
0018-9448 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIT.2018.2884963, IEEE
Transactions on Information Theory

1

High-dimensional classification by sparse logistic

regression
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Abstract—We consider high-dimensional binary classification
by sparse logistic regression. We propose a model/feature se-
lection procedure based on penalized maximum likelihood with
a complexity penalty on the model size and derive the non-
asymptotic bounds for its misclassification excess risk. To assess
its tightness we establish the corresponding minimax lower
bounds. The bounds can be reduced under the additional low-
noise condition. The proposed complexity penalty is remarkably
related to the VC-dimension of a set of sparse linear classifiers.
Implementation of any complexity penalty-based criterion, how-
ever, requires a combinatorial search over all possible models.
To find a model selection procedure computationally feasible for
high-dimensional data, we extend the Slope estimator for logistic
regression and show that under an additional weighted restricted
eigenvalue condition it is rate-optimal in the minimax sense.

Index Terms—Complexity penalty; feature selection; high-
dimensionality; misclassification excess risk; sparsity; VC-
dimension.

I. INTRODUCTION

Classification is one of the most important setups in sta-

tistical learning and has been studied in various contexts.

Theoretical foundations of classification are presented in the

books [13] and [24], while the surveys of the state-of-the-art

can be found in [11] and [15] (Section 9).

Consider a general (binary) classification with a (high-

dimensional) vector of features x ∈ Rd and the outcome class

label Y |x ∼ Bin(1, p(x)). The accuracy of a classifier η is

defined by a misclassification error R(η) = P (Y 6= η(x)). It

is well-known that R(η) is minimized by the Bayes classifier

η∗(x) = I{p(x) ≥ 1/2}. However, the probability function

p(x) is unknown and the resulting classifier η̂(x) should be

designed from the data D: a random sample of n independent

observations (x1, Y1), . . . , (xn, Yn). The design points xi may
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be considered as fixed or random. The corresponding (condi-

tional) misclassification error of η̂ is R(η̂) = P (Y 6= η̂(x)|D)

and the goodness of η̂ w.r.t. η∗ is measured by the misclassi-

fication excess risk E(η̂, η∗) = ER(η̂)−R(η∗).

A common general (nonparametric) approach for finding

a classifier η̂ from the data is empirical risk minimization

(ERM), where minimization of a true misclassification error

R(η) is replaced by minimization of the corresponding empir-

ical risk R̂n(η) = 1
n

∑n
i=1 I{Yi 6= η(xi)} over a given class

of classifiers. Misclassification excess risk of ERM classifiers

has been intensively studied in the literature (see, e.g., [11]

and [15] (Section 9) for surveys and references therein).

However, ERM can be hardly used directly in practice due to

its computational cost and is typically relaxed by some related

convex minimization surrogate (e.g., SVM).

Another possibility to obtain η̂ is to estimate p(x) from

the data by some p̂(x) and use a plug-in classifier of the

form η̂(x) = I{p̂(x) ≥ 1/2}. A standard approach is

to assume some (parametric or nonparametric) model for

p(x). In this paper we consider one of the most commonly

used models – logistic regression, where it is assumed that

p(x) =
exp(βtx)

1+exp(βtx)
and β ∈ Rd is a vector of unknown

regression coefficients. The corresponding Bayes classifier is a

linear classifier η∗(x) = I{p(x) ≥ 1/2} = I{βtx ≥ 0}. One

then estimates β from the data by the maximum likelihood

estimator (MLE) β̂, plugs-in β̂ (or, equivalently, p̂(x)) and

the resulting (linear) classifier is η̂(x) = I{p̂(x) ≥ 1/2} =

I{β̂
t
x ≥ 0}. Unlike ERM, the MLE β̂ though not available

in the closed form, can be nevertheless obtained numerically

by the fast iteratively reweighted least squares algorithm

[19] (Section 2.5). Nonparamertric plug-in classifiers were

considered in [26], [16], [3].

In the era of “Big Data”, however, the number of features d

describing the objects for classification might be very large

and even larger than the sample size n (large d small n

setups) that raises a severe “curse of dimensionality” problem.
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Reducing the dimensionality of a feature space by selecting a

sparse subset of “significant” features becomes essential. Thus,

[7], [14] showed that even in simple cases, high-dimensional

classification without feature selection might be as bad as just

pure guessing.

Nevertheless, unlike model selection in high-dimensional

Gaussian regression that has been intensively studied in 2000s

(see [8], [9], [1], [21], [25] among many others), there are

much less theoretical results on model/feature selection in clas-

sification. [13] (Chapter 18) and [24] (Chapter 4) considered

selection from a sequence of classifiers within a sequence

of classes by penalized ERM with the structural penalty

depending on the Vapnik-Chervonenkis (VC) dimension of a

class. They established the oracle inequalities and the upper

bounds for the misclassification excess risk of the selected

classifier but did not provide the lower bound to assess its

optimality. See also [11] (Section 8) for related penalized

ERM approaches and references therein. Recall, however, that

a computational cost (even for a given model) is a serious

drawback of any ERM-based procedure.

The main goal of the paper is to fill the gap. In particular,

we investigate feature selection in sparse logistic regression

classification. Although logistic regression is widely used in

various classification problems, its rigorous theoretical ground

has not been yet properly established. Model selection in

a general framework of generalized linear models (GLM)

and in logistic regression in particular was studied in [2].

The authors proposed model selection procedure based on

penalized maximum likelihood with a complexity penalty on

the model size and investigated the goodness-of-fit of the

resulting estimator in terms of the Kullback-Leibler risk. They

derived the nonasymptotic bounds for this risk and showed

that the resulting estimator is asymptotically minimax and

adaptive to the unknown sparsity. In this paper we utilize their

approach for classification and consider the corresponding

plug-in classifier. In particular, we show that the considered

complexity penalty is remarkably related to the VC-dimension

of a set of sparse linear classifiers. We establish the non-

asymptotic upper bound for misclassification excess risk of

the resulting classifier and construct explicitly the design for

which it is sharp in the minimax sense. We also show that

the excess risk bounds can be improved under the additional

low-noise assumption.

Any model selection criterion based on a complexity penalty

requires, however, a combinatorial search over all possi-

ble models that makes its usefulness problematic for high-

dimensional data. A common remedy is to replace the original

complexity penalty by a related convex surrogate. The prob-

ably most well-known techniques is Lasso. However, it can

achieve only the sub-optimal rates under some extra conditions

on the design matrix X ([23]). Recently, for Gaussian linear

regression [10] proposed a Slope estimator. [6] showed that

under certain additional conditions on X , Slope is rate-optimal

for linear regression. We adapt it to the logistic regression (and,

in fact, to a general GLM) setup and extend the results of [6]).

The rest of the paper is organized as follows. In Sec-

tion II we present the model (feature) selection procedure

for sparse logistic regression with fixed design based on a

general procedure of [2] and provide the upper bounds for

the resulting estimator in terms of Kullback-Leibler risk. In

Section III we apply it for classification to establish the non-

asymptotic upper bound for its misclassification excess risk

and derive the corresponding minimax lower bounds. The

improvement of the obtained risk bounds under the additional

low-noise assumption is given in Section IV. In Section V

we consider the logistic Slope classifier as a convex surrogate

for the proposed feature selection procedure and show that

its misclassification excess risk is still rate-optimal under an

extra weighted restricted eigenvalue condition on the design

matrix X . The random design case is considered in Section

VI . Section VII provides a short real-data example. All the

proofs are given in the Appendix.

II. NOTATION AND PRELIMINARIES

Consider a sparse logistic regression model

Yi ∼ Bin(1, pi), ln
pi

1− pi
= βtxi (1)

with deterministic design points xi ∈ Rd i = 1, . . . , n, where

we assume that the unknown vector of regression coefficients

β ∈ Rd is sparse.

Let d0 = ||β||0 be the size of true (unknown) model, where

the l0 (quasi)-norm of regression coefficients ||β||0 is the

number of nonzero entries. Let X ∈ Rn×d be the design

matrix of rows xi, r = rank(X) and assume that any r

columns of X are linearly independent.

For the model (1) the log-likelihood function is

`(β) =
n∑
i=1

{
βtxi Yi − ln(1 + exp(βtxi)

}
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Let M be the set of all 2d possible models M ⊆ {1, . . . , d}.
For a given model M , define BM = {β ∈ Rd : βj = 0 if j 6∈
M}. The MLE β̂M of β is then

β̂M = arg max
β̃∈BM

n∑
i=1

{
β̃
t
xiYi − ln

(
1 + exp(β̃

t
xi)
)}

(2)

The β̂M in (2) is not available in the closed form but can

be obtained numerically by the iteratively reweighted least

squares algorithm (see [19], Section 2.5). The corresponding

MLE for probabilities pi are p̂Mi =
exp(β̂

t

Mxi)

1+exp(β̂
t

Mxi)
.

Select the model M̂ by the penalized maximum likelihood

model selection criterion of the form

M̂ = arg min
M∈M

{
n∑
i=1

(
ln
(

1 + exp(β̂
t

Mxi)
)
− β̂

t

MxiYi

)
+Pen(|M |)} ,

(3)

where Pen(|M |) is a complexity penalty on the model size

|M |. In fact, we can restrict M in (3) to models with sizes

at most r since for any β with ||β||0 > r, there necessarily

exists another β′ with ||β′||0 ≤ r such that Xβ = Xβ′.

Within general GLM framework, [2] investigated the

goodness-of-fit of the resulting estimator p̂
M̂

. They considered

the Kullback-Leibler divergence KL(p, p̂
M̂

) between the data

distribution with the true probabilities p = (p1, . . . , pn) and

its empirical distribution generated by p̂
M̂

given by

KL(p, p̂
M̂

) =
1

n

n∑
i=1

{
pi ln

(
pi
p̂
M̂i

)
+(1− pi) ln

(
1− pi

1− p̂
M̂i

)}
,

(4)

and measured the accuracy of p̂
M̂

by the corresponding

Kullback-Leibler risk EKL(p, p̂
M̂

) (in fact, the Kullback-

Leibler divergence KL(·, ·) in [2] was defined as n times

KL(·, ·) in this paper).

Assumption (A). Assume that there exists 0 < δ < 1/2 such

that δ < pi < 1− δ or, equivalently, there exists C0 > 0 such

that |βtxi| < C0 in (1) for all i = 1, . . . , n.

Assumption (A) prevents the variances V ar(Yi) = pi(1 −
pi) to be infinitely close to zero.

Consider a set of models of size at most d0, where 1 ≤
d0 ≤ r. Obviously, |M | ≤ d0 iff ||β||0 ≤ d0. [2] showed that

for the complexity penalty

Pen(|M |) = c |M | ln de

|M |
, |M | = 1, . . . , r−1; Pen(r) = c·r

(5)

in (3), where c > 4
δ(1−δ) , under Assumption (A), the upper

bound of the Kullnack-Leibler risk is given by

sup
β:||β||0≤d0

EKL(p, p̂
M̂

) ≤ C 1

δ(1− δ)

min
(
d0 ln de

d0
, r
)

n

(6)

for some C > 0. They also derived the corresponding minimax

lower bounds for the Kullback-Leibler risk and showed that

for weakly-collinear design, the upper bound in (6) is of the

optimal order (in the minimax sense).

The above results on the Kullback-Leibler risk can be

extended to model selection under additional structural con-

straints on the set of admissible models M (see Secition 4.1

of [2]).

In what follows we utilize (6) to derive the upper bounds for

the misclassification excess risk of the corresponding plug-in

classifier η̂
M̂

(x) = I{β̂
t

M̂x ≥ 0}.
To gain more insight into the complexity penalty (5) within

classification framework we present the following lemma on

the Vapnik-Chervonenskis (VC) dimension of the set of all

d0-sparse linear classifiers :

Lemma 1. Let C(d0) = {η(x) = I{βtx ≥ 0} : β ∈
Rd, ||β||0 ≤ d0} be the set of all d0-sparse linear classifiers

and V (C(d0)) its VC-dimension. Then,

d0 log2

(
2d

d0

)
≤ V (C(d0)) ≤ 2d0 log2

(
de

d0

)
(7)

Thus, the complexity penalty Pen(|M |) in (5) is essentially

proportional to the VC-dimension of the corresponding class

of |M |-sparse linear classifiers C(|M |).

III. MISCLASSIFICATION EXCESS RISK BOUNDS

In this section we apply the selected model M̂ in (3) for

classification and derive the bounds for the corresponding

misclassification exceess risk.

We consider first the fixed design. For a given design matrix

X the misclassification error of a classifier η is RX(η) =
1
n

∑n
i=1 P (Yi 6= η(xi)). Following our previous arguments

define a (linear) plug-in classifier

η̂
M̂

(x) = I{β̂
t

M̂x ≥ 0} (8)

and consider its misclassification excess risk EX(η̂
M̂
, η∗) =

ERX(η̂
M̂

) − RX(η∗), where recall that the (ideal) Bayes

classifier η∗(x) = I{βtx ≥ 0} with the true (unknown) β

in (1). The remarkable results of [28] and [5] establish the
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relations between the Kullback-Leibler risk EKL(p, p̂
M̂

) and

the misclassification excess risk EX(η̂
M̂
, η∗):

EX(η̂
M̂
, η∗) ≤

√
2EKL(p, p̂

M̂
) (9)

Thus, (6) and (9) imply immediately the following upper

bound for EX(η̂
M̂
, η∗):

Theorem 1. Consider a sparse logistic regression model (1)

with ||β||0 ≤ d0. Let M̂ be a model selected in (3) with the

complexity penalty (5) and consider the corresponding plug-in

classifier η̂
M̂

(x) in (8). Under Assumption (A),

sup
η∗∈C(d0)

EX(η̂
M̂
, η∗) ≤ C1

√√√√ 1

δ(1− δ)

min
(
d0 ln de

d0
, r
)

n
(10)

for some C1 > 0, simultaneously for all 1 ≤ d0 ≤ r.

The constant
√

1
δ(1−δ) in (10) is a result of the direct

application of (6) and (9). It can be improved by establishing

the similar relations between misclassification excess risk and

other losses rather than Kullback-Leibler in (9) and deriving

the corresponding upper bounds for their risks. See, for

example, the results and the proof of Theorem 6 below for the

random design. In a way, the Kullback-Leibler loss implies the

most conservative upper bound ([20]).

We now show that there exists a design matrix X0 for which

the upper bound for the misclassification excess risk (10) is

essential sharp (up to a probably different constant).

Consider the set of all possible d0-sparse linear classifiers

C(d0) defined in Lemma 1 and the case, where a Bayes

classifier η∗(x) is not perfect, that is, R(η∗) > 0 (aka an

agnostic model). Then, the following result holds:

Theorem 2. Consider a d0-sparse agnostic logistic regression

model (1), where 2 ≤ d0 log2

(
2d
d0

)
≤ n.

Then, there exists a design matrix X0 ∈ Rn×d such that

inf
η̃

sup
η∗∈C(d0)

EX0
(η̃, η∗) ≥ C2

√
d0 ln de

d0

n
(11)

for some constant C2 > 0, where the infimum is taken over

all classifiers η̃ based on the data (X0,Y).

Theorem 2 is a particular case of Theorem 4 from Section

IV below.

The upper and lower bounds established in Theorem 1 and

Theorem 2 imply the asymptotic minimax rate for misclassi-

fication excess risk in sparse logistic regression model as n

increases. We allow the number of features d to increase with

n as well and even faster than n (d� n setup). The following

immediate Corollary 1 shows that the proposed classifier η̂
M̂

is asymptotically minimax in terms of “the worst case” design

and adaptive to the unknown sparsity:

Corollary 1. Consider a d0-sparse logistic regression agnostic

model (1), where d0 satisfies 2 ≤ d0 log2

(
2d
d0

)
≤ n. Then, as

n and d increase, for a fixed δ in Assumption (A),

1) The asymptotic minimax misclassification excess risk

supX inf η̃ supη∗∈C(d0) EX(η̃, η∗) is of the order√√√√d0 ln
(
de
d0

)
n

∼
√
V (C(d0))

n

2) The classifier η̂
M̂

defined in (8), where the model M̂

was selected by (3) with the complexity penalty (5),

attains the minimax rates simultaneously for all 2 ≤
d0 log2

(
2d
d0

)
≤ n.

Finally, we note that if the considered logistic regression

model is misspecified and the Bayes classifier η∗ is not linear,

we still have the following risk decomposition

RX(η̂
M̂

)−RX(η∗) =
(
RX(η̂

M̂
)−RX(η∗L)

)
+ (RX(η∗L)−RX(η∗)) ,

(12)

where η∗L = arg minη∈C(d)RX(η) is the best (ideal) linear

classifier. Our previous arguments can then be applied to the

first term in the RHS of (12) representing the estimation error,

while the second term is an approximation error and measures

the ability of linear classifiers to perform as good as η∗. En-

riching the class of classifiers may improve the approximation

error but will necessarily increase the estimation error in (12).

In a way, it is similar to the variance/bias tradeoff in regression.

IV. TIGHTER RISK BOUNDS UNDER LOW-NOISE

CONDITION

The main challenges for any classifier occur near the the

boundary {x : p(x) = 1/2} (equivalently, a hyperplane βtx =

0 for the logistic regression model), where it is hard to predict

the class label accurately. However, for regions, where p(x) is

bounded away from 1/2 (margin or aka low-noise condition),

the bounds for misclassification excess risk established in the

previous Section III can be improved. Following [18] introduce

the following low-noise assumption:
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Assumption (B). Consider the logistic regression model (1)

and assume that there exists 0 ≤ h < 1/2 such that

|pi − 1/2| ≥ h or, equivalently, |βtxi| ≥ ln

(
1 + 2h

1− 2h

)
(13)

for all i = 1, . . . , n.

Assumption (B) essentially assumes the existence of the

“corridor” of width 2 ln
(

1+2h
1−2h

)
that separates the two sets

{xi : βtxi > 0, i = 1, . . . , n} and {xi : βtxi < 0, i =

1, . . . , n}.
For a given design matrix X , define CX(d0, h) = {η :

η ∈ C(d0), |βtxi| ≥ ln
(

1+2h
1−2h

)
, i = 1, . . . , n}. Evidently,

CX(d0, 0) = C(d0) for any X .

Theorem 3 below establishes the upper bound for the

misclassification excess risk of the proposed classifier η̂
M̂

under the additional low noise Assumption (B):

Theorem 3. Consider a sparse logistic regression model (1),

where ||β||0 ≤ d0. Assume that there exist 0 < h < ∆ < 1/2

such that

h ≤ |pi − 1/2| ≤ ∆ (14)

for all i = 1, . . . , n.

Let M̂ be a model selected in (3) with the complexity penalty

(5) and consider the corresponding classifier η̂
M̂

(x) in (8).

Then, for all 1 ≤ d0 ≤ r,

sup
η∗∈CX(d0,h)

EX(η̂
M̂
, η∗) ≤

C1 min


√√√√ 1− 4h2

1− 4∆2

min
(
d0 ln de

d0
, r
)

n
,

1− 4h2

1− 4∆2

min
(
d0 ln de

d0
, r
)

nh


(15)

for some C1 > 0.

Thus, if the margin parameter h is large enough, namely,

h >

√
d0 ln de

d0

n , the misclassification excess risk bound (10) is

reduced. The classifier η̂
M̂

(x) does not depend on h and the

procedure is inherently adaptive to its value.

Similar to the previous Section III, one can construct a

design matrix for which the upper bound (15) is sharp:

Theorem 4. Consider a d0-sparse agnostic logistic regression

model (1) with 2 ≤ d0 log2
2d
d0
≤ n.

There exists a design matrix X0 ∈ Rn×d such that under

Assumption (B)

inf
η̃

sup
η∗∈CX0

(d0,h)

EX0
(η̃, η∗) ≥ C2 min

√d0 ln de
d0

n
,
d0 ln de

d0

nh


(16)

for some C2 > 0.

The design matrix X0 is constructed explicitly in the proof

of Theorem 4 in the Appendix. Note that Theorem 2 may be

viewed as a particular case of Theorem 4 for h = 0.

V. LOGISTIC SLOPE CLASSIFIER

Solving for M̂ in (3) requires generally a combinatorial

search over all possible models in M that makes the use

of complexity penalties to be computationally problematic

when the number of features is large. Greedy algorithms (e.g.,

forward selection) approximate the global solution of (3) by

a stepwise sequence of local ones. However, they require

strong constraints on the design matrix X that can hardly

hold for high-dimensional data. A more reasonable approach is

convex relaxation, where the original combinatorial problem

is replaced by a related convex surrogate. Thus, for linear-

type complexity penalties of the form Pen(|M |) = λ|M | =

λ||β||0, the celebrated Lasso replaces the l0-(quasi) norm by

l1-norm:

β̂Lasso = arg min
β̃

{
n∑
i=1

(
ln
(

1 + exp(β̃
t
xi)
)
− β̃

t
xiYi

)
+λ||β̃||1

}
Assume that all columns of the design matrix X are nor-

malized to have unit norms. From the results of [23] it

follows that under an assumption similar to Assumption (A)

and certain extra conditions on X , the logistic Lasso with a

tuning parameter λ of the order
√

ln d results in sub-optimal

Kullback-Leibler risk O
(
d0
n ln d

)
and, therefore, sub-optimal

misclassification excess risk O

(√
d0
n ln d

)
. For Gaussian

regression, [6] showed that under certain conditions on X ,

Lasso can achieve the optimal rate with adaptively chosen λ

by Lepski procedure.

Recently, for Gaussian regression, [10] suggested the Slope

estimator – a penalized maximum likelihood estimator with a

sorted l1-norm penalty defined as follows:

β̂Slope = arg min
β̃

||Y −Xβ̃||22 +
d∑
j=1

λj |β̃|(j)

 , (17)
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where || · ||2 denotes the Euclidean norm in Rn, |β̃|(1) ≥
. . . ≥ |β̃|(d) are the descendingly ordered absolute values of

β̃j’s and λ1 ≥ . . . ≥ λd > 0 are the tuning parameters. It is a

convex minimization problem. Unlike the constant λ in Lasso,

there is a sequence of decreasing λj in Slope. [6] proved that

under a weighted restricted eigenvalue condition on X with

normalized columns, the quadratic risk of the Slope estimator

(17) with λj = A
√

ln(2d/j) for a certain constant A is of the

(rate-optimal) order O
(
d0
n ln( ded0 )

)
.

We will now extend the above results for Slope for logistic

regression and, in fact, for a general GLM (see the Appendix

C). Naturally modifying the definition of the Slope estimator

for the considered logistic regression model (1), define

β̂Slope = arg min
β̃

{
n∑
i=1

(
ln
(

1 + exp(β̃
t
xi)
)
− β̃

t
xiYi

)

+
d∑
j=1

λj |β̃|(j)

 ,

(18)

where λ1 ≥ . . . ≥ λd > 0. Note that (18) is also a convex

program that makes the logistic Slope estimator computation-

ally feasible for high-dimensional data. The corresponding es-

timated probabilities p̂Slope,i =
exp(β̂

t

Slopexi)

1+exp(β̂
t

Slopexi)
, i = 1, . . . , n.

As usual, any convex relaxation requires certain extra con-

ditions on the restricted minimal eigenvalue of the design

matrix X over some set of vectors. In particular, similar

to Gaussian regression considered in [6], we assume the

following Weighted Restricted Eigenvalue (WRE) condition

for Slope estimator (18) :

Assumption. (WRE(d0, c0) condition) Consider the sparse

logistic regression model (1) with ||β||0 ≤ d0, where the

columns of the design matrix X are normalized to have

unit norms. Consider the set S(d0, c0) = {u ∈ Rd :∑d
j=1

√
ln(2d/j)|u|(j) ≤ (1 + c0)||u||2

√∑d0
j=1 ln(2d/j)}

and assume that Xu 6= 0 for any u 6= 0 ∈ S(d0, c0).

An interesting discussion on the relations between the WRE

condition and the restricted eigenvalue condition (RE) required

for Lasso is given in Section 8 of [6].

Define a restricted minimal eigenvalue κ(d0, c0) as follows :

κ(d0, c0) = min
u∈S(d0,c0);u6=0

||Xu||2
||u||2

> 0

Theorem 5. Consider a sparse logistic regression model (1),

where ||β||0 ≤ d0, the columns of the design matrix X are

normalized to have unit norms and, in addition, X satisfies

the WRE(d0, c0) condition for some c0 > 1. Assume that

Assumption (A) holds.

Let the tuning parameters

λj = A
c0 + 1

c0 − 1

√
ln(2d/j), j = 1, . . . , d (19)

with the constant A ≥ 20
√

6.

Then,

sup
β:||β||0≤d0

EKL(p, p̂Slope) ≤ 8A2 c20
(c0 − 1)2

1

δ(1− δ)

×
(

2π + 8

ln(2d)
+

1

κ2(d0, c0)

)
d0

n
ln

(
2de

d0

)
(20)

for all 1 ≤ d0 ≤ r.

Note that λj’s in (19) are of the same form as those in [6]

for Gaussian regression but differ in a constant A.

Theorem 5 is a particular case of Theorem 8 for a general

GLM (see Appendix).

Using (9) one immediately gets the corresponding result

for the misclassification exceess risk of the logistic Slope

classifier:

Corollary 2. Assume all the conditions of Theorem 5 and

choose λj according to (19). Consider the logistic Slope

classifier η̂Slope(x) = I{β̂
t

Slopex ≥ 0}. Then,

EX(η̂Slope, η
∗) = O

√d0 ln de
d0

n

 (21)

Thus, the logistic Slope estimator is computationally fea-

sible and yet achieves the optimal rates under the additional

WRE(d0, c0) condition on the design for all but very dense

models for which d0 ln( ded0 ) > r (see Theorem 1).

Furthermore, following the arguments in the proof of The-

orem 3, one can show that the bound (21) for EX(η̂Slope, η
∗)

may be reduced under the additional low noise Assumption

(B).

VI. RANDOM DESIGN

The results above have been obtained for the fixed design. In

machine learning, it is more common to consider classification

with random design. In this section we show that our main

previous results for the fixed design can be extended for the

random design.

Consider the following model:

Y |(X = x) ∼ B(1, p(x)), p(x) =
exp(βtx)

1 + exp(βtx)

and X ∼ q(x),

(22)
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where q(·) is a marginal density of X with a bounded support

X ⊂ Rd. By re-scaling we can assume without loss of

generality that ||x||2 ≤ 1 for all x ∈ X , where recall that

|| · ||2 is the Euclidean norm.

We assume that all Xj are linearly independent. Hence, the

minimal eigenvalue λmin(G) of the matrix G = E(XXt) is

strictly positive.

Recall that the misclassification excess risk of a classifier η̂

designed from a random sample (X1, Y1), . . . , (Xn, Yn) from

the joint distribution (X, Y ) is E(η̂
M̂
, η∗) = ER(η̂)−ER(η∗),

where the Bayes classifier η∗(x) = I(βtx ≥ 0). Adapting

a general result on the minimax lower bound for the mis-

classification excess risk for random design (see, e.g., [13],

Chapter 14 and [11], Section 5.5) for a d0-sparse agnostic

logistic regression model (22), by Lemma 1 we have:

inf
η̃

sup
η∗∈C(d0),q

E(η̃, η∗) ≥ C
√
V (C(d0))

n
≥ C̃

√
d0 ln de

d0

n

Similar to the fixed design setup, consider the penalized

maximum likelihood model selection procedure (3) with the

complexity penalty

Pen(|M |) = C|M | ln de

|M |
, |M | = 1, . . . ,min(d, n), (23)

where the exact choice for the constant C will follow from

the proof of Theorem 7 below.

The following Assumption (A1) is a direct analog of As-

sumption (A) for random design:

Assumption (A1). Assume that there exists 0 < δ < 1/2 such

that δ < p(x) < 1 − δ or, equivalently, there exists C0 > 0

such that |βtx| < C0 in (22) for all x ∈ X .

Theorem 6 extends the results of Theorem 1 for random

design:

Theorem 6. Consider a sparse logistic regression model (22),

where ||β||0 ≤ d0.

Let M̂ be a model selected in (3) with the complexity penalty

(23) and consider the corresponding plug-in classifier η̂
M̂

(x)

in (8). Under Assumption (A1),

sup
η∗∈C(d0)

E(η̂
M̂
, η∗) ≤ C

√
ln

(
1

δλmin(G))

)
d0 ln de

d0

n

for some positive C > 0 , simultaneously for all 1 ≤ d0 ≤
min(d, n).

Thus, the classifier η̂
M̂

(x) is adaptively rate-optimal (in the

minimax sense) for random design as well.

Theorem 6 is a particular case of Theorem 7 stated below.

We should note that similar upper bounds can be obtained

for model selection by penalized ERM utilizing general results

of [13], Chapter 18 and [24], Chapter 4 on structural penalties

depending on a VC-dimension and applying Lemma 1 for their

adaptation to sparse logistic regression. See also [11], Section

8 for related ERM approaches and references therein. Recall,

however, that a computational cost is a crucial drawback of

any ERM-based procedure.

The misclassification excess risk of η̂
M̂

(x) can be again

improved under the low-noise condition which can even be

formulated in a more general form for random design ([17]

and [22]):

Assumption (B1). Assume that there exist C > 0 and α ≥ 0

such that

P (|p(X)− 1/2| ≤ h) ≤ Chα (24)

for all 0 < h < h∗, where h∗ < 1/2.

Assumption (B) in Section IV for the fixed design can be

viewed as a limiting case α =∞.

Theorem 7. Consider a sparse logistic regression model (22),

where ||β||0 ≤ d0. Let M̂ be a model selected in (3) with the

complexity penalty (23) and consider the corresponding plug-

in classifier η̂
M̂

(x) in (8).

Under Assumptions (A1) and (B1), there exists C > 0 such

that

sup
η∗∈C(d0)

E(η̂
M̂
, η∗) ≤ C

(
ln

(
1

δλmin(G))

)
d0 ln de

d0

n

)α+1
α+2

(25)

for all 1 ≤ d0 ≤ min(d, n).

Theorem 6 (no low-noise assumption) corresponds to the

extreme case α = 0. For another extreme case α = ∞
(complete separation from 1/2), the upper bound (25) is

O

(
d0 ln de

d0

n

)
similar to the results of Section IV for the fixed

design.

The rates (25) can be reduced further under additional

conditions on the support X and the density q(x) using the

arguments of [16] and [3] but this is beyond the scope of the

paper.

To extend the results of Theorem 5 for Slope estimator

for random design one needs the WRE(d0, c0) condition to

be held with high probability. It evidently depends on the

marginal distribution q(x). Thus, [6] (Theorem 8.3) showed
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that it is satisfied for multivariate Gaussian and even sub-

Gaussian X when d0 ln2(de/d0) ≤ cn for some constant

c > 0, and under mild conditions on the covariance matrix.

VII. NUMERICAL EXAMPLE

We now demonstrate the performance of the proposed

feature selection and classification procedures on a short

numerical real-data study.

The online marketing data contains various information

about 500 customers registered at the site: their personal data

(e.g., gender, country of living, etc.) and purchase activities

during the past period (e.g., frequencies and types of pur-

chases, purchase amounts, currencies, etc.). Overall, there were

61 explanatory variables. Given such data, one of the main

goals is to predict customers who are about to become inactive

in order to incentivize them to remain by various discounts.

The output then is a binary variable indicating whether a

customer was still active during the next time period or not.

The data was randomly split into training (n1 = 400) and

test (n2 = 100) sets. The number of possible features d = 61

was too large to perform a complete combinatorial search for

penalized maximum likelihood model selection procedure (3)

with the complexity penalty (5). Instead we used its forward

selection version, logistic Lasso and logistic Slope classifiers.

The corresponding tuning constants were chosen by 5-fold

cross-validation and the resulting three classifiers were then

applied to the test set.

The best misclassification rate was achieved by Slope

(17%), followed by Lasso (19%) and forward selection (22%).

In addition, we compared the sizes of the models selected

by the three classifiers. The conservative forward selection

procedure yielded a very sparse model with only 2 predictors –

the time since last purchase and purchase amount. On the other

hand, Lasso with the CV-chosen tuning parameter is known

to tend to select too many variables (see, e.g., [12], Section

2) and resulted in the model of size 13 by adding 11 other

variables. The Slope classifier with a decreasing sequence of

tuning parameters commonly implies even larger models (32

in the considered example). Note, however, that prediction

and model identification are two different problems and, in

particular, the choices of tuning parameters for them should

be different.

APPENDIX

Throughout the proofs we use various generic positive

constants, not necessarily the same each time they are used

even within a single equation.

APPENDIX A

PROOF OF LEMMA 1

Denote for brevity V = V (C(d0)). For any fixed subset of

d0 βj’s the VC of the corresponding set of d0-dimensional

linear classifiers is known to be d0 (e.g., [15], Exercise 9.5.2).

Then, by Sauer’s lemma the maximal number of different

labelling of V points in Rd0 that such set of classifiers can

produce is
∑d0
k=0

(
V
k

)
≤
(
V e
d0

)d0
(see, e.g., [15], Section

9.2.2). The overall number of different labelling is, therefore,(
d
d0

)∑d0
k=0

(
V
k

)
, and by the definition of V (C(d0)) we have

2V ≤
(
d

d0

) d0∑
k=0

(
V

k

)
≤
(
de

d0

)d0 (V e
d0

)d0
≤
(
de

d0

)2d0

that implies an upper bound V ≤ 2 d0 log2

(
de
d0

)
.

On the other hand, take k = log2(2d/d0) and let K be the

k × 2k−1 matrix whose columns are all possible vectors with

entries ±1 and the first entry 1. Note that d02k−1 = d. Let W

be the d0k×d block-wise matrix consisting of d0×d0 blocks,

each being a k×2k−1 matrix, where the diagonal matrices are

copies of K, while all others are zero matrices. Thus, W has

d0k = d0 log2(2d/d0) rows. It is easy to verify that these

rows are shattered by half-spaces whose supporting vectors w

have a single non-zero ±1 entry in each of the d0 blocks and,

therefore, V ≥ d0 log2(2d/d0).

APPENDIX B

TIGHTER BOUNDS FOR LOW-NOISE CONDITION

A. Proof of Theorem 3

Assumption (14) obviously implies Assumption (A) with

δ = 1/2−∆. In addition, under (14), V ar(Yi) = pi(1−pi) ≤
(1/2−h)(1/2+h) = (1−4h2)/4. Hence, adapting the results

of [2] on Kullback-Leibler risk in general GLM framework for

logistic regression, the upper bound (6) for EKL(p, p̂
M̂

) can

be improved:

sup
β:||β||0≤d0

EKL(p, p̂
M̂

) ≤ C 1− 4h2

1− 4∆2

min
(
d0 ln de

d0
, r
)

n

(26)
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and, therefore, from (9) we have

sup
η∗∈CX(d0,h)

EX(η̂
M̂
, η∗) ≤ C1

√√√√ 1− 4h2

1− 4∆2

min
(
d0 ln de

d0
, r
)

n

On the other hand, we can adapt the

general Theorem 3 of [5] for ψ(f) =

(1/2) ((1− f) ln(1− f) + (1 + f) ln(1 + f)) ≥ f2/2

corresponding to the Kullback-Leibler risk ([28], Section

3.5), α = 1 corresponding to (14) and c = 1/(2h) to get

EX(η̂
M̂
, η∗) ≤ 4

h
EKL(p, p̂

M̂
)

Applying (26) implies then

EX(η̂
M̂
, η∗) ≤ C1

1− 4h2

1− 4∆2

min
(
d0 ln de

d0
, r
)

nh

B. Proof of Theorem 4

For any η̃ and η∗ ∈ C(d0, h) we have

EX(η̃, η∗) =
1

n

n∑
i=1

P (η̃i 6= η∗i )|2pi − 1|

≥ 2h

n
E

(
n∑
i=1

I{η̃i 6= η∗i }

)
=

2h

n
E||η̃ − η∗||1

(27)

for any X .

As we have mentioned, the worst case scenario for clas-

sification is when pi = 1/2 ± h or, equivalently, |βtxi| =

ln
(

1+2h
1−2h

)
. Let V = d0 log2(2d/d0). In the proof of Lemma

1 we constructed explicitly the matrix WV×d whose rows

w1, . . . ,wV are shattered by C(d0). Then, for any p =

{ 1
2 ± h}V there exists β ∈ Rd such that ||β||0 ≤ d0 and

βtwi = ln pi
1−pi = ± ln 1+2h

1−2h for all i = 1, . . . , V . Define also

the corresponding binary vector b with bi = I{βtwi ≥ 0},
that is, bi = 1 if pi = 1

2 + h and bi = 0 if pi = 1
2 − h.

Obviously, the set of all b’s is a hypercube HV = {0, 1}V .

Define now a n× d design matrix X0 with κ rows of w1,

κ rows of w2, ..., κ rows of wV−1 and the remaining n −
(V −1)κ rows of wV , where an integer 1 ≤ κ ≤ b n

V−1c will

be defined later.

The proof will now follow the general scheme of the proof

of Theorem 4 of [18] but with necessary modifications for the

fixed design.

For any p ∈ {1
2 ± h}V and the corresponding

b ∈ HV define an n-dimensional indicator vector

ηb = (b1, . . . , b1︸ ︷︷ ︸
κ

, . . . , bV−1, . . . , bV−1︸ ︷︷ ︸
κ

, bV , . . . , bV︸ ︷︷ ︸
n−(V−1)κ

) and let

C̃X0
(d0, h) = {ηb, b ∈ HV }. By its design, C̃X0

(d0, h) ⊆

{η : η ∈ C(d0), |βtx0i| = ln 1+2h
1−2h , i = 1, . . . , n} ⊆

CX0
(d0, h).

Hence, we can reduce the minimax risk over the entire

CX0
(d0, h) to C̃X0

(d0, h):

inf
η̃

sup
η∗∈CX0

(d0,h)

EX0
(η̃, η∗) ≥ inf

η̃
sup

η∗∈C̃X0
(d0,h)

EX0
(η̃, η∗)

(28)

Furthermore, for a given η̃, define η̃∗ =

arg minη∈C̃(d0,h) ||η̃ − η||1. Then, for any η∗ ∈ C̃X0
(d0, h)

we have

||η̃∗ − η∗||1 ≤ ||η̃∗ − η̃||1 + ||η̃ − η∗||1 ≤ 2||η̃ − η∗||1 (29)

and, therefore, from (27)-(29)

inf
η̃

sup
η∗∈CX0

(d0,h)

EX0
(η̃, η∗)

≥ h

n
inf

η̃∗∈C̃X0
(d0,h)

sup
η∗∈C̃X0

(d0,h)

E||η̃∗ − η∗||1

≥ h

n
κ inf

b̃∈HV
sup

b∗∈HV
E

(
V−1∑
i=1

I{b̃i 6= b∗i }

)
,

(30)

where b̃,b∗ ∈ HV are the binary vectors corresponding to η̃∗

and η∗ respectively (see above).

By a simple calculus one can verify that the square Hellinger

distance H2
(
Bin(1, 1

2 + h), Bin(1, 1
2 − h)

)
between two

Bernoulli distributions Bin(1, 1
2 + h) and Bin(1, 1

2 − h) is

1 −
√

1− 4h2. For any b ∈ HV and the corresponding ηb

define pb ∈ Rn as follows: pbi = 1
2 + h if ηbi = 1

and pbi = 1
2 − h if ηbi = 0, i = 1, . . . ,κ(V − 1), and

pbi = 0, i = κ(V −1)+1, . . . , n. Then, for any b1,b2 ∈ HV

and the corresponding pb1 and pb2 we have

H2(pb1 ,pb2) =
1

n

n∑
i=1

H2 (Bin(1, pb1i), Bin(1, pb2i))

=
κ
n

(1−
√

1− 4h2)
V−1∑
i=1

I{b1i 6= b2i}

Hence, applying the version of Assouad’s lemma given in

Lemma 7 of [4] yields

inf
b̃∈HV

sup
b∗∈HV

E

(
V−1∑
i=1

I{b̃i 6= b∗i }

)

≥ V − 1

2

(
1−

√
2κ(1−

√
1− 4h2

)
≥ V − 1

2

(
1−
√

8κh2
)

that together with (30) implies

inf
η̃

sup
η∗∈CX0

(d0,h)

EX0
(η̃, η∗) ≥ κ

h

n

V − 1

2

(
1−
√

8κh2
)
(31)
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Consider two cases.

Case 1. h ≤ 1
6 .

For h ≥
√

V−1
18n , apply (31) for κ = b 1

18h2 c (note that 2 ≤
κ ≤ b n

V−1c), to get

inf
η̃

sup
η∗∈CX0

(d0,h)

EX0(η̃, η∗) ≥ V − 1

216nh
≥ C2

d0 ln( ded0 )

nh

For h <
√

V−1
18n , one can follow all the above arguments

for h̃ =
√

V−1
18n and the corresponding κ = b n

V−1c to have

inf
η̃

sup
η∗∈CX0

(d0,h)

EX0
(η̃, η∗) ≥ inf

η̃
sup

η∗∈CX0
(d0,h̃)

EX0
(η̃, η∗)

≥ C2

√
d0 ln( ded0 )

n

Case 2. h > 1
6 .

Set κ = 1 and note that CX0(d0,
1
2 ) ⊆ CX0(d0, h) for any

0 ≤ h ≤ 1
2 . Hence, (30) implies

inf
η̃

sup
η∗∈CX0

(d0,h)

EX0
(η̃, η∗) ≥ inf

η̃
sup

η∗∈CX0
(d0,

1
2 )

EX0
(η̃, η∗)

≥ 1

2n
inf

b̃∈HV
sup

b∗∈HV
E

(
V−1∑
i=1

I{b̃i 6= b∗i }

)

≥ 1

2n
inf

b̃∈HV

1

2V

∑
bj∈HV

E

(
V−1∑
i=1

I{b̃i 6= bji}

)

=
1

2n
inf

b̃∈HV

V−1∑
i=1

1

2V

2V∑
j=1

P (b̃i 6= bji)

By obvious combinatoric calculus, for any (binary) vector b̃,
1

2V

∑2V

j=1 P (b̃i 6= bji) = 1
2 for any i and, therefore,

inf
η̃

sup
η∗∈CX0

(d0,h)

EX0
(η̃, η∗) ≥ V − 1

4n
≥ C2

d0 ln de
d0

nh

for large h > 1
6 (in fact, larger than any fixed h0).

APPENDIX C

SLOPE ESTIMATOR FOR A GENERAL GLM

Consider a GLM setup with a response variable Y and a set

of d predictors x1, ..., xd. We observe a series of independent

observations (xi, Yi), i = 1, . . . , n, where the design points

xi ∈ Rp are deterministic. The distribution fθi(y) of Yi

belongs to a (one-parameter) natural exponential family with

a natural parameter θi and a scaling parameter a:

fθi(y) = exp

{
yθi − b(θi)

a
+ c(y, a)

}
(32)

The function b(·) is assumed to be twice-differentiable. In this

case E(Yi) = b′(θi) and V ar(Yi) = ab′′(θi). To complete

GLM we assume the canonical link θi = βtxi or, equivalently,

in the matrix form, θ = Xβ, where Xn×p is the design matrix

and β ∈ Rp is a vector of the unknown regression coefficients.

The logistic regression (1) is a particular case of a general

GLM (32) for the Bernoulli distribution Bin(1, pi), where the

natural parameter is θ = ln p
1−p , b(θ0) = ln(1+eθ) and a = 1.

Following [2] assume the extended version of Assumption

(A) for GLM :

Assumption (A’).

1) Assume that θi ∈ Θ, where the parameter space Θ ⊆ R
is a closed (finite or infinite) interval.

2) Assume that there exist constants 0 < L ≤ U <∞ such

that the function b′′(·) satisfies the following conditions:

a) supt∈R b
′′(t) ≤ U

b) inft∈Θ b
′′(t) ≥ L

Conditions on b′′(·) in Assumption (A’) are intended to

exclude two degenerate cases, where the variance V ar(Y ) is

infinitely large or small. They also ensure strong convexity

of b(·) over Θ. For the binomial distribution, U = 1/4 and

Assumption (A’) reduces to Assumption (A) with L = δ(1−δ).

Recall that the Slope estimator is a penalized maximum

likelihood with an ordered l1-norm penalty and, therefore,

defined for a GLM as follows:

β̂Slope = arg min
β̃

−`(β̃) +
d∑
j=1

λj |β̃|(j)


= arg min

β̃

b(Xβ̃)t1−YtXβ̃ +

d∑
j=1

λj |β̃|(j)


(33)

for λ1 ≥ · · · ≥ λd > 0. The corresponding Kullback-Leibler

risk

EKL(θ, θ̂Slope) =
1

n

1

a

(
b′(θ)t(θ − E(θ̂Slope))

−(b(θ)− Eb(θ̂Slope))t1
) (34)

where θ = Xβ and θ̂Slope = Xβ̂Slope (see [2]).

Theorem 8. Consider a GLM (32), where ||β||0 ≤ d0, the

columns of the design matrix X are normalized to have unit

norms and X satisfies the WRE(d0, c0) condition for some

c0 > 1. Assume that Assumption (A’) holds.

Let

λj = A
c0 + 1

c0 − 1

√
U
a

√
ln(2d/j), j = 1, . . . , d, (35)

in (33) with the constant A ≥ 40
√

6.
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Then, simultaneously for all β ∈ Rd such that ||β||0 ≤ d0,

1)

P

(
KL(θ, θ̂Slope) ≤

8A2

n

c20
(c0 − 1)2

U
L

×max

{(√
π/2 +

√
2 ln ∆−1

)2

,

d0

κ2(d0, c0)
ln

(
2de

d0

)}
≥ 1−∆

(36)

for any 0 < ∆ < 1.

2)

EKL(θ, θ̂Slope) ≤

8A2 c20
(c0 − 1)2

U
L

(
2π + 8

ln(2d)
+

1

κ2(d0, c0)

)
d0

n
ln

(
2de

d0

)
(37)

Proof. Since β̂Slope is the minimizer of (33),

−`(β̂Slope) +
d∑
j=1

λj |β̂Slope|(j) ≤ −`(β) +
d∑
j=1

λj |β|(j)

From (29) of [2] one has

n KL(θ, θ̂Slope) = `(β)−`(β̂Slope)+
1

a
(Y−b′(θ))t(θ̂Slope−θ)

(recall that the Kullback-Leibler divergence KL(·, ·) in [2]

was defined as n times KL(·, ·) in this paper). Thus,

KL(θ, θ̂Slope) ≤
1

n a
(Y − b′(θ))t(θ̂Slope − θ)

+
1

n

 d∑
j=1

λj |β|(j) −
d∑
j=1

λj |β̂Slope|(j)


(38)

Let u = β̂Slope−β. Applying Lemma A.1 of [6] with τ = 0

implies

d∑
j=1

λj |β|(j) −
d∑
j=1

λj |β̂Slope|(j) ≤

√√√√ d0∑
j=1

λ2
j ||u||2

−
d∑

j=d0+1

λj |u|(j)

(39)

Consider now the first term of the RHS in (38). Since the

distribution of Y belongs to the exponential family with the

bounded variance ab′′(θ) ≤ aU (Assumption (A’)), a centered

zero mean random variable Y − b′(θ) is sub-Gaussian with

the scale factor
√
aU , that is, Eet(Y−b′(θ)) ≤ eaUt

2/2 and,

therefore, Ee(Y−b′(θ))2/(6Ua) ≤ e. Applying Theorem 9.1 of

[6] (adapted to our normalization conditions on the columns

of X) yields

1

na
(Y − b′(θ))t(θ̂Slope − θ) ≤ 40

√
6U

n
√
a

×max

 d∑
j=1

|u|(j)
√

ln(2d/j) ,

||θ̂Slope − θ||2(
√
π/2 +

√
2 ln ∆−1)

)
(40)

with probability at least 1−∆.

Set

H(u) =
d∑
j=1

|u|(j)
√

ln(2d/j)

≤ ||u||2

√√√√ d0∑
j=1

ln(2d/j) +
d∑

j=d0+1

|u|(j)
√

ln(2d/j)

= H̃(u)

(41)

and

G(u) = ||θ̂Slope − θ||2
(√

π/2 +
√

2 ln ∆−1
)

(42)

The proof will now go along the lines of the proof of

Theorem 6.1 of [6] for Gaussian regression with necessary

adaptations to GLM and different normalization conditions on

the columns of X .

To prove (36) consider two cases.

Case 1. H̃(u) ≤ G(u). In this case

||u||2 ≤
||θ̂Slope − θ||2(

√
π/2 +

√
2 ln ∆−1)√∑d0

j=1 ln(2d/j)

and, therefore, combining (35) and (38)-(42) with probability

at least 1−∆ yields

KL(θ, θ̂Slope)

≤ 1

n
A

√
U
a

2c0
c0 − 1

||θ̂Slope − θ||2(
√
π/2 +

√
2 ln ∆−1)

≤ 1

2n

(
A2U
εa

(
2c0
c0 − 1

)2

(
√
π/2 +

√
2 ln ∆−1)2

+ε||θ̂Slope − θ||22
)

(43)

for any ε > 0.

Lemma 1 of [2] established the equivalence of the Kullback-

Leibler divergence KL(θ, θ̂Slope) and the squared quadratic

norm ||θ̂Slope − θ||2 under Assumption (A’):

L
2a
||θ̂Slope − θ||22 ≤ nKL(θ, θ̂Slope) ≤

U
2a
||θ̂Slope − θ||22

(44)
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Hence, taking ε = L/(2a) in (43) after a straightforward

calculus yields

KL(θ, θ̂Slope) ≤
8

n

c20
(c0 − 1)2

U
L
A2(

√
π/2 +

√
2 ln ∆−1)2

(45)

with probability at least 1−∆.

Case 2. H̃(u) > G(u). Using the definition of λj’s in (35)

and (38)-(42), with probability at least 1−∆ we have

KL(θ, θ̂Slope) ≤

1

n
40

√
6U
a

||u||2
√√√√ d0∑

j=1

ln(2d/j)

+
d∑

j=d0+1

|u|(j)
√

ln(2d/j)


+

1

n

√√√√ d0∑
j=1

λ2
j ||u||2 −

d∑
j=d0+1

λj |u|(j)


≤ 1

n

 2c0
c0 + 1

||u||2

√√√√ d0∑
j=1

λ2
j −

2

c0 + 1

d∑
j=d0+1

λj |u|(j)


(46)

The KL(θ, θ̂Slope) ≥ 0 and, therefore, the RHS of (46) is

necessarily positive. Thus,

d∑
j=1

|u|(j)
√

ln(2d/j) ≤ ||u||2

√√√√ d0∑
j=1

ln(2d/j)

+

d∑
j=d0+1

|u|(j)
√

ln(2d/j) ≤ (1 + c0)||u||

√√√√ d0∑
j=1

ln(2d/j)

and, therefore, by WRE(d0, c0) condition, (46) implies

KL(θ, θ̂Slope) ≤
1

n

2c0
c0 + 1

||u||2

√√√√ d0∑
j=1

λ2
j

≤ 1

n

2c0
c0 + 1

||θ̂Slope − θ||2
κ(c0, d0)

√√√√ d0∑
j=1

λ2
j

≤ 1

n

(
c20

ε(c0 + 1)2

∑d0
j=1 λ

2
j

κ2(c0, d0)
+ ε||θ̂Slope − θ||22

)
for any ε > 0. Taking ε = L/(4a) and exploiting the

equivalence between KL(θ, θ̂Slope) and ||θ̂Slope−θ||22 in (44)

imply that with probability at least 1−∆,

KL(θ, θ̂Slope) ≤
1

n

1

L
8ac20

(c0 + 1)2

∑d0
j=1 λ

2
j

κ2(c0, d0)

≤ 8

n

c20
(c0 − 1)2

U
L
A2 d0 ln(2de/d0)

κ2(c0, d0)
,

where we used the definition (35) of λj’s and the upper bound∑d0
j=1 ln(2d/j) ≤ d0 ln(2ed/d0) (see, e.g., (2.7) of [6]).

To prove the second statement (37) of the theorem denote

C∗ = 8A2 c20
(c0−1)2 and note that

C∗
1

n

U
L

max

{(√
π/2 +

√
2 ln ∆−1

)2

,
d0

κ2(d0, c0)
ln

(
2de

d0

)}
≤ C∗

1

n

U
L

max

{
2π, 8 ln ∆−1,

d0

κ2(d0, c0)
ln

(
2de

d0

)}
≤ C∗

1

n

U
L

×max

{
max

(
2π

ln(2d)
,

1

κ2(d0, c0)

)
d0 ln

(
2de

d0

)
, 8 ln ∆−1

}
≤ C∗

1

n

U
L

×max

{(
2π

ln(2d)
+

1

κ2(d0, c0)

)
d0 ln

(
2de

d0

)
, 8 ln ∆−1

}
(47)

Then, by integrating, (36) and (47) after a straightforward

calculus yield

EKL(θ, θ̂Slope) =

∫ ∞
0

P
(
KL(θ, θ̂Slope) ≥ t

)
dt

≤ C∗ 1

n

U
L

((
2π

ln(2d)
+

1

κ2(d0, c0)

)
d0 ln

(
2de

d0

)

+8

(
2de

d0

)− d08 max{ 2π
ln(2d)

,κ−2(d0,c0)}


≤ C∗ U
L

(
2π + 8

ln(2d)
+

1

κ2(d0, c0)

)
d0

n
ln

(
2de

d0

)

APPENDIX D

PROOF OF THEOREM 7

We first introduce several notations. Let ||g||L2
=

(
∫
X g

2(x)dx)1/2 be a standard L2-norm of a function g

and ||g||L2(q) = (
∫
X g

2(x)q(x)dx)1/2 be the L2-norm of g

weighted by the marginal distribution q of X. In addition, the

L∞-norm ||g||∞ = supx∈X |g(x)|.
Applying Theorem 3 of [5] for ψ(g) = g2/2, Assumption

(B1) implies that there exists C > 0 such that

E(η̂
M̂
, η∗) ≤ C

(
E||p̂

M̂
− p||2L2(q)

)α+1
α+2

(48)

Furthermore, let fβ(x, y) be the joint distribution of (X, Y )

for a given β, i.e. fβ(x, y) = p(x)y(1−p(x))1−yq(x), where

p(x) =
exp{βtx}

1+exp{βtx}
. Consider the square Hellinger distance

H2(Bin(1, p1), Bin(1, p2)) between two Bernoulli distribu-

tions with success probabilities p1 and p2. It is easy to verify

that H2(Bin(1, p1), Bin(1, p2)) ≥ (p1−p2)2

4(1−δ) ≥ (p1−p2)2

2 .
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Then for the square Hellinger distance d2
H(fβ1

, fβ2
) between

fβ1
and fβ2

we have

d2
H(fβ1

, fβ2
) =

∫
H2(Bin(1, p1(x)), Bin(1, p2(x))q(x)dx

≥ 1

2
||p1 − p2||2L2(q)

(49)

and from (48) it is, therefore, sufficient to bound the Hellinger

risk Ed2
H(f

β̂
M̂

, fβ).

We will show that the penalty (23) falls within a general

class of penalties considered in [27] and then apply their

Theorem 1 to find an upper bound for Ed2
H(f

β̂
M̂

, fβ).

Using the standard inequality ln(1 + t) ≤ t, under Assump-

tion (A1) we have

| ln fβ2
(x, y)− ln fβ1

(x, y)|

=

∣∣∣∣y ln
p2(x)

p1(x)
+ (1− y) ln

1− p2(x)

1− p1(x)

∣∣∣∣
≤ max

(∣∣∣∣ln p2(x)

p1(x)

∣∣∣∣ , ∣∣∣∣ln 1− p2(x)

1− p1(x)

∣∣∣∣)
≤ 1

δ
|p2(x)− p1(x)|

Define ρ(fβ1
, fβ2

) = || ln fβ2
− ln fβ1

||∞. Thus,

ρ(fβ1
, fβ2

) ≤ 1

δ
||p2 − p1||∞ (50)

For a given model M consider the set of coefficients

BM defined in Section II. One can easily verify that under

Assumption (A1), for any β1,β2 ∈ BM and the corresponding

p1(x), p2(x)

δ(1−δ)
∣∣(β2 − β1)tx

∣∣ ≤ |p2(x)− p1(x)| ≤ 1

4

∣∣(β2 − β1)tx
∣∣

(51)

for any x ∈ X .

In particular, (51) implies

||p2(x)− p1(x)| |L2(q) ≥ δ(1− δ)
√

(β2 − β1)tG(β2 − β1)

≥ δ(1− δ)
√
λmin(G) ||β2 − β1||2,

(52)

where recall that G = E(XXt) and λmin(G) > 0 is its

minimal eigenvalue.

For each β0 ∈ BM consider the corresponding Hellinger

ball Hfβ0

,r = {fβ : dH(fβ , fβ0
) ≤ r, β ∈ BM}. From

(49) and (52) it then follows that if fβ ∈ Hfβ0

,r, the

corresponding β ∈ BM lies in the Euclidean ball Bβ0,r
′ =

{β ∈ R|M | : ||β − β0||2 ≤ r′} with r′ =
√

2r

δ(1−δ)
√
λmin(G)

.

Furthermore, for any ||x||2 ≤ 1, (51) and Cauchy-Schwarz

inequality imply that |p2(x)− p1(x)| ≤ 1
4 ||β2 − β1||2 and,

therefore, by (50)

ρ(fβ1
, fβ2

) ≤ 1

4δ
||β2 − β1||2 (53)

Let N(Bβ0,r
′ , l2, ε) be the ε-covering number of Bβ0,r

′

w.r.t. l2-distance. It is well-known that N(Bβ0,r
′ , l2, ε) ≤(

1 + 2r′

ε

)|M |
≤
(

3r′

ε

)|M |
for any ε < r′.

Thus, for the ε-covering number N(Hfβ0

,r, ρ, ε) of Hfβ0

,r

w.r.t. the distance ρ(fβ1
, fβ2

), from (53) we have

N(Hfβ0

,r, ρ, ε) ≤ N(Bβ0,r
′ , l2, 4δε)

≤

(
3
√

2

4δ2(1− δ)
√
λmin(G)

r

ε

)|M |
The considered family of sparse logistic regression mod-

els satisfies then Assumption 1 of [27] with AM =
c

δ2(1−δ)
√
λmin(G)

for some c > 0 and mM = |M |.
Apply now their Theorem 1 for a penalized maximum

likelihood model selection procedure (3) with a complex-

ity penalty Pen(|M |) = C1 mM lnAM + C2 · CM ≤
C̃1 ln

(
1

δλmin(G)

)
|M | + C2|M | ln de

|M | , where CM =

|M | ln de
|M | , and the exact positive constants C1 and C2 are

given in the paper. Thus,

Ed2
H(f

β̂
M̂

, fβ) ≤ C̃ ln

(
1

δλmin(G)

)
Pen(d0)

n

To complete the proof note that one can always find a constant

C in the penalty (23) such that the resulting Pen(|M |) =

C ln
(

1
δλmin(G)

)
|M | ln de

|M | ≥ C̃1

(
1

δλmin(G)

)
|M | +

C2|M | ln de
|M | .
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[4] Barron, A., Birgé, L. and Massart P. (1999). Risk bounds for model
selection via penalization. Prob. Theory Relat. Fields, 113, 301-413.

[5] Bartlett, P.L., Jordan, M.I. and McAuliffe, J.D. (2006). Convexity,
classification, and risk bounds. J. Amer. Statist. Assoc., 101, 138–156.
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