x) > 0 then ¢ = 0 and the second claim in 4.5(b)(ii) holds. In Step 7 we prove that
in this case 4.5(b)(ii) holds.

Otherwise ¢ < 1 and w{x) = 0. Therefore £ is absorbing. Since A(x) = ¢, it follows by
(23) that limg_,, u(£(B)) = g, and by Lemma 6.6, 4.5(b)(iii}(2) holds. We shall later see that
in this case 4.5(b)(iii) holds.

Step 7: Ir w(x) > 0 THEN ASSERTION 4.5(b)(ii) nolns. Leti € N and a' € supp(x') such
that w(x ', a') > 0. Then limg ., az(£7'(B), ') = 1 and, by the optimality of £'(3),

24 w'(x 7' a’) = lim (2 (B), a) = lim 9R(R(B)) = g".
B—1 81

By (20) and the definition of g there is an equality in (24), as desired.
From now on we assume that ¢ < 1 and w(x) = 0.

STEP 8: THE VANISHING ACTION CONDITION HOLDS. Let i € N be fixed. For every a' € A',
denote B(p, a) = [b" € supp(p)|i € L, b' = a'}.

By Lemmas 6.5 and 6.6, for every a’ € supp(£'(8)) such that 2 ,.cu., (b)) > 0 we
have

¢' = lim 3(¢ (B), a) = lim u'(% (B). o)

= > phu'ch b > ubh).
hEEM (. af) bLEB(.a)
Step 9: THE DEGREE CONDITION HOLDS.  If the average payoff condition holds with equality
then ¢ € (0, 1). Hence, by Lemma 6.4, deg(w(£(B))) = 1. Therefore, for every b"
€ supp(p),

D d(b) = D) deg(£},) = deg(w(2(B) = 1. O

= €L

8. Proof of Step 2 of Theorem 4.5. In this section we prove the second step in the
proof of Theorem 4.5. Throughout the section we fix a player i € N. Our goal is to show

that for every mixed action x ' there exists a reply x’ of player i such that Fg(x) = ¢’ — €
for all B = PB(e), where B(e) is independent of x . Since x ' is arbitrary, the result will
follow.

For every € > (), define
B(e) =inf{B" €10, N]|c'(B) —cl=¢ vpe B, D}

By Lemma 4.2, B(e) < 1 for every € > 0.
For every € > 0, every action a' € A’ and every stationary profile x ' € X ', let

Fxa)y={B € (Ble), Dvplx " a)=c' — e}

that is, the set of all discount factors {3, such that a' is an e-good reply of player i against x '
in the B-discounted game.
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By the definition of f(e),

(25) U ., a’ = (Ble), 1).

Ule/"
By Eq. (17), if I'.(x ', a') # & then at least one of the following inequalities holds:
(26) hix " a)y=c ' — € or
27 u'lx 7 a)Y=c' - e
Clearly if for a given pair (x ', a") both (26) and (27) hold, then I" .(x ", qi) = (B(e), 1).
HT.(x a)#+ &, wix™, a)>0andh(x ', a) <c¢c —ethenu'(x ', a) =¢ — ¢
and vice versa; if u'(x”™, a) < ¢/ — ethen h'(x™", a') > ¢’ — e.

By the continuity of vg(x), as a function of B for every fixed x, I'.(x
closed in (B(€), 1).

i

, a') is relatively

Limma 8.1, Lete > 0,x7" € X' and a' € A'. The set U .(x™', &') is either empty, or has

the form (B(€), Bil, B, 1) or (B(e), 1).

Proor.  For every fixed x € X, the function

pw(x)
L= B0 —w))

aglx) =1 —

is monotonic decreasing in 3.

Assume that B € I'.(x *, a'). Since az(x ', a') is monotonic decreasing in B, if equation
(26) holds, then every B € (B(e), B') isalsoin I'.(x ™', a'). Symmetrically, if Eq. (27) holds,
then every B € (B, 1) isalso in I'.(x ', a'). Since T'.(x 7, a') is relatively closed in (B(e),
1) the result follows. O

Since limg_,, ag(x) = O for every absorbing stationary profile x, and by the continuity of
w and u' we get:

Lemma 8.2. Lete>0,x ' € X ', and a' € A" such that w(x', a') > 0. If there exists '
€ (Be), 1) such that T{x~', a) = [B', 1) then u'();'[, ay > ¢ — € whereas if Ux ",
a'y = (Be), B'1 for some B < | then u'(x™', a') < ¢’ — e

LemMma 8.3, Let € > 0, and x ' € X', Assume there is no action a' of player i such that
'(x ', a') = (B(e), 1). Then there exists y' € X' such that h'(x™, y') = ¢’ — € and u'(x ",
vyz= — e

Proor. Letx ' & X ' satisfy the assumption. Since A’ is finite, by (25) and Lemma 8.1
there exist actions a’ and &' of player i such that I'.(x ™, a) = (B(e), B.], I'i(x *,
by = [Ba, 1) and B, = B,.

Indeed, let @' be an action that maximizes 8, among all actions ¢’ € A’ such that ['.(x ,
a'y = (B(e), B.], and let b’ be an action that minimizes 3, among all actions a’ € A’ such
that T .(x ", @) = [B,, 1). It follows from Lemma 8.1 and (25) that 8, = B, as desired.

Note that w(x ', a’) > 0, otherwise A'(x™', a') = ¢’ — €, which implies that I .(x ",
a’)y = (B(e), 1). Similarly, w(x™, ) > 0.

By Lemma 82, u'(x™', b') > ¢ — € and u'(x™', a') < ¢' — € By (17) and the
assumption it follows that A'(x ™', b") < ¢’ — e and A'(x", a") > ¢' — e
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Let ¢ € (0, 1) solve the cquation

gh'(x 7, a)y + (1 —g)h'(x ', b))y =c' — €.

Let y' be the mixed action of player i where he plays the action a’ with probability ¢ and
b'" with probability 1 — g.

Clearly
(28) Ay =ghilc™ a)Y+ (1 —g)h'(x ", b)Y =c' — €
and
(29) wx L y) =gwx L a)+ (1 - gw(x ", b)) > 0.
Since both vy(x ', a') = ¢’ — € and vy(x ', b) = ¢' — € we get by the quasi-concavity

of v}y that vy(x ™", v') = ¢' — €. By (17), (28) and (29) we get that u'(x ', y) = ¢’ — ¢,
as desired. O

PrOOF OF STEP 2 OF THEOREM 4.5. Tt is clear that ¢'(B8) = ¢'(B) for every B € (0, 1), hence
lim supy_, €'(B) = lim,, ¢'(B) = ¢

For the opposite inequality, let x™* € X and let € > 0. First we show that there exists
a mixed action y' € X' of player i such that

(30) dyx Ly =ci—e  VBE(Be) 1)

Case 1. There is no action ' € A" of player i such that ' (x ', a’) = (B(e), 1).
By Lemma 8.3 there exists y' € X' such that £'(x 7, y) = ¢' — eand u'(x ", y) = ¢
— €. In particular by (19), #ig(x "', y) = ¢' — € for every B € (B(e), 1).

Case 2. There exists ' € A’ such that I' .(x ', a") = (B(e), 1).
By the definition of I',, vy(x ', a’) = ¢’ — € for every B € (B(€), 1). Therefore, by (17),
for every B € (B(e), 1),

cl—e=vhx a) = aglx @) (x 7 al) + (1 = agla T a))u'(x “ah.

Ifw(x™, a') = 0 then ap(x ', a') = 1 for every B € (B(e), 1), and therefore h'(x™", ah
= ¢ — e In particular 75(x ", a') = A'(x7, a') = ¢' — e
If, on the other hand, w(x ', a) > 0 then lim,_, ay(x ™', ') = 0 and therefore u'(x
a') = ¢’ — €. It follows by (19) and the definition of 7 that 75(x ', a’) = ¢’ — €, as desired.
Since for every x ' € X' there exists y' € X' such that (30) holds, it follows that lim
infy ., ¢'(B) = ¢' — e. Since € is arbitrary, the result follows. ©

9. More than three players. Unfortunately, our approach cannot be generalized for
more than three players. In our proof we construct for every € > 0 and every sequence of
discounted equilibria in the auxiliary game G that converges to a mixed action x, an
e-cquilibrium profile, where the players play mainly x and perturb to other actions with a
small probability. Such a construction does not need to be possible for games with more than
three players, as can be seen by the following four-player game:
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4
2 2

0,0,0,0 4,1, 0, 0% 0,0,4,1*%]0,1,0, 1%

1
1,4,0,0% 1,1,0, 0% 1,0,0, 1% 1,1,0, 1*

3

0,0,1,4*% 0,1,1,0* 0,0, 1, 1* [0, 1,1,1*

1
1,0, 1,0 1,1,1,0%* 1,0, 1, 1% 1,1, 1, 1%

In this game player | chooses a row, player 2 chooses a column, player 3 chooses cither the
top two matrices or the bottom two matrices, and player 4 chooscs either the left two matrices
or the right two maitrices.

Note that the auxiliary game is essentially the same as the original game, and that there are
the following symmetries in the payoff function: for every 4-tuple of actions (a, b, ¢, d) we
have:

o' (a, b, ¢, d) = v¥b, a,d, c),
v a, b, c,d)=v*b,a, d ¢) and
v a, b, c, d) = v*(c, d, a, b).

For every A € [0, 1], let T)(A) be the set of all the best replies of player i in the
B-discounted game if the other three players play the stationary strategy (A, | — A). By the
symmeiries of the game it follows that T(A) = T%(A) for each pair of players i and /.

Every fixed-point A of the correspondence 7 is a stationary equilibrium for the
B-discounted game, where all the players play the same mixed action (A, | — A) at every
stage.

Note that for every 8 € (0, 1), A = 0 is a fixed point of T}, and A = 1 is not a fixed point.
We shall sec that there is a fixed point A(B) € (0, 1) such that lim, ., A(B) = |.

Fix B € (0, 1), and assume that players 2, 3 and 4 play (A, 1 — A), where A & (0, 1). If
player | plays the bottom row then his expected payoff is [, while if he plays the top row then
his expected payoff is g' = 4X*(1 — A) + BA’g'. Player 1 is indifferent between his two
actions if g' = 1, hence

def

(31 FoA) = (4 = B)A* —4X>+ 1 =0.

We claim that (31) has a solution A(g) € (0, 1) such that limg_,, A(5) = 1. Indeed, /(1) > 0
for every 8 € (0, 1), and fB(BE) << 0 for B sufficiently close to I. The claim follows since
S is continuous and limg ,, B* = 1.

However, the conditions of Lemmas 5.1, 5.2, 5.3 and 5.5 are not satisfied for the
nonabsorbing cell. It is clear that the condition of Lemma 5.1 is not satisfied for the
nonabsorbing cell, and Lemma 5.2 is irrelevant for this cell.

It is casily checked that the only convex combinations z of the four vectors a, = (1, 4,
0,0),a, =4, 1,0,0,a,=(0,0,1,4) and a, = (0, 0, 4, 1) such that z' = | if ¢,
has a positive weight in the combination, are the four combinations that include only a single
vector ;. Thercfore the conditions of Lemma 5.3 are not satisfied for the nonabsorbing cell.
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We shall now see that the conditions of Lemma 5.5 w.r.t. the nonabsorbing cell do not
hold. Note that essentially there can be a cyclic e-equilibrium profile where a subset of the
players perturb in each phase (rather than a single player). However, the argument that ruled
out the possibility of existence of an equilibrium payoff of the third type implies also that
only a single player can perturb in each phase of a cyclic equilibrium profile.

Assume to the contrary that g = (g', ¢°, g, ¢") = (1, 1, 1, 1) is a cyclic equilibrium
payoff, that player [ is the first player to perturb, y > 0 is the overall probability in which
player 1 perturbs in the first phase, and f = (f', £, £, f*) is the expected payoff for the
players given player 1 did not perturb in the first phase.

Clearly g = y(1,4,0,0) + (1 — y)f; hence f*, f* > 1, ' = 1 and y < 1. Therefore
the only player that can perturb after player 1 has finished his perturbations is player 2. Let
y = (y', %, v, ¥") be the expected payoff for the players after player 2 has finished his
phase of perturbations. Note that if this phase is endless then g* = ¢ = 0-—a contradiction.
Since f' = 1 it follows that y' < 1, a contradiction to the individual rationality of the
strategy.

It is a little more technical to show that there is no general e-equilibrium profile where the
players play mainly the nonabsorbing cell at every stage. For more details see Solan and
Vieille (1998b).

10. Proof of Theorem 4.7. In this section we prove Theorem 4.7. For the rest of the
section we fix x € X and ¢ € R” for which there exist & € A(%B(x)) and d : UA" — [0,
=) such that 4.5(b)(iii) holds for (x, g, u, d).

Assume that 4.7(b) does not hold. Our objective is to construct, using i, a new probability
distribution v that satisfies 4.7(a). The construction depends on the number of players that
have single absorbing neighbors in the support of p. Denote by r the number of those players.

It is clear that if » = 0 then one can take v = u. It turns out that if » = 2 or r = 3 then
it is sufficient to change the relative weights of the single absorbing neighbors to construct
v. The difficult case is when r = 1. In that case one needs to change the relative weights of
all absorbing neighbors in supp(u) to construct v. The weights of the different absorbing
neighbors is determined by the function 4. This is the only place where the function d plays
any role.

The proof is arranged as follows. After some preliminaries we provide two lemmas that
show how modifying the relative weights of single absorbing neighbors can turn an
inequality in the average payoff condition into an equality. We then use these two lemimas
to solve the cases r = 2 and r = 3. Finally we solve the case r = 1.

By adding a constant to the payoff functions we assume w.l.0.g. that g = (0, 0, 0). For
every vector 0 < A € R?, the normalization of A, denoted by A, is defined by:

Let z € R, The signed form of z is the vector of the signs of the values of (7', z°, z°).
If z' = O then the ith coordinate of the sign vector is 0.

Let MD = {(w, D|p € B(x), d : U .A" — [0, ) and 4.5(b)(iii) holds for (x, g, u,
d)}. We denote by Jt the projection of M over the first coordinate. By the assumption, M2
# (2. From now on we fix a pair (i, d) € MDD such that u has a minimal support among
the elements in J.

Let R = {i € N|®,(x) N supp(p) # D}. R is the set of players that have single
absorbing neighbors in supp(u). We denote » = |R|.

If » = 0 or the average payoff condition holds with equality, then 4.7(a) holds with v = u.
From now on we assume that 2, d(b") = 1 for every b* € supp(w). In particular, d(a') = 1
for every player i € N and every single absorbing neighbor @' € %B,(x) M supp(w).
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For every i € R we define y' € X' as follows:

0 dla’) # 1,

R G d(a’) =
E/)’E%,(x) M(b')

y" is the mixed action induced by p over B,(x), the set of single absorbing neighbors of
player i. Note that w(x ', a') > 0 for every a' € supp(y"), and by the vanishing action
condition it follows that u'(x ', a’) = g'.

For every function p : B(x) — [0, =) and player j € N we define

(p, wiy = 2 pBMul(x7", bh).

blEW(x)

If | € R and the signed form of u(x~', y') is (0, +, +) then y', viewed as a probability
distribution over 9B (x), satisfies 4.7(a). By the minimality of p, it follows that u(x ', y")
does not have the signed form (0, —, —). Both observations remain true if some of the “+”
signs (resp. “—” signs) in the first case (resp. second case) are replaced by “0.” Hence we
assume that if I € R then u(x ', y') has the signed form (0, +, —) or (0, —, +). Symmetric
assumptions are made for players 2 and 3.

The basic idea of the proof is to gradually increase or decrease the weights of the single
absorbing neighbors of the players, until there is an equality in the average payoff condition
for one more player.

(i) Suppose that the signed form of u(x ™, y°) is (—, 0, +). By gradually increasing the
weights of the single absorbing neighbors of player 2, we keep the average payoff of players
2 and 3 positive and we decrease the average payotf of player 1. By increasing the relative
weights properly, the average payoff of player 1 becomes 0.

On the other hand, if we gradually decrease the weights of the single absorbing neighbors
of player 2, we increase the average payoff of players | and 2, but decrease the average
payoff of player 3. By decreasing the relative weights properly, the average payoff of player
3 becomes 0 (the other possibility is that the weight of the absorbing neighbors of player 2
becomes zero, while the average payoff of player 3 is positive. But this is impossible since
@ has a minimal support).

(i) Supposc now that in addition the signed form of u(x ', y') is (0, +, =) and {(u, u”)
= 0. We can increase the relative weights of the absorbing neighbors of players | and 2 such
that the average payoff of player 3 will not be affected (since u’(x 7, y*) > 0 > u'(x "',
y")). However, the average payoff of player 2 will remain positive, and that of player 1 will
decrcase.

(iii) If in addition the signed form of u(x°, y*) is, for example, (—, +, 0) then by
properly increasing the relative weights of the single absorbing neighbors of players | and 2,
while decreasing the relative weights of the absorbing neighbors of player 3, the average
payotfs of players 2 and 3 remain unchanged. One then has only to check what happens with
the average payoff of player 1.

We will now formalize these ideas.

2

3

Lemma 10.1. If 2 € R and u(x™°, ¥°) has the signed form (—, 0, +) then there exists
v € M such that supp(p) = supp(v) and {v, u’y = 0. Furthermore, if {, u*) = O then (v,
w?) = 0.

Proor. For every r € |0, 1] define:

Jo [ ) bt E B,
vib") = (b otherwise;
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i.e., as r decreases we decrease the weight of the single absorbing neighbors of player 2.
Clearly v, = u, for every ¢t € [0, 1] the vanishing action condition and the degree condition
hold w.r.t. »,, and the average payoff condition holds w.r.t. v, for i = 1, 2. For every t such
that (v, u’) = O the average payoff condition holds w.r.t. ¥, for i = 3 as well. Since p has
a minimal support, there is 7, € (0, 1] such that (¥, , u’) = 0. If (i1, u”) = 0 then (v,, u®)
= 0 for every t; hence v, is the desired vector. O

Lemma 10.2. If2 € R and u(x>, y°*) has the signed form (+, 0, —) then there exists a
vector v € M such that supp(w) = supp(v) and (v, u*y = 0. Furthermore, if (i, u”) = O then
(v, u*) = 0.

Proor. For every t € [I, o) define:

o[ () bt e By(x),
v,(b )“{ w(b"Y)  otherwise;

i.c., as t increases we increase the weight of the single absorbing neighbors of player 2.
Clearly v, = u, for every t € [1, ) the vanishing action condition and the degree condition
hold w.r.t. ,, and the average payoff condition holds w.r.t. ¥, for i = I, 2. For every ¢ such
that (7,, 1) = 0 condition 4.5(b)(iii)(2) holds w.r.t. », for i = 3 too. Since u(x"?, y*) has
the signed form (+, 0, —), for 1 sufficiently large {v,, u’y < 0. Therefore, there is 1, € [1,
) such that (v,, u’y = 0. If {u, u’y = O then (v, u’) = 0 for every £; hence v, is the
desired vector. O

Lemma 103, If r = 2 then there exists v € M such that 4.7(a) holds.

Proor. Assume w.lo.g. that R = {2, 3}. By ecither Lemma 10.1 or Lemma 10.2,
according to the signed form of u(x ™, y*), we can assume that {u, #°) = 0. By a second
use of either Lemma 10.1 or Lemma 10.2, according to the signed form of u(x™?, yz), we

can assume w.l.o.g. that {u, u') = 0 for i = 2, 3, as desired. 0]

Lemma 104, If r = 3 and (u(x"', ¥"), u(x 7, y*), u(x™*, y) are not positive cyclic
vectors, then there exists v € M such that 4.7(a) holds.

1

Proor. Up to symmetries we can assume that u(x ™, y') has the signed form (0, +, —)
and u(x %, y*) has the signed form (—, 0, +).
Using Lemma 10.1 twice, once with u(x™', y') and then with u(x*, y*), we can assume

that (w, ' = 0 fori = 2, 3. If {(w, u'y = 0 we are done. Hence assume {p, u') > 0.

2

Case 1. u(x"’, v*) has the signed form (+, —, 0).
Let &, B > 0 solve the equations

~u(x 7l y) = an (xR y?),
(32)
wix ' y') = =But(x 7 yY),
Since (u(x~", v"), u(x 72, v5), u(x™’, y*)) are not positive cyclic vectors it follows that
W YD yHu (7 v = —ud (! v (77 yHut (7%, vY). Therefore
(33) Bu'(x 3, y) = —au'(x"? 7).

If there is an equality in (33) then p satisfies 4.7(a). Hence assume that there is strict
inequality.
For every t = 0 define
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p(b"y + 1t b € By(x) N supp(p),
o) (b +ra bEE Bo(x) N supp(p),
v(b") = w(b?y + 18 b" € B(x) N supp(w),

(b

y otherwise.

It is clear that v, = w, by (32) for every ¢ we have that (v,, u’y = 0 fori = 2, 3, and since
there is strict incquality in (33) it follows that there exists £, > 0 such that (v, , u'y = 0as
well. Hence v, is the desired probability distribution.

Case 2. u(x ", y*) has the signed form (—, +, 0).

Let «, B > 0 solve the equations

Wiy = a7y,
(34)
uz(x——l7 yl> — BMQ(X—J’ V})

For every ¢+ € R define

wd" +1 b"E By(x) N supp(p),

. w(b®) +ta b€ B,(x) N supp(p),

BT ) < B b Ba(x) O supp(p),
w(b") otherwise.

Clearly v, = w, and for every 1 we have by (34) and since u'(x™', y') = 0,
(v u®y =, u®y + t(u’(x 7 vy + aux 7, D)) =0,
(v, u®y = (u, u?y +r(u(x ',y = Bu’(x 7, yh)) =0,
(v, uy={p, u"y + tlau'(x"2 y?) = Bu'(x 7, y)).

Since p has minimal support it follows that there exists £, € R such that v, (b") > 0 for
every b* € supp(u) and (v, u') = 0. Hence ¥, is the desired probability distribution. 13
Recall that R(p, a') = {b" € B(x) N supp(p)|i € L, b' = a'} forevery a’ € A'. Let

<P, u"[a") _ E p(b")uj(x 1/, bl)

bLERB(p,a’)

(a sum over an empty set of indices is by convention 0). Note that for every i € N, {(p, u’)
= S0 dp, wla’y.

Lemma 10.5. If r = 1 then assertion 4.7(a) holds.

Proor. Assume that R = {1}. If (i, u') = O then w itself satisfies 4.7(a). Thus we
assume that {u, u'y > 0. Clearly if there exists v € A(%B(x)) such that supp(v) C supp(u),
supp(r) N B (x) = F and (v, u’) = 0 forj = 2, 3, then the assertion holds. Indeed, if such
v exists then by the minimality of w it follows that (v, u') < 0, and therefore there exists
a convex combination of w and v that satisfies 4.7(a).

By the vanishing action condition

(35) (, u’la®) =0 V a’¢ supp(x?).
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By the above discussion it follows that for every a’ ¢ Supp(xz) with B(p, a’) #+ &,

(36) (, u?a?y <0,
Similarly,
37 (w, u¥la®y =0 V a’ ¢ supp(x?)

and if B, a’) # @ we have
(38) (o u?la®y < 0.
Define for every b" € B(x),

iy — d(b Y™ b€ B(x) and 1 € L,
v(b7) = otherwise.

Since supp(p) N B (x) # D it follows that 2 ,.cpy ¥(b") > 0. By the average payoff
condition and the degree condition

0 < E M(b1‘>l/li(xil‘, bl,)

bleB(x)
= 2 wbhu Y > d(b)
bleRB(x) JjEL

(39)

(v, uly + 2 daHp, u'la®y + 2 dla™Hp, w'la’)

alEAl adeA?

=(vu)+ X d@poula’y+ X da)w, ulad)

a?¢supp(x?) a3 supp(x )

where the last equality holds since d(a') = 0 whenever a’ € supp(x’). By (35), (36), (37),
(38) and (39) it follows that {v, u'y = 0 for i = 2, 3, and therefore {p, u'y = 0 fori = 2,
3 as well.

Morcover,

(vu'y =2 dlap, u'la’)

alEAL

By the vanishing action condition {u, u'|a') = 0 whenever d(a') > 0. Therefore (v, u")
= (, and v is the desired probability distribution. 0

11. Appendix 1. In this Appendix we show how to choose the various constants
that are used in the e-equilibrium profiles that we constructed in the proofs of Lemmas
5.3 and 5.5.

11.1. The constants of Lemma 5.3. Woec shall need the following lemma:

Lemma 1.1, Let p = 1/n for some n © N, (X)),en be i.i.d. Bernoulli random variables
with P (X, = |) = pand 1 > 0. There exists t, & N, independent of p, such that
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(40) P('W‘;]Xj-1}< Vr>2>>lwn
ip 7 p ‘

Proor.  Let (X,);-, be a sequence of i.i.d. Bernoulli random variables with P (X, = 1)
= p. The random variable ¥ = X%, X, has mean 1 and variance | — p < 1. Let (Y,);.,
be a sequence of 1.i.d. random variables with the same distribution as Y. By Kolmogorov’s
inequality, there exists #, > 0, independent of p, such that

SEL Y,
P( ”k‘ ~1|<nd>z1>21—n,
and therefore
2 X,
P T 1<y Vik>|=1-m.

Assume ¢, is big enough such that n > 1/¢,. Let t > t,/p and k € N satisfy
kip <t<(k+ 1)/p.
If |2, X, — j| < jm for every j > 1, then
! (k+ 1)
DX,= > X, < (k+ D +m) <tp(l + n)?
i=1 i=1
and
f kip
2 X=X > k(1= m) > ap(l - )t
i=1

i=1

Therefore

t
S X,
p

o

Let € > 0 be fixed and 1 € (0, €/(|N| + |B(x)|)). Assume 7 is sufficiently small such that
for every y € X that satisfies |[x — y|| < 1 we have

¢
~l.<3n Vt>;l>21—n>l~3n. O

(41 wly ", b1 > wlx " b1Y/2 Y bt e B(x),
and
42) flulx = 6% — u(y =%, b7 < e/|B(x)] Vo'e B(x).

Let 1, € N be sufficiently large such that for every i € N,

(43) Pr(IX!— x| <m Vi>1)>1— €|B(x)

s
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where X! = (1/t) )., X! and {X} are i.i.d. r.v. with distribution x'.
Let p, be sufficiently small such that

(44) (L=p)" "= (1 =p)r " >1 e

for every p & (0, py). Let 1, € N be sufficiently large to satisfy both Lemma 11.1 and the
following condition:

1

(+3) (,1)*

Let & = 1/(t,T)'. We assume 1, is sufficiently large such that

€
nt — —
(46) (1—-8">1 N~ 30|

We shall now verify that the profile o defined in the proof of Lemma 5.3 is a
3eR-equilibrium. In view of the conditions, it is sufficient to prove that the following claims
hold:

(1) If the players follow o, then the probability that some player fails the statistical test is
smaller than 2e.

(2) If no deviation is detected, and players N\{i} follow o, then the probability that the
game is absorbed through some absorbing neighbor 5" € supp(p) with [L| = 2 in the first
1,7 stages if i ¢ L, or 1,7 stages if i € L, is at most €.

(3) By a nondetectable deviation, a player can profit at most 3€R.

(4) By a detectable deviation no player can profit more than 3eR.

Indeed. Claim (1) holds by (46) and Lemma 11.1. Claim (2) holds by (46) for i ¢ L. To
see that Claim (2) holds 1“01 i € L as well, note that regardless of the actions of player i at
stages j such that f(j) = b", the probability of nonabsorption through b" in the first £,T stages
is, by (44), (45) and the dehnmon of &, at most

([ _ 8(‘14’71)/1”)”T > (l _ 6 ]/2) £ — (l - 8 1/2)8' 14 > 1 - €,
as desired. Claim (3) holds by Claim (2) (42) and the second condition. Finally, Claim (4)
holds by the first condition.

Thus o is a 3eR-cquilibrium profile for g.

11.2. The constants of Lemma 5.5. Denote y = (y').,. Let 7 be sufficiently small

such that for every x’, y' € X with [x — x| < mand]ly — y'|| <m, we have w(x' ™,
¥ > w(x™, ¥y)/2 and

(47) ey ) = ulx ™yl < e

Let k € N be sufficiently large such that

48) (1 —a/2)5, (1 = p/2)5 (1 — y2) <e
Let 7, be sufficiently large such that

(49) Pr(|X{— x| <m Yt>1)>1- €3k,
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where X! = (1/t) 2., X} and {X|} are i.i.d. r.v. with distribution x". Let § > 0 be sufficiently
small such that

(50) (1=8)">1-e

In order to prove that ¢ is a 3eR-equilibrium profile for g, it is sufficient to prove the
following claims:

(1) If the players follow o then the probability that some player fails the statistical test is
smaller than 2e.

(2) By a nondetectable deviation, no player can profit more than 3€R.

(3) By a detectable deviation, no player can profit more than 3€R.

Indeed, Claim (1) holds by (48) and (49), Claim (2) holds by (50), (47) and the third
condition, and Claim (3) holds by the first condition.

12. Appendix 2: Puiseux functions and semi-algebraic sets. Denote by ¥ the
collection of all Puiseux series, that is, the collection of all the formal sums 2,5 a,(|
- "™ where K € Z, M € N, (a,);« are real numbers and there exists 8, € (0, 1) such
that X7 ¢ a,(1 — 0" converges for every 6 € (6, 1).

We use 6 both as an abstract symbol and as a real number. This dual use should not confuse
the reader.

It is well known (see, e.g., Walker 1950 or Bewley and Kohlberg 1976) that % is an
ordered field, when addition and multiplication are defined in a similar way to the same
operations on power series, and 2« a, (1 — )" > 0 if and only if ;. a,(1 — 6)“"
> 0 for every 6 sufficiently close to I.

We define the degree of any nonzero Puiseux series by:

- der min{k|a, > 0}
deg a(l =) = ——
é( A% i ) ) M

and deg(0) = oo.

Drrinimion 12,1, A function f 10, 1) — Riis a Puiseux function if there exists a Puiseux
serics i a (1 — 6)” and 6, € (0, 1) such that f(6) = 27 « a, (1 — 6)*™ for every 6
€ (6, ).

The degree of a Puiseux function is the degree of the corresponding Puiseux series, and the
order on F 1nduces an order on Puiseux functions.

Note that f(6) = o((1 — 0)" D=y for every ¢ > 0. If deg(/) = 0 then fim,_, /(0) is

def
finite. In this case define f(l) = lim,_, f(B) Note also that

s deg(f8) = deg(f) + deg(g).

Clearly we have:

LEmma 12.2. Let/ g be two Puiseux funczrom such that § + 0. lim,._, f(())/g(@) & (0,
) if and only if dcg(/) = deg($), and lim,_, f(())/g(@) = 0 if and only if dcg(j) > deg(g).

Deanition 12,3, Letd = 1. A subset of R is semi-algebraic if it is a finite union of sets
of the form

{X € Rdlpl(x) = 07 Pz(x) > 07 LR pm(-x) > 0}
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for polynomial functions p,, po, ..., Po.
By Theorem 8.14 in Forster (1981) and Theorem 2.2.1 in Benedetti and Risler (1990) we
have:

Tueorem 12.4. Let C C R be a semi-algebraic set, whose projection over its Sfirst
coorAdinate includes the interval (0, . Then there exist a vector of Puiseux functions f
= ()5 1 (0, 1) = R such that (8, f(8)) € C for every 0 € (0, 1).
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