
Final Exam

Quesion 1 (warming-up) (25 points)
Provide short (but comprehensive) answers to a series of brief questions:

1. Describe the problems of choosing “too small” and “too large” bandwidth in kernel estimation
and local regression in terms of bias and variance of the resulting estimator. Is the residual
sum of squares a good criterion for choosing a bandwidth? What will be the results of such
a choice?

2. Which of the following (univariate) nonparametric regression estimators are linear and which
are not: kernel estimator, local regression, smoothing spline, truncated generalized Fourier
series, thresholded generalized Fourier series?

3. Which of the classification methods (LDA, QDA, logistic regression, k-NN, classification trees,
neural networks, SVM) face conceptual problems whith categorical explanatory variables?
Explain (briefly) why.

4. If the true boundaries between classes are linear, do you expect LDA or QDA to perform
better on the training set? What about the test set? What happens if the true boundaries
are nonlinear?

5. In using CART can one always grow a sufficiently large tree to achieve zero impurity measure
at each terminal node?

6. Consider a binary classification with a single explanatory continuous variable x. What will be
the form of the decision boundary for the LDA and logistic regression in this case? Will these
conclusions necessarily remain true for CART and for the k-NN (say, 1-NN for simplicity)?
(if yes - explain, if no - give (draw?) a counterexample)

7. Find the architecture of the neural network that mimics the multinomial logistic regression.

8. Find the VC-dimension of the family of spherical classifiers in R2, that is {η(x) : η(x) =
I{x ∈ Sa,r},a ∈ R2, r > 0}, where Sa,r = {x ∈ R2 : ||x− a||2 ≤ r}.

9. Show that the quadratic loss φ(u) = (1− u)2 is calibrated.

Quesion 2 (15 points)
Consider a general nonparametric regression model:

yi = g(xi) + ϵi, i = 1, ..., n, Eϵ = 0, V ar(ϵ) = σ2In

Consider a general linear estimator (smoother) ĝ = Sy with a matrix S ∈ Rn×n. If yi = c for all
i = 1, . . . , n, a reasonable linear estimator should evidently estimate gi’s by the same constant c,
i.e. ĝ = c1 in this case.

1. Show that for an estimator with such a property the sum of elements for each row of S is one.

2. Show that Cov(Y, ĝ) = E
(
(Y − EY)T (ĝ − Eĝ)

)
= σ2tr(S).
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3. For a general linear estimator ĝ it is not always obvious what is meant by the corresponding
“leave-one-out” estimator ĝ(−i). To keep the above property from 2.1 for ĝ(−i), define it as

ĝ(−i)(xi) =

∑
j ̸=i Sijyj∑
j ̸=i Sij

Show that is this case the cross-validation

CV =
1

n

n∑
i=1

(yi − ĝ(−i)(xi))
2 =

1

n

n∑
i=1

(
yi − ĝ(xi)

1− Sii

)2

Question 3 (35 points)
Consider the standard (univariate) nonparametric regression model

yi = g(xi) + ϵi, i = 1, ..., n,

where ϵi
i.i.d.∼ N(0, σ2) and σ2 is assumed to be known.

Let’s focus on the generalized Fourier series approach. Following this methodology, we expand
g in a certain orthonormal basis {ψj(x)} as

∑∞
j=1 βjψj(x), approximate g by truncated gn(x) =∑n

j=1 βjψj(x) and estimate the resulting vector of generalized Fourier coefficients βββ ∈ Rn from the

empirical generalized Fourier coefficients β̃ββ ∈ Rn obtained by discrete generalized Fourier transform
of the data vector Y. Suppose for simplicity that the corresponding discrete generalized Fourier
transform is also orthonormal (like DFT or DWT for equidistant design).

1. What is the joint distribution of the vector β̃ββ?

2. Consider the following testimation procedure: first, test (simultaneously) all β̃j , j = 1, . . . , n
for significance by Bonferroni multiple testing at level α and then estimate βj by β̃j if it
was found significant and zero it otherwise. Show that it results in hard thresholding with
a universal (not depending on the data) threshold. Show that for large n, it is similar to
the universal thresholding of Donoho and Johnstone. Hint: you can use the approximation
z1−q ∼

√
2 ln(1/q) for small q.

3. As we have discussed in the class, to get consistent estimators of the unknown βββ one usually
performs linear shrinkage or thresholding of the empirical coefficients β̃j ’s.

(a) Consider first linear shrinkage estimators β̂j = wj β̃j with given weights wj .

i. Find the average mean squared error AMSE(β̂ββ,βββ) = 1
nE||β̂ββ − βββ||22 of the above

linear estimator.

ii. Suppose that an oracle revealed you the real values of βj ’s while you were dreaming
at night but forbid you to tell anyone about it. What weights wj will you choose in
the morning to minimize AMSE? What will be the corresponding (ideal) AMSE?

(b) Consider now thresholding.

i. Still being excited by the information revealed by the oracle, you want to use it for
choosing an optimal threshold λ: you threshold β̃j if the corresponding true |βj | < λ
and keep β̃j as it is otherwise (hard thresholding) - recall that from the oracle you
do know the true βj ’s! What will be your choice for the optimal threshold λ and
the resulting (ideal) AMSE?
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ii. Unfortunately, at the end, it was just a dream, there was no oracle... So now you
face the real thresholding problem when you do not know true βj ’s and threshold

the observed β̃j ’s by hard thresholding: β̂j = β̃jI{|β̃j | > λ}. For a given threshold

λ derive the MSE(β̂j , βj) = E(β̂j − βj)
2 for a single coefficient. Try to get the

expression as simple as possible but do not be desperate if it is still not so “nice” you
are used to in the linear world and involves, for example, the cumulative distribution
function Φ(·) and the density function ϕ(·) of the standard normal distribution (o-
ps... I am afraid I have said too much so I would better stop here... (-:)).

Question 4 (25 points)
Suppose we have data (Xi, Yi), i = 1, . . . , n, whereXi’s are d-dimensional vectors from two groups
(Yi = 1 or Yi = 2). For the first group E(X|Y = 1) = µµµ1 and V ar(X|Y = 1) = Σ, while for the
second one E(X|Y = 2) = µµµ2 and V ar(X|Y = 2) = Σ (the covariance matrix is the same for both
groups). We wish to find a linear combination U = aTX of the components of X (or, geometrically,
the direction for the one-dimensional projection of the data) that maximizes the separation between
the two groups in the sense that

(E(U |Y = 1)− E(U |Y = 2))2

V ar(U |Y )
→ max

a∈Rd

(or, equivalently, maximizes the ratio of the between-class variance to the within-class variance).
In fact, this is the original criterion for discrimination between two groups proposed by Fisher.

1. What are E(U |Y = 1), E(U |Y = 2), V ar(U |Y = 1) and V ar(U |Y = 2)?

2. Show that the optimal vector a∗ is the eigenvector of the matrix Σ−1(µµµ1−µµµ2)(µµµ1−µµµ2)T and
a∗ = cΣ−1(µµµ1 −µµµ2) for any constant c ̸= 0.

3. Define the midpoint m0 = 1
2(a

T
∗µµµ1 + aT∗µµµ2) and naturally classify a new observation vector

x0 to the first group iff aT∗ x0 > m0. What is the resulting classifying rule (in terms of µµµ1, µµµ2
and Σ)? Is it a linear classifier?

4. Is it related to the LDA classifier?

� The deadline is Friday, 28 February, 12:00 noon. Since it is Friday, send me your (clearly
written) exam by email but if you can also put its (identical!) hard copy in my box on
Sunday-Monday, I would be grateful.

� If something is not clear or you have questions, you can email felix@tauex.tau.ac.il.

Good Luck!
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