Vapnik-Chervonenkis (VC) dimension
Definition. Let \({\cal
C}\) be a set of classifiers. \(VC({\cal C})\) is the maximal number
of points in \({\cal X}\) that can be
arbitrarily classified by classifiers in \({\cal C}\).
Example: VC of linear classifiers.
\({\cal C}=\{\eta({\bf
x})=I\{\beta^T {\bf x} \geq 0\},\;\beta \in
\mathbb{R}^d\}\)
– \({\cal X}=\mathbb{R}^2, \;{\cal
C}=\{\eta({\bf x})=I\{\beta_0+\beta_1 x_1 + \beta_2 x_2 \geq
0\}\;\;\;\;\;\) \(VC({\cal C})=3~ (=d)\)
– \({\cal X}=\mathbb{R}^{d-1},\; \beta \in
\mathbb{R}^d\; \;(x_0=1)\;\;\;\;\;\) \(VC({\cal C})=d\)
Example: VC of sine classifiers:
\({\cal X}=\mathbb{R}\),
\({\cal C}=\{\eta(x)=I\{x \geq
\sin(\theta x),\; \theta>0 \}\)
Can classify any finite subset of points, \(VC({\cal C})=\infty\)

Surrogate convex losses
