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We attempt to recover an n-dimensional vector observed in white noise,
where n is large and the vector is known to be sparse, but the degree of
sparsity is unknown. We consider three different ways of defining sparsity
of a vector: using the fraction of nonzero terms; imposing power-law decay
bounds on the ordered entries; and controlling the �p norm for p small. We
obtain a procedure which is asymptotically minimax for �r loss, simultane-
ously throughout a range of such sparsity classes.

The optimal procedure is a data-adaptive thresholding scheme, driven by
control of the false discovery rate (FDR). FDR control is a relatively recent
innovation in simultaneous testing, ensuring that at most a certain expected
fraction of the rejected null hypotheses will correspond to false rejections.

In our treatment, the FDR control parameter qn also plays a determin-
ing role in asymptotic minimaxity. If q = limqn ∈ [0,1/2] and also qn >

γ/ log(n), we get sharp asymptotic minimaxity, simultaneously, over a wide
range of sparse parameter spaces and loss functions. On the other hand,
q = limqn ∈ (1/2,1] forces the risk to exceed the minimax risk by a factor
growing with q.

To our knowledge, this relation between ideas in simultaneous inference
and asymptotic decision theory is new.

Our work provides a new perspective on a class of model selection rules
which has been introduced recently by several authors. These new rules
impose complexity penalization of the form 2 · log(potential model size/
actual model sizes). We exhibit a close connection with FDR-controlling pro-
cedures under stringent control of the false discovery rate.

Received March 2000; revised May 2005.
1Presented at the 1999 IMS Annual Meeting in Baltimore, Maryland.
2Supported by Israel–USA BSF Grant 1999441.
3Supported by NSF Grants DMS-95-05151 and DMS-00-77621.
4Supported by AFOSR Grant MURI 95-P49620-96-1-0028.
5Supported by NIH Grants CA72028 followed by EB001988, a Guggenheim Fellowship and an

Adjunct Professorship at the Australian National University.
AMS 2000 subject classifications. Primary 62C20; secondary 62G05, 62G32.
Key words and phrases. Thresholding, wavelet denoising, minimax estimation, multiple compar-

isons, model selection, smoothing parameter selection.

584

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/009053606000000074
http://www.imstat.org
http://www.ams.org/msc/


FALSE DISCOVERY RATE THRESHOLDING 585

1. Introduction. The problem of model selection has attracted the attention
of both applied and theoretical statistics for as long as anyone can remember. In
the setting of the standard linear model, we have noisy data on a response variable
which we wish to predict linearly using a subset of a large collection of predictor
variables. We believe that good parsimonious models can be constructed using
only a relatively few variables from the available ones. In the spirit of the modern,
computer-driven era, we would like a simple automatic procedure which is data
adaptive, can find a good parsimonious model when one exists and is effective for
very different types of data and models.

There has been an enormous range of contributions to this problem, so large
in fact that it would be impractical to summarize here. Some key contributions,
mentioned further below, include the AIC, BIC and RIC model selection proposals
[4, 22, 31, 35]. Key insights from this vast literature are:

(a) the tendency of certain rules (notably AIC), when used in an exhaus-
tive model search mode, to include too many irrelevant predictors—Breiman and
Freedman [11];

(b) the tendency of rules which do not suffer from this problem (notably RIC)
to place evidentiary standards for inclusion in the model that are far stricter than
the time-honored “individually significant” single coefficient approaches.

In this paper we consider a very special case of the model selection problem
in which a full decision-theoretic analysis of predictive risk can be carried out. In
this setting, model parsimony can be concretely defined and utilized, and we ex-
hibit a model selection method enjoying optimality over a wide range of parsimony
classes. While the full story is rather technical, at the heart of the method is a sim-
ple practical method with an easily understandable benefit: the ability to prevent
the inclusion of too many irrelevant predictors—thus improving on AIC—while
setting lower standards for inclusion—thus improving on RIC. The optimality re-
sult assures us that in a certain sense the method is unimprovable.

Our special case is the problem of estimating a high-dimensional mean vector
which is sparse, when the nature and degree of sparsity are unknown and may
vary through a range of possibilities. We consider three ways of defining sparsity
and will derive asymptotically minimax procedures applicable across all modes of
definition.

Our asymptotically minimax procedures will be based on a relatively recent
innovation—false discovery rate (FDR) control in multiple hypothesis testing. The
FDR control parameter plays a key role in delineating superficially similar cases
where one can achieve asymptotic minimaxity and where one cannot.

To our knowledge, this connection between developments in these two impor-
tant subfields of statistics is new. Historically, the multiple hypothesis testing lit-
erature has had little to do with notions like minimax estimation or asymptotic
minimaxity in estimation.
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The procedures we propose will be very easy to implement and run quickly
on computers. This is in sharp contrast to certain optimality results in minimax-
ity which exhibit optimal procedures that are computationally unrealistic. Finally,
because of recent developments in harmonic analysis—wavelets, wavelet packets,
and so on—these results are of immediate practical significance in applied settings.
Indeed, wavelet analysis of noisy signals can result in exactly the kind of sparse
means problem discussed here.

Our goal in this introduction is to make clear to the nondecision-theorist the
motivation for these results, the form of a few select results and some of the im-
plications. Later sections will give full details of the proofs and the methodology
being studied here.

1.1. Thresholding. Consider the standard multivariate normal mean problem:

yi = µi + σnzi, zi
i.i.d.∼ N(0,1), i = 1, . . . , n.(1.1)

Here σn is known, and the goal is to estimate the unknown vector µ lying in a
fixed set �n. The index n counts the number of variables and is assumed large.
The key extra assumption, to be quantified later, is that the vector µ is sparse:
only a small number of components are significantly large, and the indices, or
locations of these large components are not known in advance. In such situations,
thresholding will be appropriate, specifically, hard thresholding at threshold tσn,
meaning the estimate µ̂ whose ith component is

µ̂i = ηH (yi, t) =
{

yi, |yi | ≥ tσn,
0, else.

(1.2)

A compelling motivation for this strategy is provided by wavelet analysis, since
the wavelet representation of many smooth and piecewise smooth signals is sparse
in precisely our sense [18]. Consider, for example, the empirical wavelet coeffi-
cients in Figure 1(c). Model (1.1) is quite plausible if we consider the coefficients
to be grouped level by level. Within a level, the number of large coefficients is
small, though the relative number clearly decreases as one moves from coarse to
fine levels of resolution.

1.2. Sparsity. In certain subfields of signal and image processing, the wavelet
coefficients of a typical object can be modeled as a sparse vector; the interested
reader might consult literature going back to Field [21], extending through DeVore,
Jawerth and Lucier [12], Ruderman [33], Simoncelli [39] and Huang and Mumford
[28]. A representative result was given by Simoncelli, who found that in looking
at a database of images, the typical behavior of histograms of wavelet coefficients
at a single resolution level of the wavelet pyramid was highly structured, with a
sharp peak at the origin and somewhat heavy tails. In short, many coefficients are
small in amplitude while a few are very large.
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FIG. 1. (a) Sample NMR spectrum provided by A. Maudsley and C. Raphael, n = 1024, and dis-
cussed in [18]. (b) Reconstruction using inverse discrete wavelet transform. (c) Empirical wavelet
coefficients wjk displayed by nominal location and scale j , computed using a discrete orthogo-
nal wavelet transform and the Daubechies near symmetric filter of order N = 6. (d) Wavelet co-
efficients after hard thresholding using the FDR threshold described at (1.8), with estimated scale
σ̂ = med.abs.dev.(w9k)/0.6745, a resistant estimate of scale at level 9—for details on σ̂ , see [18].

Wavelet analysis of images is not the only place where one meets transforms
with sparse cofficients. There are several other signal processing settings—for ex-
ample, acoustic signal processing—where, when viewed in an appropriate basis,
the underlying object has sparse coefficients [5].

In this paper we consider several ways to define sparsity precisely.
The most intuitive notion of sparsity is simply that there is a relatively small pro-

portion of nonzero coefficients. Define the �0 quasi-norm by ‖x‖0 = #{i :xi �= 0}.
Fixing a proportion η, the collection of sequences with at most a proportion η of
nonzero entries is

�0[η] = {µ ∈ R
n :‖µ‖0 ≤ ηn}.(1.3)
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By analogy with night-sky images, we will call nearly black a setting where the
fraction of nonzero entries η ≈ 0 [17].

Sparsity can also mean that there is a relatively small proportion of relatively
large entries. Define the decreasing rearrangement of the amplitudes of the entries
so that

|µ|(1) ≥ |µ|(2) ≥ · · · ≥ |µ|(n);
we control the entries by a termwise power-law bound on the decreasing rearrange-
ments:

|µ|(k) ≤ C · k−β, k = 1,2, . . . .

For reasons which will not be immediately obvious, we work with p = 1/β in-
stead, and call such a constraint a weak-�p constraint. The interesting range is p

small, yielding substantial sparsity. One can check whether a vector obeys such a
constraint by plotting the decreasing rearrangement on semilog axes, and compar-
ing the plot with a straight line of slope −1/p. Certain values of p < 2 provide a
reasonable model for wavelet coefficients of real-world images [12].

Formally, a weak-�p ball of radius η is defined by requiring that the ordered
magnitudes of components of µ decay quickly:

mp[η] = {
µ ∈ R

n : |µ|(k) ≤ ηn1/pk−1/p for all k = 1, . . . , n
}
.(1.4)

Weak �p has a natural “least-sparse” sequence, namely,

µ̄k = ηn1/pk−1/p, k = 1, . . . , n(1.5)

(and its permutations). We also measure sparsity using �p norms with p small:

‖µ‖p =
(

n∑
i=1

|µi |p
)1/p

.(1.6)

That small p emphasizes sparsity may be seen by noting that the two vectors

(1,0, . . . ,0) and (n−1/p, . . . , n−1/p)

have equivalent �p norms, but when p is small the components of the latter dense
vector are all negligible. Strong-�p balls of small average radius η are defined so:

�p[η] =
{
µ ∈ R

n :
1

n

n∑
i=1

|µi |p ≤ ηp

}
.

If we refer to �p without qualification—weak or strong—we mean strong �p .
There are important relationships between these classes. Note that as p → 0,

the �p norms approach �0: ‖µ‖p
p → ‖µ‖0. Weak-�p balls contain the correspond-

ing strong-�p balls, but only just:

�p[η] ⊂ mp[η] �⊂ �p′ [η], p′ > p.

1.3. Adapting to unknown sparsity. Estimation of sparse normal means
over �p balls has been carefully studied in [15], with the result that much is known
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FIG. 2. Gaussian shift model (1.1) with n = 10,000 and σn = 1. There are n0 = n1/4 = 10 nonzero
components µi = µ0 = 5.21. Thus β = 1/4. Stars show ordered data |y|(k) and solid circles the cor-

responding true means. Dotted horizontal line is “correct” threshold t1/4 =
√

2(1 − 1
4 ) logn = 3.72,

and dotted vertical lines show magnitude of the error committed with t1/4. Solid horizontal line is a

“misspecified” threshold t1/2 =
√

2(1 − 1
2 ) logn = 3.03, which would be the appropriate choice for

n0 = n1/2 = 100 nonzero components. Solid vertical lines show the additional absolute error suf-
fered by using this misspecified threshold. Quantitatively, the absolute error ‖µ̂−µ‖1 using the right
threshold is 14.4 versus 70.0 for the wrong threshold. For �2 error ‖µ̂−µ‖2

2, the right threshold has
error 38.8 and the wrong one has error 221.1.

about asymptotically minimax strategies for estimation. In essence, if we know the
degree of sparsity of the sequence, then it turns out that thresholding is indeed
asymptotically minimax, and there are simple formulas for optimal thresholds.

Figure 2 gives an example. One simple model of varying sparsity levels sets
n0 = nβ nonzero components out of n, 0 < β < 1. Theory reviewed in Section 3
suggests that a threshold of about tβ = σn

√
2(1 − β) logn is appropriate for such a

sparsity level. Suppose that β is unknown, and examine the consequences of using
misspecified thresholds tγ , γ �= β . The solid lines in Figure 2 show the increased
absolute error incurred using t1/2 when t1/4 is appropriate—the total absolute er-
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ror is five times worse. For squared error, the misspecified threshold produces a
discrepancy that is larger by nearly a factor of 6.

Typically we could not know in advance the degree of sparsity of the estimand,
so we prefer methods adapting automatically to the unknown degree of sparsity.

1.4. FDR-controlling procedures. Benjamini and Hochberg [6] proposed a
new principle for design of simultaneous testing procedures—control of the false
discovery rate (FDR). In a setting where one is testing many hypotheses, the prin-
ciple imposes control on the expected ratio of the number of erroneously rejected
hypotheses to the total number rejected. The exact definition and basic properties
of the FDR, as well as examples of procedures holding it below a specified level q ,
are reviewed in Section 2. In the context of estimation, a thresholding procedure,
which reflects the step-up FDR controlling procedure in [6], was first proposed
in [1]. The procedure is quite simple:

Form the order statistics of the magnitudes of the observed estimates,

|y|(1) ≥ |y|(2) ≥ · · · ≥ |y|(k) ≥ · · · ≥ |y|(n),(1.7)

and compare them to the series of right tail Gaussian quantiles tk = σnz(q/2 ·k/n).
Let k̂F be the largest index k for which |y|(k) ≥ tk ; threshold the estimates at (the
data-dependent) threshold t

k̂F
= t̂F ,

µ̂F,k =
{

yk, |yk| ≥ t̂F ,
0, else.

(1.8)

The FDR threshold is inherently adaptive to the sparsity level: it is higher for
sparse signals and lower for dense ones. In the context of model selection, control
of the FDR means that when the model is discovered to be complex, so that many
variables are needed, we should not be concerned unduly about occasional inclu-
sion of unnecessary variables; this is bound to happen. Instead, it is preferable to
control the expected proportion of erroneously included variables. In a limited sim-
ulation study in the context of wavelet estimation, Abramovich and Benjamini [2]
demonstrated the good adaptivity properties of the FDR thresholding procedure as
reflected in relative mean square error performance.

In order to demonstrate the adaptivity of FDR thresholding, Figure 3 illustrates
the results of FDR thresholding at two different sparsity levels. In the first, sparser,
case a higher threshold is chosen. Furthermore, the fraction of discoveries (coef-
ficients above threshold) that are false discoveries (coming from coordinates with
true mean 0) is roughly similar in the two cases. This is consistent with the fun-
damental result of Benjamini and Hochberg [6] that the FDR procedure described
above controls the false discovery rate below level q , whatever be the configura-
tions of means µ ∈ R

n, n ≥ 1.
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FIG. 3. (a) 10 out of 10,000. µi = µ0
.= 5.21 for i = 1, . . . , n0 = 10 and µi = 0 if

i = 11,12, . . . , n = 10,000. Data yi from model (1.1), σn = 1. Solid line: ordered data |y|(k). Solid
circles: true unobserved mean value µi corresponding to observed |y|(k). Dashed line: FDR quan-

tile boundary tk = z(q/2 · k/n), q = 0.05. Last crossing at k̂F = 12 producing threshold t̂F = 4.02.
Thus |y|(10) and |y|(12) are false discoveries out of a total of k̂F = 12 discoveries. The empirical

false discovery rate ˆFDR = 2/12. (b) 100 out of 10,000. µi = µ0
.= 4.52 for i = 1, . . . , n0 = 100;

otherwise zero. Same FDR quantile boundary, q = 0.05. Now there are k̂F = 84 discoveries, yielding
t̂F = 3.54 and ˆFDR = 5/84.

1.5. Certainty-equivalent heuristics for FDR-based thresholding. How can
FDR multiple-testing ideas be related to the performance of the corresponding
estimator? Here we sketch a simple heuristic.

Consider an “in-mean” analysis of FDR thresholding. In the FDR definition,
replace the observed data |y|(k) by the mean values µ̄k , assumed to be already de-
creasing. Consider a pseudo-FDR index k∗(µ̄), found assuming σn = 1, by solving
for the crossing point

µ̄k∗ = tk∗ .

Consider the case where the object of interest obeys the weak-�p sparsity con-
straint µ ∈ mp[ηn]. Weak �p has a natural “extreme” sequence, namely (1.5).
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Consider the “in-mean” behavior at this extremal sequence; the crossing point re-
lation (1.5) yields

ηn(n/k∗)1/p = tk∗ .

Using the relation tk ∼ √
2 logn/k, valid for k = o(n), one sees quickly that

tk∗ ∼
√

2 logη
−p
n ;

the right-hand side of this display is asymptotic to the correct minimax threshold
for weak- and strong-�p balls of radius ηn!

Thus, FDR, in a heuristic certainty-equivalent analysis, is able to determine the
threshold appropriate to a given signal sparsity. Further, this calculation makes no
reference to the loss function, and so we might hope that the whole range 0 < r ≤ 2
of �r error measures is covered.

1.6. Main results. Given an �r error measure and �n ⊂ R
n, the worst-case

risk of an estimator µ̂ over �n is

ρ̄(µ̂,�n) = sup
µ∈�n

Eµ‖µ̂ − µ‖r
r .(1.9)

The parameter spaces of interest to us will be those introduced earlier:

(i) �n = �0[ηn] (“nearly black”),
(ii) �n = mp[ηn],0 < p < r (weak-lp balls), and

(iii) �n = �p[ηn],0 < p < r (strong-lp balls).

In these cases we will need to have ηn → 0 with increasing n, reflective of increas-
ing sparsity.

For a given �n, the minimax risk is the best attainable worst-case risk,

Rn(�n) = inf
µ̂

ρ̄(µ̂,�n);(1.10)

the infimum covers all estimators (measurable functions of the data). Any particu-
lar estimator such as FDR must have ρ̄(µ̂F ,�n) ≥ Rn(�n), but we might ask how
inefficient µ̂F is relative to the “benchmark” for �n provided by Rn(�n).

THEOREM 1.1. Let y ∼ Nn(µ,σ 2
n I ) and the FDR estimator µ̂F be defined

by (1.8). In applying the FDR estimator, the FDR control parameter (qn, say) may
depend on n, but suppose this has a limit q ∈ [0,1). In addition, suppose qn ≥
γ /log(n) for some γ > 0 and all n ≥ 1.

Use the �r risk measure (1.9) where 0 ≤ p < r ≤ 2. Let �n be one of the para-
meter spaces detailed above with η

p
n ∈ [n−1 log5 n,n−δ], δ > 0. Then as n → ∞,

sup
µ∈�n

ρ(µ̂F ,µ) = Rn(�n)

{
1 + urp

(2q − 1)+
1 − q

+ o(1)

}
,

where urp = 1 and urp = 1 − (p/r) for strong- and weak-lp balls, respectively.
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Hence, if the FDR control parameter q ≤ 1/2, ρ̄(µ̂F ,�n) ∼ Rn(�n) in the
sense that the ratio approaches 1 as n → ∞. Otherwise, ρ̄(µ̂F ,�n) ∼ c(q)Rn(�n)

for an explicit c(q) > 1 growing with q .
In short, Theorem 1.1 establishes the asymptotic minimaxity of the FDR esti-

mator in the setting of (1.1)—provided we control false discoveries so that there
are more true discoveries than false ones. Moreover, this minimaxity is adaptive
across various losses and sparse parameter spaces.

This exhibits a tighter connection between false discovery rate ideas and adap-
tive minimaxity than one might have expected. The key parameter in the FDR
theory—the rate itself—seems to be diagnostic for performance.

1.7. Interpretations. Two remarks help place the above result in context.

1.7.1. Comparison with other estimators. The result may be compared to tra-
ditional results in the estimation of the multivariate normal mean. Summarizing
results given in [15]:

(i) Linear estimators attain the wrong rates of convergence when 0 < p < r

over these parameter spaces;
(ii) The James–Stein estimator, which is essentially a linear estimator with

data-determined shrinkage factor, has the same defect as linear estimators;
(iii) Thresholding at a fixed level, say σn

√
2 logn, does attain the right rates,

but with the wrong constants for 0 < p < r ;
(iv) Stein’s unbiased risk estimator (SURE) directly optimizes the �2 error, and

is adaptive for r = 2 and 1 < p ≤ 2 [16]. However, there appears to be a major
technical (empirical process) barrier to extending this result to p ≤ 1, and indeed,
instability has been observed in such cases in simulation experiments [16]. Fur-
ther, there is no reason to expect that optimizing an �2 criterion should also give
optimality for �r error measures, p < r < 2.

In short, traditional estimators are not able to achieve the desired level of adap-
tation to unknown sparsity. On the other hand, recent work by Johnstone and
Silverman [30], triggered by the present paper, exhibits an empirical Bayes
estimator—EBayesThresh—which seems, in simulations, competitive with FDR
thresholding, although the theoretical results for sparse cases are currently weaker.

1.7.2. Validity of simultaneous minimaxity. Minimax estimators are often crit-
icized as being complicated, counterintuitive and distracted by irrelevant worst
cases. An often-cited example is p̂ = [x + √

n/2]/[n + √
n ] for estimating a

success probability p ∈ [0,1] from X ∼ Bin(n,p). Although this estimator is
minimax for estimating p under squared-error loss, “everybody” agrees that the
common-sense estimator x̄ = x/n is “obviously better”—better at most p and
marginally worse only at p near 1/2.

Perhaps surprisingly, simultaneous (asymptotic) minimaxity seems to avoid
such objections. Instead, to paraphrase an old dictum, it shifts the focus from an
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“exact solution to the wrong problem” to “an approximate solution to the right
problem.” To explain this, note that to develop a standard minimax solution, one
starts with parameter space � and error measure ‖·‖ and finds a minimax estimator
µ̂�,‖·‖ attaining the minimum in (1.10). This estimator may indeed be unsatisfac-
tory in practice, for example, because it may depend on aspects of � that will not
be known, or may be incorrectly specified.

In contrast, we begin here with an a priori reasonable estimator µ̂F whose de-
finition does not depend on the imposed ‖ · ‖ and the presumably unknown �n.
Adaptive minimaxity for q ≤ 1/2—as established for µ̂F in Theorem 1.1—shows
that, for a large class of relevant parameter spaces �n and error measures ‖ · ‖,
ρ̄(µ̂n,�n) ∼ Rn(�n). In other words, the prespecified estimator µ̂n is flexible
enough to be approximately an optimal solution in many situations of very differ-
ent type (varying sparsity degree p, sparsity control ηn and error measure r in the
FDR example).

Using large n asymptotics to exhibit approximately minimax solutions for finite
n also renders the theory more flexible. For example, in the binomial setting cited
earlier, the standard estimator x̄ = x/n, while not exactly minimax for finite n, is
asymptotically minimax. More: if we consider in the binomial setting the parame-
ter spaces �[a,b] = {p : a ≤ p ≤ b}, then x̄ is simultaneously asymptotically mini-
max for a very wide range of parameter spaces—each �[a,b] for 0 < a < b < 1—
whereas p̂ is asymptotically minimax only for special cases a < 1/2 < b. In short,
whereas minimaxity violates common sense in the binomial case, simultaneous
asymptotic minimaxity agrees with it perfectly.

1.8. Penalized estimators. At the center of our paper is the study, not of µ̂F ,
but of a family of complexity-penalized estimators. These yield approximations to
FDR-controlling procedures, but seem far more amenable to direct mathematical
analysis. Our study also allows us to exhibit connections of FDR control to several
other recently proposed model selection methods.

A penalized estimator is a minimizer of µ̃ �→ K(µ̃, y), where

K(µ,y) = ‖y − µ‖2
2 + Pen(µ).(1.11)

If the penalty term Pen(µ) takes an �p form, Pen(µ) = λ‖µ‖p
p , familiar estimators

result: p = 2 gives linear shrinkage µ̂i = (1 + λ)−1yi , while p = 1 yields soft
thresholding µ̂i = (sgnyi)(|yi | − λ/2)+; for p = 0, Pen(µ) = λ‖µ‖0 gives hard
thresholding µ̂i = yiI {|yi | ≥ λ}.

Penalized FDR results from modifying the penalty to

Pen(µ) =
‖µ‖0∑
l=1

t2
l .

Denote the resulting minimizer of (1.11) by µ̂2. For small ‖µ‖0, Pen(µ) ∼
t2‖µ‖0

· ‖µ‖0. It therefore has the flavor of an �0 penalty, but with the regularization
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parameter λ replaced by the squared Gaussian quantile appropriate to the com-
plexity ‖µ‖0 of µ. Further, µ̂2 is indeed a variable hard threshold rule. If k̂2 is a
minimizer of

Sk =
n∑

l=k+1

y2
(l) +

k∑
l=1

t2
l ,

then

µ̂2,i = yiI
{|yi | ≥ t

k̂2

}
.

The connection with original FDR arises as follows: k̂2 is the location of the
global minimum of Sk , while the FDR index k̂F is the rightmost local mini-
mum. Similarly, we define k̂G as the leftmost local minimum of Sk : evidently
k̂G ≤ k̂2 ≤ k̂F . For future reference, we will call k̂G the step-down FDR index.
In practice, these indices are often identical. For theoretical purposes, we show
(Proposition 5.1 and Theorem 9.3) that k̂F − k̂G is uniformly small enough on our
sparse parameter spaces �n that asymptotic minimaxity conclusions for µ̂2 can be
carried over to µ̂F .

To extend this story from �2 to �r losses, we make a straightforward translation:

µ̂r = arg min
µ

‖y − µ‖r
r +

‖µ‖0∑
l=1

t rl .(1.12)

Again it follows that k̂r ∈ [k̂G, k̂F ]. Our strategy is, first, to prove �r -loss optimal-
ity results using µ̂r , and later, to draw parallel conclusions for the original FDR
rule µ̂F .

Why is the penalized form helpful? In tandem with the definition of µ̂r as the
minimizer of an empirical complexity µ̃ �→ K(µ̃, y), we can define the minimizer
µ0 of the theoretical complexity µ̃ �→ K(µ̃,µ) obtained by replacing y by its
expected value µ. By the very definition of µ̂r , we have K(µ̂r, y) ≤ K(µ0, y),
and by simple manipulations one arrives (in the �2 case here) at the basic bound,
valid for all µ ∈ R

n:

E‖µ̂2 − µ‖2 ≤ K(µ0,µ) + 2E〈µ̂2 − µ,z〉 − Eµ Pen(µ̂2).(1.13)

Analysis of the individual terms on the right-hand side is very revealing. Con-
sider the theoretical complexity term K(µ0,µ). For �n of type (i)–(iii) in the pre-
vious section, it turns out that the worst-case theoretical complexity is asymptotic
to the minimax risk! Thus

sup
µ∈�n

K(µ0,µ) ∼ Rn(�n), n → ∞.(1.14)

The argument for this relation is rather easy, and will be given in Section 9.2. The
remaining term 2E〈µ̂2 − µ,z〉 − Eµ Pen(µ̂2) in (1.13) has the flavor of an error
term of lower order. Detailed analysis is actually rather hard work, however. Sec-
tion 9.3 overviews a lengthy argument, carried out in the immediately following
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sections, showing that this error term is indeed negligible over �n if q ≤ 1/2, and
of the order of Rn(�n) otherwise.

Plausibility for simultaneous asymptotic minimaxity of FDR is thus laid out
for us very directly within the penalized FDR point of view. A full justification
requires study of the theoretical complexity and the error term, respectively. This
fact permeates the architecture of the arguments to follow.

1.9. Penalization by 2k log(n/k). Penalization connects our work with a vast
literature on model selection. Dating back to Akaike [4], it has been popular to
consider model selection rules of the form

k̂ = arg min
k

RSS(k) + 2σ 2kλ,

where λ is the penalization parameter and RSS(k) stands for “the best residual sum
of squares ‖y − m‖2

2 for a model m with k parameters.” The AIC model selection
rule takes λ = 1. Schwarz’s BIC model selection rule takes λ = log(n)/2, where n

is the sample size. Foster and George’s RIC model selection rule takes λ = log(p),
where p is the number of variables available for potential inclusion in the model.

Several independent groups of researchers have recently proposed model selec-
tion rules with variable penalty factors. For convenience, we can refer to these as
2 log(n/k) factors, yielding rules of the form

k̂ = arg min
k

RSS(k) + 2σ 2
n k log(n/k).(1.15)

(a) Foster and Stine [23] arrived at a penalty σ 2 ∑k
j=1 2 log(n/j) from infor-

mation-theoretic considerations. Along sequences of k and n with n → ∞ and
k/n → 0, 2k log(n/k) ∼ ∑k

j=1 2 log(n/j).

(b) For prediction problems, Tibshirani and Knight [42] proposed model se-
lection using a covariance inflation criterion which adjusts the training error by
the average covariance of predictions and responses on permuted versions of the
dataset. In the case of orthogonal regression, their proposal takes the form of a
complexity-penalized residual sum of squares, with the complexity penalty ap-
proximately of the above form, but larger by a factor of 2: 2σ 2

n

∑k
j=1 2 log(n/j).

There are intriguing parallels between the covariance expression for the optimism
[19] in [42], formula (6), and the complexity bound (1.13).

(c) George and Foster [25] adopted an empirical Bayes approach, drawing the
components µi independently from a mixture prior (1 − w)δ0 + wN(0,C) and
then estimating the hyperparameters (w,C) from the data y. They argued that the
resulting estimator penalizes the addition of a kth variable by a quantity close to
2 log(n+1

k
− 1).

(d) Birgé and Massart [10] studied complexity-penalized model selection for
a class of penalty functions, including penalties of the form 2σ 2

n k log(n/k). They
developed nonasymptotic risk bounds for such procedures over �p balls.
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Evidently, there is substantial interest in the use of variable-complexity penal-
ties. There is also an extensive similarity of 2k log(n/k) penalties to FDR penal-
ization. Penalized FDR µ̂2 from (1.12) can be written in penalized form with a
variable-penalty factor λk,n,

k̂2 = arg min
k

RSS(k) + 2σ 2
n kλk,n,

where

λk,n = 1

2k

k∑
l=1

z2
(

lq

2n

)
∼ z2

(
kq

2n

)/
2

∼ log(n/k) − 1

2
log log(n/k) + c(q, k, n)

for large n, k = o(n) and bounded remainder c [cf. (12.7) below]. FDR penal-
ization is thus slightly weaker than 2k log(n/k) penalization. We could also say
that 2k log(n/k) penalties have a formal algebraic similarity to FDR penalties, but
require a variable q = q(k,n) that is both small and decreasing with n. This per-
spective on 2k log(n/k) penalties suggests the following conjecture:

CONJECTURE 1.2. In the setting of this paper, where “model selection” means
adaptive selection of nonzero means, and the underlying estimand µ belongs to
one of the parameter spaces as detailed in Theorem 1.1, the procedure (1.15) is
asymptotically minimax, simultaneously over the full range of parameter spaces
and losses covered in that theorem.

In short, although the 2k log(n/k) rules were not proposed from a formal
decision-theoretic perspective, they might well exhibit simultaneous asymptotic
minimaxity. We suspect that the methods developed in this paper may be extended
to yield a proof of this conjecture.

1.10. Take-away messages. The theoretical results in this paper suggest the
following two messages:

TAM 1. FDR-based thresholding gives an optimal way of adapting to unknown
sparsity: choose q ≤ 1/2. In words, aiming for fewer false discoveries
than true ones yields sharp asymptotic minimaxity.

TAM 2. Recently proposed 2k log(n/k) penalization schemes, when used in a
sparse setting, may be viewed as similar to FDR-based thresholding.

1.11. Simulations. We tested FDR thresholding and related procedures in sim-
ulation experiments. The outcomes support TAM’s 1 and 2.

Table 1 displays results from simulations at the so-called least-favorable case
µk = min{n−1/2k−1/p,

√
(2 − p) logn } for the weak-�p parameter ball [cf. re-

mark following (9.13)]. Here p = 1.5, r = 2, n = 1024 and n = 65,536, σ = 1.
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TABLE 1
Ratios of MSE(FDR)/MSE(t∗(p,n)), p = 3/2

q Step-up FDR Penalized FDR Step-down FDR

n = 1024 0.01 1.3440 1.3440 1.3440
0.05 1.3283 1.3293 1.3334
0.25 1.2473 1.2482 1.2512
0.40 1.2171 1.2171 1.2173
0.50 1.2339 1.2335 1.2321
0.75 1.4159 1.4132 1.4100
0.99 1.9810 1.9744 1.9687

n = 65,536 0.01 1.3370 1.3372 1.3374
0.05 1.3178 1.3180 1.3183
0.25 1.2276 1.2277 1.2277
0.40 1.1889 1.1889 1.1890
0.50 1.1937 1.1936 1.1936
0.75 1.5122 1.5118 1.5114
0.99 4.0211 4.0189 4.0174

The table records the ratio of squared-error risk of FDR to squared-error risk of the
asymptotically optimal threshold t∗ = t∗(p,n) = √

(2 − p) logn for that parame-
ter ball (cf. Section 3.3 below). All results derive from 100 repeated experiments.
The standard errors of the MSE’s were between 0.001 and 0.003 for n = 1024 and
between 0.0005 and 0.0007 for n = 65,536.

These results should be compared with the behavior of 2 log(n/k)-style penal-
ties. For the estimator of Foster and Stine [23], minimizing RSS+σ 2 ∑k

j=1 2 ×
log(n/j), we have that for n = 1024, MSE/MSE(t∗) = 1.2308 while for n =
65,536, MSE/MSE(t∗) = 1.2281. This is consistent with behavior that would re-
sult from FDR control with q = 0.3 for n = 1024 and q = 0.25 for n = 65,536.

In Figure 4, we display simulation results under a range of sample sizes. Appar-
ently the minimum MSE occurs somewhere below q = 1/2.

We propose the following interpretations:

INT 1. FDR procedures with q ≤ 1/2 have a risk which is a reasonable multiple of
the “ideal risk” based on the threshold which would have been optimal for
the given sparsity of the object. The ratios in Table 1 do not differ much for
various q ≤ 1/2, which demonstrates robustness of the FDR procedures
toward the choice of q .

INT 2. An FDR procedure with q near 1/2 appears to outperform q-small proce-
dures at this configuration, achieving risks which are roughly comparable
to the ideal risk.

INT 3. Avoid FDR procedures with large q , in favor of q ≤ 1/2.

1.12. Contents. The paper to follow is far more technical than the Introduc-
tion, in our view necessarily so, since much of the work concerns refined properties
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FIG. 4. Ratios of MSE(FDR)/MSE(t∗(p,n)), p = 3/2.

of fluctuations in the extreme upper tails of the normal order statistics. However,
Sections 2–4 should be accessible on a first reading. They review pertinent infor-
mation about FDR-controlling procedures and about minimax estimation over �p

balls, and parse our main result into an upper bound result and a lower bound result.
Section 4 then gives an overview of the paper to follow, which carries out rigorous
proofs of the lower bound (Sections 5–8, 13) and the upper bound (Sections 9–11).

2. The false discovery rate. The field of multiple comparisons has developed
many techniques to control the increased rate of type I error when testing a family
of n hypotheses H0i versus H1i , i = 1,2, . . . , n. The traditional approach is to
control the familywise error rate at some level α, that is, to use a testing procedure
that controls at level α the probability of erroneously rejecting even one true H0i .
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The venerable Bonferroni procedure test ensures this by testing each hypothesis at
the α/n level.

The Bonferroni procedure is criticized as being too conservative, since it often
lacks power to detect the alternative hypotheses. Much research has been devoted
to devise more powerful procedures: tightening the probability inequalities, and in-
corporating the dependency structure when it is known. For surveys, see Hochberg
and Tamhane [26] and Shaffer [37]. In one fundamental sense the success has been
limited. Generally the power deteriorates substantially when the problem is large.
As a result, many practitioners avoid altogether using any multiplicity adjustment
to control for the increased type I errors caused by simultaneous inference.

Benjamini and Hochberg [6] argued that the control of the familywise error rate
is a very conservative goal which is not always necessary. They proposed to con-
trol the expected ratio of the number of erroneously rejected hypotheses to the
number rejected—the false discovery rate (FDR). Formally, for any fixed config-
uration of true and false hypotheses, let V be the number of true null hypotheses
erroneously rejected, among the R rejected hypotheses. Let Q be V/R if R > 0,
and 0 if R = 0; set FDR = E{Q}, where the expectation is taken according to the
same configuration. The FDR is equivalent to the familywise error rate when all
tested hypotheses are true, so an FDR-controlling procedure at level q controls the
probability of making even one erroneous discovery in such a situation. Thus for
many problems the value of q is naturally chosen at the conventional levels for tests
of significance. The FDR of a multiple-testing procedure is never larger than the
familywise error rate. Hence controlling FDR admits more powerful procedures.

Here is a simple step-up FDR-controlling procedure. Let the individual
P -values for the hypotheses H0i be arranged in ascending order: P[1] ≤ · · · ≤ P[n].
Compare the ordered P -values to a linear boundary i/nq , and note the last cross-
ing time,

k̂F = max
{
k :P[k] ≤ (k/n)q

}
.(2.1)

The FDR multiple-testing procedure is to reject all hypotheses H(0i) correspond-
ing to the indices i = 1, . . . , k̂F . If k̂B denotes the number of P -values below the
Bonferroni cutoff q/n, it is apparent that k̂F ≥ k̂B and hence that the FDR test
conducted at the same level is necessarily less conservative.

Benjamini and Hochberg [6] considered the above testing procedure in the sit-
uation of independent hypothesis tests on many individual means. They consid-
ered the two-sided P -values from testing that each individual mean was zero.
They found that the false discovery rate of the above multiple-testing procedure
is bounded by q whatever be the number of true null hypotheses n0 or the config-
uration of the means under the alternatives:

FDR = Eµ{Q} = qn0/n ≤ q for all µ ∈ R
n.(2.2)

The multiple-testing procedure (2.1) was proposed informally by Elkund, by
Seeger [36] and much later independently by Simes [38]. Each time it was ne-
glected because it was shown not to control the familywise error rate [27, 36]. In
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the absence of the FDR concept, it was not understood why this procedure could
be a good idea. After introduction of the FDR concept, it was recognized that k̂F

had the FDR property, but also that other procedures offered FDR control—most
importantly for us, the step-down estimator k̂G [34]. This rule, introduced in Sec-
tion 1, will also be referred to frequently below, and our theorems are also applica-
ble to thresholding estimators based upon it.

As noted in the Introduction, Abramovich and Benjamini [1] adapted FDR test-
ing to the setting of estimation, in particular of wavelet coefficients of an unknown
regression function. In this setting, given n data on a unknown function observed
in Gaussian white noise, we are testing n independent null hypotheses on a func-
tion’s wavelet coefficients, µi = 0. Using the above formulation with two-sided
P -values, we obtain (1.8).

Previously in the same setting of wavelet estimation, Donoho and Johnstone [15]
had proposed to estimate wavelet coefficients by setting to zero all coefficients be-
low a certain “universal threshold”

√
2 log(n)σn. A key observation in [13] and

[18] about this threshold is that, with high probability, every truly zero wavelet
coefficient is estimated by zero.

Using ideas from simultaneous inference we can look at universal thresholding
differently. The likelihood ratio test of the null hypothesis H0i :µi = 0 rejects if
and only if |yi | > tσ, and the Bonferroni method at familywise level α sets the
cutoff for rejection t at tBON = σz(α/2n). Now very roughly, z(1/n) ∼ √

2 log(n);
much more precise results are derived below and lie at the center of our arguments.
Hence, Bonferroni at any reasonable level α leads us to set a threshold not far from
the universal threshold. Put another way, universal thresholding may be viewed as
precisely a Bonferroni procedure, for α = αU

n . We can derive αU
n � 1/

√
log(n) as

n → ∞.
As was emphasized by Abramovich and Benjamini [2], the FDR estimator can

choose lower thresholds than σn

√
2 logn when k̂F is relatively large. It thus offers

the possibility of adapting to the unknown mean vector by adapting to the data,
choosing less conservative thresholds when significant signal is present. It is this
possibility we explore here.

Pointers to the FDR literature more generally. The above discussion of FDR
thresholding emphasizes just that “slice” of the FDR literature needed for this pa-
per, so it is highly selective. The literature of FDR methodology is growing rapidly,
and is too diverse to adequately summarize here. Recent papers have illuminated
the FDR from different points of view: asymptotic, Bayesian, empirical Bayes and
as the limit of empirical processes [20, 24, 40].

Another line of work, starting with Benjamini and Hochberg [7], addresses the
factor n0/n in (2.2); many methods have been offered to estimate this, followed
by the step-up procedure with the adjusted (larger) q . The results of Benjamini,
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Krieger and Yekutieli [8] and Storey, Taylor and Siegmund [41] assure FDR con-
trol under independence. When n0/n is close to 1, as is our case in this paper, such
methods are close to the original step-up procedure.

An immediate next step beyond this paper would be to study dependent sit-
uations. The FDR-controlling property of the step-up procedure under positive
dependence has been established in [9], and similar results were derived for the
step-down version in [34]. Since much of the formal structure below is based on
marginal properties of the observations, this raises the possibility that our estima-
tion results would extend to a broader class of situations involving dependence in
the noise terms zi .

3. Minimax estimation on �0, �p,mp . As a prelude to the formulation of
the adaptive minimaxity results, we review information [15, 17, 29] on minimax
estimation over �0, �p and weak-�p balls in the sparse case: 0 < p < 2 and with
normalized radius ηn → 0 as n → ∞. Throughout this section, we suppose a shift
Gaussian model (1.1) with unit noise level σn = 1. We will denote the risk of an
estimator µ̂ under �r loss by

ρ(µ̂,µ) = Eµ‖µ̂ − µ‖r
r .

Particularly important classes of estimators are obtained by thresholding of indi-
vidual coordinates: hard thresholding was defined at (1.2), while soft thresholding
of a single coordinate y1 is given by ηS(y1, t) = sgn(y1)(|y1| − t)+. We use a spe-
cial notation for the risk function of thresholding on a single scalar observation
y1 ∼ N(µ1,1):

ρS(t,µ1) = Eµ1 |ηS(y1, t) − µ1|r ,
with an analogous definition of ρH (t,µ1) for hard thresholding.

3.1. �0 balls. Asymptotically least-favorable configurations for �0 balls �0[ηn]
can be built by drawing the µi i.i.d. from sparse two-point prior distributions

π = (1 − ηn)δ0 + ηnδµn, µn ∼ (2 logη−1
n )1/2.

The precise definition of µn is given in the remark below. The expected number
of nonzero components µi is kn = nηn. The prior is constructed so that the corre-
sponding Bayes estimator essentially estimates zero even for those µi drawn from
the atom at µn, and so the Bayes estimator has an lr risk of at least knµ

r
n. A corre-

sponding asymptotically minimax estimator is given by soft or hard thresholding
at threshold τη = τ(ηn) := (2 logη−1

n )1/2 ∼ µn as n → ∞. This estimator achieves
the precise asymptotics of the minimax risk, namely:

Rn(�0[ηn]) ∼ knµ
r
n = nηnµ

r
n ∼ nηn(2 logη−1

n )r/2.(3.1)
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REMARK 1. Given a sequence a2
n = o(logη−1

n ) that increases slowly to ∞,
µn is defined as the solution of the equation φ(an + µn) = ηnφ(an), where φ

denotes the standard Gaussian density. Equivalently, µ2
n + 2anµn = 2 logη−1

n =
τ 2
η , giving the more precise relation

τη = µn + an + o(an).(3.2)

Thus τη − µn → ∞, which for both soft and hard thresholding at τη indicates
ρ(τη;µn) ∼ µr

n. (Note also that, to simplify notation, we are using µn to denote a
sequence of constants rather than the nth component of the vector µ.)

3.2. �p balls. Again, asymptotically least-favorable configurations for �p[ηn]
are obtained by i.i.d. draws from π = (1 − βn)δ0 + βnδµn , where now the mass of
the nonzero atom and its location are informally given by the pair of properties

βn = ηp
nµ−p

n , µn ∼ (2 logβ−1
n )1/2.(3.3)

More precisely, µn = µn(ηn, an;p) is now the solution of φ(an +µn) = βnφ(an),
which implies that

µn ∼ τη = (2 logη−p
n )1/2, n → ∞,(3.4)

and then that (3.2) continues to hold for �p balls. The expected number of nonzero
components µi is now nβn = nη

p
nµ

−p
n . For later use, we define

kn = nηp
n τ−p

η ;(3.5)

since µn ∼ τη, we have kn ∼ nβn, and so kn is effectively the nonzero number.
With similar heuristics for the Bayes estimator, the exact asymptotics of minimax
risk becomes

Rn(�p[ηn]) ∼ knµ
r
n = nηp

n τ r−p
η = nηp

n (2 logη−p
n )(r−p)/2.(3.6)

Asymptotic minimaxity is had by thresholding at

tηn = (2 logη−p
n )1/2 ∼ (2 logn/kn)

1/2.

3.3. Weak-�p balls. The weak-�p ball mp[ηn] contains the corresponding
strong-�p ball �p[ηn] with the same radius, and the asymptotic minimax risk is
larger by a constant factor:

Rn(mp[ηn]) ∼ (
r/(r − p)

)
Rn(�p[ηn]), n → ∞.(3.7)

Let Fp(x) = 1 − x−p, x ≥ 1, denote the distribution function of the Pareto(p)
distribution and let X be a random variable having this law. Then an asymptotically
least-favorable distribution for mp[ηn] is given by drawing n i.i.d. samples from
the univariate law

π1 = L
(
min(ηnX,µn)

)
,(3.8)
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where µn is defined exactly as in the strong case. The mass of the prior probability
atom at µn equals

∫ ∞
µn

Fp(dx/ηn) = η
p
nµ

−p
n = βn, again as in the strong case.

Thus, the weak prior can be thought of as being obtained from the strong prior by
smearing the atom at 0 out over the interval [ηn,µn] according to a Pareto density
with scale ηn. One can see the origin of the extra factor in the minimax risk from
the following outline (for details when r = 2, see [29]). The minimax theorem
says that R(mp[ηn]) equals the Bayes risk of the least-favorable prior. This prior
is roughly the product of n copies of π1, and the corresponding Bayes estimator is
approximately (for large n) soft thresholding at τη, so

Rn(mp[ηn]) ∼ n

∫
ρS(τη,µ)π1(dµ).

Now consider an approximation to the risk function of soft thresholding, again at
threshold tη. Indeed, using the estimate ρS(t,µ)

.= ρS(t,0) + |µ|r , appropriate in
the range 0 ≤ µ ≤ µn, ignoring the term ρS(t,0) and reasoning as before (3.6), we
find

Rn(mp[ηn]) ∼ n

∫ µn

ηn

ρS(tη,µ)Fp(dµ/ηn) + nβnρS(tη,µn)(3.9)

.= n

∫ µn

ηn

µrpηp
nµ−p−1 dµ + knµ

r
n(3.10)

.=
[

p

r − p
+ 1

]
nηp

nµr−p
n ∼ r

r − p
R(�p[ηn]).(3.11)

Comparison with (3.6) shows that the second term in (3.9)–(3.10) corresponds
exactly to R(�p[ηn]); the first term is contributed by the Pareto density in the
weak-�p case.

4. Adaptive minimaxity of FDR thresholding. We now survey the path to
our main result, providing in this section an overview of the remainder of the paper
and the arguments to come.

What we ultimately prove is broader than the result given in the Introduction,
and the argument will develop several ideas seemingly of broader interest.

4.1. General assumptions. Continually below we invoke a collection of as-
sumptions (Q), (H), (E) and (A) defined here.

False discovery control. We allow false discovery rates to depend on n, but
approach a limit as n → ∞. Moreover, if the limit is zero, rates should not go to
zero very fast. Formally define the assumption:

(Q) Suppose that qn → q ∈ [0,1). If q = 0, assume that qn ≥ b1/ logn.

The constant b1 > 0 is arbitrary; its value could be important at a specific n.
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Sparsity of the estimand. We consider only parameter sets which are sparse,
and we place quantitative upper bounds keeping them away from the “dense” case.
Formally define:

(H) ηn (for �0[ηn]) and η
p
n (for mp[ηn]) lie in the interval [n−1 log5 n,b2n

−b3].
Here the constants b2 > 0 and b3 > 0 are arbitrary; their chosen values could

again be important in finite samples.

Diversity of estimators. Our results apply not just to the usual FDR-based es-
timator µ̂F of (1.7) but also to the penalty-based estimator µ̂r of (1.11). More
generally, recall the terms [t̂F , t̂G] defined in Section 1.8. Under formal assump-
tion (E), we consider any estimator µ̂ obeying

µ̂ = hard thresholding at t̂ ∈ [t̂F , t̂G] w.p. 1.(4.1)

Notation. We introduce a sequence αn which often appears in estimates in
Sections 7 and 8 and in dependent material. We also define constants q ′ and q ′′.
Formally:

(A) Set αn = 1/(b4τη), with b4 = (1 − q)/4. Also set q ′ = (q + 1)/2 and q ′′ =
(1 − q)/2 = 1 − q ′.

Finally, as a global matter, we suppose that our observations y ∼ Nn(µ, I); thus
σ 2

n ≡ 1. For estimation of µ, we consider �r risk (1.9), 0 < r ≤ 2, and minimax
risk Rn(�n) of (1.10). Here the parameter spaces are �n = �0[ηn] or �p[ηn] or
mp[ηn] defined by (1.3), (1.6) and (1.4), respectively, with 0 < p < r .

4.2. Upper bound result. Our argument for Theorem 1.1 splits into two parts,
beginning with an upper bound on minimax risk.

THEOREM 4.1. Assume (H), (E), (Q). Then, as n → ∞,

sup
µ∈�n

ρ(µ̂,µ) ≤ Rn(�n)

{
1 + urp

(2qn − 1)+
1 − qn

+ o(1)

}
,(4.2)

where urp = 1 − (p/r) if �n = mp[ηn] and urp = 1 if �n = �p[ηn] or �0[ηn].
The bare bones of our strategy for proving the upper bound result were de-

scribed in the Introduction. The global idea is to study the penalized FDR esti-
mator µ̂2 of (1.8) and then compare to the behavior of µ̂F . To make this work,
numerous technical facts will be needed concerning the behavior of hard thresh-
olding, the mean and fluctuations of the threshold exceedance process, and so on.
As it turns out, those same technical facts form the core of our lower bound on the
risk behavior of µ̂F . As a result, it is convenient for us to study the lower bound
and associated technical machinery first, in Sections 5–8 (with some details de-
ferred to Sections 12 and 13), and then later, in Sections 9–11, to prove the upper
bound, using results and viewpoints established earlier.
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4.3. Lower bound result. Theorem 1.1 is completed by a lower bound on the
behavior of the FDR estimator.

THEOREM 4.2. Suppose (H), (Q). With notation as in Theorem 4.1,

sup
µ∈�n

ρ(µ̂F ,µ) ≥ Rn(�n)

{
1 + urp

(2qn − 1)+
1 − qn

+ o(1)

}
, n → ∞,(4.3)

where urp = 1 − (p/r) for �n = mp[ηn], and urp = 1 for �n = �p[ηn].

This bound establishes the importance of q , showing that if q > 1/2, then cer-
tainly FDR cannot be asymptotically minimax. We turn immediately to its proof.

5. Proof of the lower bound. The proof involves three technical but signifi-
cant ideas. First, it bounds the number of discoveries made by FDR, as a function
of the underlying means µ. Second, it studies the risk of ordinary hard thresh-
olding with nonadaptive threshold in a specially chosen, (quasi-) least-favorable
one-parameter subfamily of �n. Finally, it combines these elements to show that,
on this least-favorable subfamily, µ̂F behaves like hard thresholding with a par-
ticular threshold. The lower bound result then follows. Unavoidably, the results in
this section will invoke lemmas and corollaries only proven in later sections.

Beyond simply proving the lower bound, this section introduces some basic
viewpoints and notions. These include:

(a) a threshold exceedance function M , which counts the number of threshold
exceedances as a function of the underlying means vector,

(b) a special “coordinate system” for thresholds, mapping thresholds t onto the
scale of relative expected exceedances,

(c) a special one-parameter (quasi-) least-favorable family for FDR, at which
the lower bound is established.

These notions will be used heavily in later sections.

5.1. Mean exceedances and mean discoveries. Define the exceedance num-
ber N(tk) = #{i : |yi | ≥ |tk|}. Since |y(k)| ≥ |tk| if and only if N(tk) ≥ k, we are
interested in the values of k for which N(tk) ≈ k. (See Section 7 for details.)

Throughout the paper we will refer to the mean threshold exceedance function,
counting the mean number of exceedances over threshold tk as k varies,

M(k;µ) = EµN(tk) =
n∑

l=1

Pµ(|yl| ≥ tk) =
n∑

l=1

�([µl − tk,µl + tk]c).(5.1)

[Here �(A) denotes the probability of event A under the standard Gaussian proba-
bility distribution, and k is extended from positive integers to positive real values.]
If µ = 0, then M(k;µ) = 2n�̃(tk) = qk, reflecting the fact that in the null case,
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the fraction of exceedances is always governed by the FDR parameter q . If µ �= 0,
we expect that k̂F will be close to the mean discovery number

k(µ) = inf{k ∈ R
+ :M(k;µ) = k}.(5.2)

The existence and uniqueness of k(µ) when µ �= 0 follows from facts to be estab-
lished in Section 6.3: that (taking k as real-valued) the function k → M(k;µ)/k

decreases strictly and continuously from a limit of +∞ as k → 0 to a limit < 1, as
k → n.

A key point is that the mean discovery number is bounded over the parameter
spaces �n. The mean discovery number is monotone in µ: if |µ1|(k) ≥ |µ2|(k) for
all k, then k(µ1) > k(µ2). Thus, on �0[ηn], the largest mean discovery number �M ,
say, is obtained by taking kn = [nηn] components to be very large. Writing this
out,

Mn(k) = sup
�0[ηn]

M(k;µ) = kn + 2(n − kn)�̃(tk)

= kn + (1 − kn/n)kqn ∼ kn + kqn,

using the definition of tk = z(kqn/2n) and ηn ∼ kn/n → 0. The first term corre-
sponds to “true” discoveries, and the second to “false” ones. Solving M(k) = k

yields a solution

k̃ = kn/
(
1 − (1 − n−1kn)qn

) ∼ kn/(1 − qn).(5.3)

In particular, for all µ ∈ �0[ηn], we have k(µ) ≤ kn/(1 − qn(1 + o(1)).

Weak �p . On �n = mp[ηn], EµN(tk) is maximized by taking the com-
ponents of µ as large as possible—that is, at the coordinatewise upper bound
µ̄l = ηn(n/l)1/p. Thus now

Mn(k) = sup
mn[ηn]

EµN(tk) = Eµ̄N(tk).

To approximate M(k; µ̄), note first that the summands in (5.1) are decreasing from
nearly 1 for µl large to 2�̃(tk) when µl is near 0. With k held fixed, break the
sum into two parts using kn = nη

p
n τ

−p
η . [This choice is explained in more detail

after (9.13) below.] For l ≤ kn, the summands are mostly well approximated by 1,

and for l ≥ kn predominantly by 2�̃(tk) = qk/n. Since kn/n ≈ 0, we have

M(ν; µ̄) ≈ kn + (n − kn)qnν/n

≈ nηp
n τ−p

η + qnν.

Again the first term tracks “true” discoveries and the second “false” ones. Solving
M(ν; µ̄) = ν based on this approximation suggests that, just as in (5.3),

k(µ̄) ≤ kn/(1 − qn)
(
1 + o(1)

)
.(5.4)

The full proof is given in Section 6.4.4.
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Strong �p . Since �p[ηn] ⊂ mp[ηn], (5.4) applies here as well.

5.2. Typical behavior of k̂F and k̂G. We turn to the stochastic quantities k̂F

and k̂G. These are defined in terms of the exceedance numbers N(tk), which them-
selves depend on independent (and nonidentically distributed) Bernoulli variables.
This suggests the use of bounds on k̂F and k̂G derived from large deviations prop-
erties of N(tk). Since we are concerned mainly with relatively high thresholds tk ,
results appropriate to Poisson regimes are required. Details are in Section 7.

To describe the resulting bounds on [k̂G, k̂F ], we first introduce some terminol-
ogy. We say that an event An(µ) is �n-likely if there exist constants c0, c1 not
depending on n and � such that

sup
µ∈�n

Pµ{Ac
n(µ)} ≤ c0 exp{−c1 log2 n}.

With αn as in assumption (A), define

k−(µ) =
{

k(µ) − αnkn, k(µ) ≥ 2αnkn,
0, k(µ) < 2αnkn,

(5.5)

and

k+(µ) = k(µ) ∨ αnkn + αnkn.(5.6)

PROPOSITION 5.1. Assume (Q), (H) and (A). For each of the parameter
spaces �n, it is �n-likely that

k−(µ) ≤ k̂G ≤ k̂F ≤ k+(µ).

Thus all the penalized estimates k̂r (and any k̂ ∈ [k̂G, k̂F ]) are with uniformly
high probability bracketed between k−(µ) and k+(µ). In particular, note that

k+(µ) − k−(µ) ≤ 3αnkn,(5.7)

and so the fluctuations in k̂r are typically small compared to the maximal value
over �n.

Here and below it is convenient to have a notational variant for tk , used espe-
cially when the subscript would be very complicated; so define

t[k] = z(2n/kq);
keep in mind that t depends implicitly on q = qn and n. We occasionally use tk
when the subscript is very simple.

Giving this notation its first workout, the thresholds t̂r are bracketed between

t+(µ) = t[k−(µ)] and t−(µ) = t[k+(µ)].(5.8)

Note that t+ > t−, but from (5.7) and (12.13), it follows that t+/t− ≤ 1 + 3αn/t2−.
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5.3. Risk of hard thresholding. We now study the error of fixed thresholds
as a prelude to the study of the data-dependent FDR thresholds. We define one-
parameter families of configurations and of thresholds which exhibit key transi-
tional behavior. As might be expected, these are concentrated around the critical

threshold τη =
√

2 logη−1
n corresponding to sparsity level ηn.

Consider first a family of (quasi-) least-favorable means µα . The coordinates
take one of two values, most being zero, and the others amounting to a fraction η

with value roughly τη + α. Specifically, for α ∈ R, set

µα,l =
{

t[kn] + α, l ≤ kn,
0, kn < l ≤ n.

(5.9)

In a sense µ0,kn is right at the FDR boundary, while with α > 0, µα,kn is above
the boundary and with α < 0 it is below the boundary.

Next, consider a “coordinate system” for measuring the height of thresholds in
the vicinity of the FDR boundary. Think of thresholds {t : t > 0} as generated by
{t[akn], a > 0}, with a fixed while n and kn increase. For a = 1, we are on the
FDR boundary at kn, so that a < 1 is above the boundary and a > 1 is below the
boundary. The “coordinate” a will be heavily used in what follows.

In fact, these thresholds vary only slowly with a: for a fixed, as n → ∞,

|t[akn] − t[kn]| ≤ c(a)τ−1
η .(5.10)

Nevertheless, the effect of a is visible in the leading term of the risk:

PROPOSITION 5.2. Let α ∈ R and a > 0 be fixed. Let the configuration µα ∈
�0[η] be defined by (5.9). For �r loss, the risk of hard thresholding at t[akn] is
given, as n → ∞, by

ρ
(
µ̂H,t[akn],µα

) = [�̃(α) + aqn]knτ
r
η

(
1 + o(1)

)
.(5.11)

Here knτ
r
η is asymptotic to the minimax risk for �0[ηn]—compare (3.1)—and

so defines the benchmark for comparison.
The two leading terms in (5.11) reflect false negatives and false positives, re-

spectively. The proof is given in Section 13. Here we aim only to explain how
these terms arise.

The false-negative term �̃(α)knτ
r
η decreases as α increases. This is natural, as

the signals with mean mα = t[kn] + α become easier to detect as α increases—
whatever be the threshold t[akn]. More precisely, the �r error due to nondetection,
|yl| ≤ t[akn], on each of the kn terms with mean mα contributes risk

knm
r
αPmα(|yl| < t[akn]) ∼ knτ

r
η�(t[akn] − mα),(5.12)

since mα ∼ τη as n → ∞. Finally, (5.10) shows that

mα − t[akn] = α + t[kn] − t[akn] = α + O(τ−1
η ),(5.13)
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so that (5.12) is approximately �̃(α)knτ
r
η .

The false-positive term shows a relatively subtle dependence on threshold a →
t[akn]. There are n − kn means that are exactly 0, and so the risk due to false
discoveries is

(n − kn)E{|z|r : |z| > t[akn]} ∼ 2nt[akn]r �̃(t[akn])(5.14)

= aknqnt[akn]r(5.15)

∼ aqnknτ
r
η .(5.16)

(Equation (5.14) follows from (8.6) below, while (5.15) uses the definition of the
FDR boundary, t[kn] = �̃−1(knqn/2n), and finally (5.16) follows from (12.18)
below.)

Weak �p . In this case, we replace the two-point configuration by Winsorized
analogs in the spirit of Section 3.3:

µα,l = µ̄l ∧ mα, mα = t[kn] + α.(5.17)

Now an extra term appears in the risk of hard thresholding when using thresholds
t[akn]:

PROPOSITION 5.3. Adopt the setting of Proposition 5.2, replacing only (5.9)
by (5.17). Then

ρ
(
µ̂H,t[akn],µα

) =
[
�̃(α) + p

r − p
+ aqn

]
knτ

r
η

(
1 + o(1)

)
.

The same phenomena as for �0[η] apply here, except that the p/(r − p) term
arises due to the cumulative effect of missed detections of means µ̄l that are
smaller than mα but certainly not 0. This term decreases as p becomes smaller,
essentially due to the increasingly fast decay of µ̄l = cnl

−1/p . The term disappears
in the p → 0 limit, and we recover the �0 risk (5.11). This result also is proved in
Section 13.

5.4. FDR on the least-favorable family. To track the response of the FDR es-
timator to members of the family {µα,α ∈ R}, we look first at the mean discovery
numbers. In Section 13 we prove:

PROPOSITION 5.4. Assume (Q), (H) and (A). Fix α ∈ R and define µα by
(5.9) and (5.17) for �0[ηn] and mp[ηn], respectively. Then as n → ∞,

k(µα) ∼ (1 − qn)
−1�(α)kn.(5.18)
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Heuristically, for �0[ηn], we approximate

M(k;µα) = kn[�̃(tk − mα) + �(−tk − mα)] + 2(n − kn)�̃(tk)(5.19)

∼ kn�(mα − tk) + qnk ∼ kn�(α) + qnk,

from (5.13). Solving M(k;µα) = k based on this approximation leads to (5.18).
The same approach works for mp[ηn], but with more attention needed to bounding
the component terms in M(k;µα) as detailed in Section 6.

Proposition 5.4 suggests that at configuration µα , FDR will choose a threshold
close to t[k(µα)], which is of the form t[akn] with a ∼ (1 −q)−1�(α). Thus, as α

increases, and with it the nonzero components of µα , the FDR threshold decreases,
albeit modestly.

The risk incurred by FDR at µ = µα corresponds to that of hard thresholding at
t[k(µα)]. In Section 13 below we prove:

PROPOSITION 5.5. Assume (Q), (H) and (A). Fix α ∈ R and consider µα

defined by (5.9) for �0[ηn]. Then as n → ∞,

ρ(µ̂F ,µα) =
[
�̃(α) + �(α)

qn

1 − qn

]
knτ

r
η

(
1 + o(1)

)
.(5.20)

On the other hand, define µα using (5.17) for mp[ηn]; then

ρ(µ̂F ,µα) =
[
�̃(α) + p

r − p
+ �(α)

qn

1 − qn

]
knτ

r
η

(
1 + o(1)

)
.(5.21)

Formula (5.20) shows visibly the role of the FDR control parameter q . Note that

sup
α

�̃(α) + �(α)
q

1 − q
=




1, q ≤ 1/2,
2q − 1

1 − q
, q > 1/2.(5.22)

Consider the implications of this in (5.20) in the �0[ηn] case. The minimax risk
∼ knτ

r
η , and so the minimax risk is exceeded asymptotically whenever q > 1/2.

We interpret this further. When q < 1/2, the worst configurations in {µα} corre-
spond to α large and negative, and yield essentially the minimax risk. Indeed, only
�(α) of the true nonzero means are discovered. Each missed mean contributes risk
∼ µr

α ∼ τ r
η and so the risk due to missed means is given roughly by �̃(α)knτ

r
η . The

risk contribution due to false discoveries, being controlled by �(α), is negligible
in these configurations.

When q > 1/2, the worst configurations in {µα} correspond to α large and pos-
itive. Essentially all of the kn nonzero components are correctly discovered, along
with a fraction q of the kn(µα) ∼ (1 − q)−1�(α)kn which are false discoveries.
In the �0 case, the false discoveries dominate the risk, yielding an error of order
�(α)[q/(1 − q)]knτ

r
η .
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When q = 1/2, the risk ρ(µ̂F ,µα) ∼ knτ
r
η regardless of α, so that all config-

urations µα are equally bad, even though the fraction �(α) of risk due to false
discoveries changes from 0 to 1 as mα = t[kn] + α increases from values below
t[kn] through values above.

5.5. Proof of the lower bound. Our interpretation of Proposition 5.5 in effect
gave away the idea for the proof of (4.3). We now fill in a few details.

In the �0[ηn] case, fix ε > 0. Choosing α = α(ε;q) sufficiently large positive or
negative according as q > 1/2 or q < 1/2, we get

�̃(α(ε)) + q

1 − q
�(α(ε)) >

(
1 − ε

2

)
sup
α

�̃(α) + q

1 − q
�(α).

Equation (5.20) gives that for large n,

ρ
(
µ̂F ,µα(ε)

) ≥
[
1 + (2q − 1)+

1 − q

]
knτ

r
η (1 − ε).

But the family µα ∈ �0[ηn], and Rn(�0[ηn]) ∼ knτ
r
η , hence

ρ̄(µ̂F , �0[ηn]) ≥ ρ
(
µ̂F ,µα(ε)

) ≥
[
1 + (2q − 1)+

1 − q

]
Rn(�0[ηn])(1 − ε).

As this is true for all ε > 0, the �0[ηn] case of (4.3) follows.
For the �p[ηn] case, fix ε > 0, and choose again α = α(ε;q) as in the �0 case.

Note that mα is implicitly a function mα[kn] of the number of nonzeros. Define
the pair β ′

n and k′
n informally as the joint solution of

β ′
n = ηp

n (mα[k′
n])−p, k′

n = nβ ′
n.

(A formal definition can be made using the approach in Section 3.2.) Now the
mean vector µ′

α with k′
n nonzeros each taking value mα[k′

n] gives, again by (5.20),
that for large n,

ρ(µ̂F ,µα) ≥
[
1 + (2q − 1)+

1 − q

]
k′
n(mα[k′

n])r (1 − ε).

Now from Section 3.2, Rn(�p(ηn)) ∼ nη
p
n τ

r−p
η , while

k′
n(mα[k′

n])r = nβ ′
n(mα[k′

n])−p = nηp
n (mα[k′

n])r−p ∼ nηp
n τ r−p

η , n → ∞.

At the same time, µα ∈ �p[ηn]. Hence

ρ̄(µ̂F , �p[ηn]) ≥ ρ
(
µ̂F ,µα(ε)

) ≥
[
1 + (2q − 1)+

1 − q

]
Rn(�p[ηn])(1 − ε).

Again this holds for all ε > 0, and the �p[ηn] case of (4.3) follows.
The argument for (4.3) in the mp[ηn] case is entirely parallel, only using (5.21)

and the modified definition of µα for the mp case.
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5.6. Infrastructure for the lower bound. We look ahead now to the arguments
supporting the propositions of this section.

Propositions 5.2–5.4 will be proved in Section 13 at the very end of the paper.
The proofs exploit viewpoints and estimates set forth in Sections 6–8. Section 6
sets out properties of the mean detection function ν → M(ν;µ) of (5.1) and its
derivatives, with a view to deriving information and bounds on the discovery num-
ber k(µ) of Section 5.1.

Section 7 applies these bounds in combination with the large deviations bounds
to prove Proposition 5.1 and show that k̂F − k̂G ≤ 3αnkn. Section 8 collects various
bounds on the risk of fixed thresholds, and the risk difference between two data
dependent thresholds.

All these sections frequently invoke a very useful section, Section 12, which
assembles needed properties of the Gaussian distribution, of the quantile function
z(η) = �̃−1(η) and of implications of the FDR boundary tk .

6. The mean detection function.

6.1. Comparing weak �p with �0: the effective nonzero fraction. A key feature
of �0[ηn] is that only kn = nηn coordinates may be nonzero. Consequently, the
number of “discoveries” at threshold t[ν] from n − kn zero coordinates is at most
linear in ν with slope qn:

(n − kn)pν(0) = n(1 − ηn)νqn/n ≤ qnν,(6.1)

since pν(0) = 2�̃(t[ν]) = qnν/n.
In the case of weak �p , the discussion around (9.12)–(9.13) shows that for cer-

tain purposes, the index kn = nη
p
n τ

−p
η counts the maximum number of “signifi-

cantly” nonzero coordinates.
In this section we will see that an alternative, slightly larger index, k′

n = nη
p
n τ

p
η ,

yields for weak �p the property analogous to (6.1): the number of discoveries at tν
from the n − k′

n smallest means µl is not essentially larger than qnν. At least for
the extremal configuration (µ̄l), the range of indices [kn, k

′
n] constitutes a “tran-

sition” zone between “clearly nonzero” means and “effectively zero” ones; this is
discussed further in Section 6.4.

To state the result, we need a certain error-control function; let

δp(ε) = pε

∫ 1

ε
wp−2 dw ≤

{
p|p − 1|−1εp∧1, p �= 1,
(log ε−1)ε, p = 1.

(6.2)

LEMMA 6.1. Assume hypotheses (Q) and (H). Let τ 2
η = 2 logη

−p
n and εn =

ηnτη and δp(ε) be defined as above. There exists c = c(b1, b3) > 0 such that for ν

with t2
ν ≥ 2, we have, uniformly in µ ∈ mp[ηn], that

[1 − εp
n ]qnν ≤ ∑

l>k′
n

pν(µl) ≤ [1 + cδp(εn)]qnν.(6.3)



614 ABRAMOVICH, BENJAMINI, DONOHO AND JOHNSTONE

The proof is deferred to Section 6.4—compare the proof of (6.29) there.

REMARK. Suppose qn → q ∈ [0,1). Then for n sufficiently large (i.e., n

larger than some n0 depending on p,q , and the particular sequence ηn), it follows
that

[1 + cδp(εn)]qn ≤ q̃n :=
{

(3/2)qn, if qn ≤ 1/2,
(1 + q)/2, if 1/2 < qn < 1;

(6.4)

in particular, the right-hand side is strictly less than 1.
We have just defined q̃n for the case of mp . If in the nearly-black case (�0[ηn])

we agree to define q̃n = qn, then we may write both conclusions (6.1) and (6.3) in
one unified form, ∑

l>k′
n

pν(µl) ≤ q̃nν.(6.5)

The “true positive” rate. Adopt for a moment the language of diagnostic test-
ing and call those means with µl �= 0 “positives,” and those with µl = 0 “neg-
atives.” In the nearly-black case there are typically kn positives out of n. In the
weak-�p case, there are formally as many as n positives, but as argued above,
there are effectively k′

n = nη
p
n t

p
η positives, and it is this interpretation that we take

here. If it is assumed (without loss of generality) that µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0,
then the true positive rate using threshold t[ν] is defined by

π̄ν(µ) = (1/k′
n)

k′
n∑
1

pν(µl).(6.6)

In our sparse settings, if the mean discovery number for µ exceeds ν, then there is
a lower bound on the true positive rate at µ using threshold t[ν].

COROLLARY 6.2. Assume (Q) and (H) and define q̃n by (6.4). If n is suffi-
ciently large, then uniformly over µ in mp[ηn] or �o[ηn] for which k(µ) > ν, the
true positive rate using threshold t[ν] satisfies

π̄ν(µ) ≥ (1 − q̃n)(ν/k′
n).

PROOF. From the definition of the mean exceedance number, we have

k′
nπ̄ν(µ) = M(ν,µ) − ∑

l>k′
n

pν(µl).

Since ν < k(µ) we have M(ν;µ) ≥ ν, and to bound the sum we use (6.5). Hence
k′
nπ̄ν(µ) ≥ ν − q̃nν, as required. �
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6.2. Convexity properties of exceedances. The goal of this subsection, Corol-
lary 6.5, shows that a lower bound on the mean discovery number k(µ) forces a
lower bound on the mean threshold function ν → M(ν;µ) at least on sparse para-
meter sets. The idea is to establish convexity of a certain power function associated
with testing individual components µl and then to use the convexity to construct
two-point configurations providing the needed lower bounds.

Let N(tk) = #{l : |yl| ≥ tk}, and as before M(k;µ) = EµN(tk) = ∑n
�=1 pk(µl).

Here, the exceedance probability for threshold tk is given by

pk(µ) = P {|Z + µ| > tk} = �̃(tk − µ) + �(−tk − µ),

and we note that as µ increases from 0 to ∞, pk increases from pk(0) = 2�̃(tk) =
qk/n to pk(∞) = 1. It has derivative

p′
k(µ) = φ(tk − µ) − φ(tk + µ) > 0, µ ∈ (0,∞).

Since µ → pk(µ) is strictly monotone, the inverse function µk(π) = µ[π;k] =
p−1

k (π) exists for qk/n ≤ π ≤ 1. In the language of testing, consider the two-
sided test of H0 :µ = 0 that rejects at tk . Then µk(π) is that alternative µ at which
the test has power π . In addition

d

dπ
p−1

k (π) = 1

p′
k(p

−1
k (π))

= 1

p′
k(µ)

.

The bi-threshold function. Given indices ν < k, so that tν > tk , consider mini-
mizing M(ν;µ) over µ subject to the constraint that M(k;µ) stay fixed. Introduce
variables πl = pk(µl); we wish to minimize

M(ν;µ) = ∑
l

pν(µl) = ∑
l

pν(p
−1
k (πl)) subject to

∑
l

πl = m.

Define a bi-threshold function

g(π) = gν,k(π) = pν(p
−1
k (π)), qk/n ≤ π ≤ 1.

Thus, gν,k(π) gives the power of the test based on the tν -threshold at the alternative
where the tk-threshold has power π . As ν < k, gν,k(π) ≤ π .

LEMMA 6.3. If ν < k, then π → gν,k(π) is convex and increasing from qν/n

to 1 for π ∈ [qk/n,1].
PROOF. Setting µ = p−1

k (π), we have

g′(π) = p′
ν(µ)

p′
k(µ)

= φ(tν − µ) − φ(tν + µ)

φ(tk − µ) − φ(tk + µ)
= e(t2

k −t2
ν )/2 sinh tνµ

sinh tkµ
> 0.

To complete the proof, we show that if t > u, then the function G(µ) =
f (t,µ)/f (u,µ) is increasing for f (t,µ) = sinh tµ. First note that

G′(µ) = G(µ)

∫ t

u
DsDµ(logf )(s,µ)ds,
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and that, on setting y = 2sµ,

Dµ log sinh(sµ) = s
cosh sµ

sinh sµ
= 1

2µ

[
y + 2y

ey − 1

]
.

Finally, Dy{y + 2y/(ey − 1)} has numerator proportional to (ey − y)2 − 1 − y2 ≥
y4/4 > 0. �

For weak �p , define q̃n as in (6.4), while for the nearly-black case, set q̃n = qn.

Let an be positive constants to be specified. Since (6.4) guarantees that q̃n < 1,
define

πn = (1 − q̃n)an.

PROPOSITION 6.4. Assume (Q) and (H). As before, let k′
n = nηn ( for �0) or

nη
p
n τ

p
η ( for weak �p). Define πn = an(1 − q̃n) as above. Then, uniformly in µ for

which k(µ) ≥ ank
′
n, we have:

(a) For ν ≤ ank
′
n,

M(ν;µ) ≥ k′
n�̄(tν − µ[πn;ank

′
n]).(6.7)

(b) In particular, for ν = 1 and an ≥ b5(logn)−r ,

M(1;µ) ≥ c(logn)γ−r−1.(6.8)

REMARK. 1. The lower bound of (6.8) is valid for all sparsities η
p
n in the range

[n−1 logγ n,n−b3]; clearly it is far from sharp for η
p
n away from the lower limit.

If needed, better bounds for specific cases would follow from (6.12) and (6.13) in
the proof below.

2. We shall need only the lower bound for ν = 1, but the methods used below
would equally lead to bounds for larger ν, working from the intermediate esti-
mate (6.7).

COROLLARY 6.5. Let kn = nη
p
n τ

−p
η , and take αn as in assumption (A); then

uniformly in µ for which k(µ) ≥ αnkn,

M(1;µ) ≥ c(logn)γ−p−3/2.

PROOF OF PROPOSITION 6.4. For convenience, we abbreviate ank
′
n by κ .

The bi-threshold function g = gν,κ is convex (Lemma 6.3), and so

M(ν;µ) =
n∑

l=1

gν,κ(πl) ≥
k′
n∑

l=1

g(πl) ≥ k′
ng(π̄κ(µ)),
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where π̄κ (µ) = (1/k′
n)

∑k′
n

1 πl is the true positive rate defined at (6.6). Since
k(µ) ≥ κ , Corollary 6.2 bounds π̄κ (µ) ≥ (1 − q̃n)(κ/k′

n) = πn and so from the
monotonicity of g,

g(π̄κ(µ)) ≥ g(πn) = pν(µκ(πn)) ≥ �̄
(
tν − µκ(πn)

)
.

This establishes part (a). For (b), we seek an upper bound for

tν − µκ(πn) = tν − tκ + tκ − µκ,(6.9)

where we abbreviate µκ(πn) by µκ for convenience. First note that

πn = pκ(µκ) = �(−tκ − µκ) + �̄(tκ − µκ),

which shows that �̄(tκ − µκ) ≤ πn ≤ 2�̄(tκ − µκ), from which we get

tκ − µκ ≤ z(πn/2) ≤
√

2 log(2π−1
n ),

using (12.7). Since πn = (1 − q̃n)an ≥ c3/(logn)−r , we conclude that

tκ − µκ(πn) ≤
√

2r log logn + c4.(6.10)

From (12.13), we have

0 ≤ tν − tκ ≤
√

2 log(n/ν) −
√

2 log(n/κ) + c(b1, b3).(6.11)

Since κ = ank
′
n with an ≤ 1, the right-hand side only increases if we replace κ

by k′
n.

At this point, we specialize to the case ν = 1 and set vn = √
2 logn −√

2 logn/k′
n. Combining (6.9), (6.10) and (6.11), we find that

tν − µκ(πn) ≤ vn + c(b1, b3) +
√

2r log logn + c4.

For n ≥ n(b), the last three terms are bounded by sn = √
(2r + 1) log logn. So,

from (6.7),

M(1;µ) ≥ k′
n�̄(vn + sn).(6.12)

We may rewrite k′
n in terms of vn, obtaining

log k′
n = vn

√
2 logn − v2

n/2.

The bound �̄(w) ≥ φ(w)/(2w) holds for w >
√

2; applying this we conclude

k′
n�̄(vn + sn) ≥ e−s2

n/2

2(vn + sn)
exp

{
vn

(√
2 logn − vn − sn

)}
.(6.13)

Since e−s2
n/2 = (logn)−r−1/2 and vn ≤ √

2 logn, the first factor is bounded below
by c0(logn)−r−1. To bound the main exponential term, set g(v) = v(

√
2 logn −
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v − sn). We note that nη
p
n ∈ [logγ n,n1−b3] and so τ 2

η = 2 logη
−p
n ≤ 2 logn

and so τ
p
η ∈ [1,2 logn] and so k′

n ∈ [logγ n, (2 logn)n1−b3]. For �0[ηn], k′
n ∈

[logγ n,n1−b3]; we shall see shortly that the difference between the two cases does
not matter here.

We now estimate the values of v and g(v) corresponding to these bounds on k′
n.

At the lower end, k′
n = logγ n; then [using

√
a − √

a − ε ≥ ε/(2
√

a )]

vn ≥ γ log logn√
2 logn

=: v1n

and one checks that g(v1n) ≥ γ log logn − 1 for n ≥ n(b). At the upper end, if
k′
n = (2 logn)n1−b3 , then

vn ≤ (
1 − √

b3
)√

2 logn + c =: v2n

and one checks that g(v2n) = (
√

b3 − b3)(2 logn)(1 + o(1)) ≥ g(v1n) for n large.
Since g(v) is a concave quadratic polynomial with maximum between v1n and

v2n, it follows that for k′
n in the range indicated above,

eg(vn) ≥ eg(v1n) ≥ e−1(logn)γ .

Combined with the bound on the first factor in (6.13), we get

k′
n�̃(vn + sn) ≥ c0e

−1(logn)γ−r−1,

as required for part (b). �

6.3. Properties of the mean detection function. This subsection collects some
properties of

M(ν;µ) = ∑
l

�̃(tν − µl) + �(−tν − µl)

as a function of ν, considered as a real variable in R+. Writing Ṁ, M̈ for partial
derivatives w.r.t. k, calculus shows that

∂tν/∂ν = −qn/(2nφ(tν)),

Ṁ(ν;µ) = (−∂tν/∂ν)
∑

l

φ(tν − µl) + φ(tν + µl)(6.14)

= (qn/n)
∑

l

e−µ2
l /2 cosh(tνµl) > 0,(6.15)

M̈(ν;µ) = −q2
n/(2n2φ(tν))

∑
l

µle
−µ2

l /2 sinh(tνµl) ≤ 0,(6.16)

with strict inequality unless µ ≡ 0. Finally, since M(0;µ) = 0, there exists ν̃ ∈
[0, ν] such that the threshold exceedance function ν−1M(ν;µ) = ν−1(M(ν;µ) −



FALSE DISCOVERY RATE THRESHOLDING 619

M(0;µ)) = Ṁ(ν̃,µ), and hence, for each µ the exceedance function is decreasing
in ν:

∂

∂ν

(
M(ν;µ)

ν

)
= 1

ν
[Ṁ(ν;µ) − Ṁ(ν̃,µ)] ≤ 0.(6.17)

Let us focus now on �0[ηn]. In this case

M(ν;µ) =
kn∑
1

[�̃(tν − µl) + �(−tν − µl)] + (1 − ηn)qnν,

and so, using (6.14) and (12.9),

Ṁ(ν;µ) ≤ 2φ(0)kn

νtν
+ (1 − ηn)qn.

In particular, if ν = akn, then

Ṁ(akn;µ) ≤ 2φ(0)

at[akn] + qn.

Finally, if a = αn = 1/(b4τη), then (12.15) shows that for ηn sufficiently small,

2φ(0)

at[akn] = b4

√
2

π

τη

t[αnkn] ≤ b4.(6.18)

As a result, uniformly in �0[ηn],
Ṁ(αnkn;µ) ≤ b4 + qn < q ′,(6.19)

by the definition of b4; recall assumptions (A) and (Q) of Section 4.1.

6.4. Weak �p: bounds for the detection function. For weak �p , we do not have
such a simple bound on Ṁ as (6.19). From the preceding calculations, we know
that ν → Ṁ(ν;µ) is positive and decreasing. We will need now some sharper es-
timates, uniform over mp[ηn] (and �0[ηn]) in the scaling ν = akn, with a regarded
as variable. This will lead to bounds on the solution of M(akn;µ) = akn and hence
to bounds on k(µ) (cf. Corollary 6.8).

The two key phenomena are:

(a) If a1 is fixed, then for ν in intervals [a1kn, a
−1
1 kn], the slope of M is, for

large n, essentially constant and equal to qn. This reflects exclusively the effect of
false detections.

(b) For small a (∼1/τη, say), the order of magnitude of Ṁ(akn;µ) can be as
large as 1/(at[akn]). This reflects essentially the effect of true detections.

Since µ → Ṁ(k;µ) is an even function of each µl , we may assume without
loss of generality that µl ≥ 0 for each l.



620 ABRAMOVICH, BENJAMINI, DONOHO AND JOHNSTONE

To bound Ṁ , divide the range of summation into three regions, defined by the
indices

kn = nηp
n τ−p

η , µ̄kn = τη,

k′
n = nηp

n τp
η , µ̄k′

n
= τ−1

η .

Thus, we write

Ṁ = Ṁpos + Ṁtrn + Ṁneg,

where the sum in Ṁpos extends over the range [1, kn] of true “positives.” The sum
in Ṁtrn ranges over (kn, k

′
n] and is “transitional,” while the sum for Ṁneg ranges

over (k′
n, n] and corresponds to means that are essentially true “negatives.”

A rough statement of the results to follow is that for a in the range [γ τ−1
η ,1],

sup
mp[ηn]

Ṁpos(akn;µ) � 1

at[akn] ,

sup
mp[ηn]

Ṁtrn(akn;µ) = O

(
1

at2[akn]
)
,

Ṁneg(akn;µ) ∼ qn.

Combining these will establish:

PROPOSITION 6.6. Assume (Q), (H) and (A). For n > n(b), tν ≥ c0, a ≥ 1
and all µ ∈ mp[ηn],

qn[1 − εp
n ] ≤ Ṁ(akn;µ)

(6.20)

≤ qn[1 + c(b)δp(εn)] + 2φ(0)

at[akn]
[
1 + c0

t[akn]
]
.

If, in addition, a ≥ γ τ−1
η , then for ηp ≤ η(γ,p, b1, b3) sufficiently small,

sup
mp[ηn]

Ṁ(akn;µ) ≥ qn[1 − εp
n ] + c0

at[akn] .(6.21)

The proof consists in building estimates for Ṁ in the positive, transition and
negative zones. It will also be convenient, for Corollary 6.8 below, to obtain esti-
mates at the same time for the corresponding components of the detection func-
tion M itself.
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6.4.1. Positive zone. Mpos(ν;µ) = ∑kn

l=1 pν(µl) is, for µ = µ̄l , approximately
constant on the interval [a1kn, a

−1
1 kn]: for a1 ≤ a ≤ a−1

1 ,

Mpos(akn; µ̄) ∈ [1 − ε1n,1]kn.(6.22)

PROOF OF PROPOSITION 6.6. The upper bound follows from pν(µl) ≤ 1.

For the lower bound, since �̃(tν − µ̄l) is decreasing in l and increasing in ν, we
have for any l1 ≤ kn,

Mpos(ν; µ̄) ≥
kn∑
1

�̃(tν − µ̄l) ≥ l1�̃(tν − µ̄l) ≥ l1�̃
(
t[δkn] − µ̄l1

)
.

Choose γn = τ−1
η and define l1 by the equation

µ̄l1 = t[δkn] + z(γn).

From (12.15) it is clear that µ̄l1 ≥ τη, so that l1 ≤ kn. Hence

Mpos(ν; µ̄) ≥ l1�̃(−z(γn)) = l1(1 − γn).(6.23)

We have from (12.16) that µ̄l = τη + √
2 log τη + c(b1, b3) for η small, and hence

l1

kn

=
[

τη

t[δkn] + z(γn)

]p

≥
[
1 +

√
2 log τη + c

τη

]−p

≥ 1 − cτ−1
η

√
2 log τη.

Since γn = τ−1
η , the last two displays imply (6.22) with ε1n = cτ−1

η

√
2 log τη.

Bound for Ṁpos. Since Mpos(ν;µ) = ∑kn

1 �̃(tν −µl)+�(−tν −µl), we have

Ṁpos(ν;µ) = (−∂tν/∂ν)

kn∑
1

φ(tν − µl) + φ(tν + µl).(6.24)

From (12.9), we obtain Ṁpos(ν;µ) ≤ 2knφ(0)/(νtν). Hence, for ν = akn with
tν ≥ 1 and all µ,

Ṁpos(akn;µ) ≤ 2φ(0)

at[akn] .(6.25)

Turning to the lower bound, we note that µ̄l ≥ tν if and only if l ≤ nη
p
n t

−p
ν =: lν .

By setting all µl = tν for l ≤ lν , we find from (6.24) and (12.9) that

sup
mp[ηn]

Ṁpos(ν;µ) ≥ φ(0)

2

kn ∧ lν

νtν
.

(This also holds for �0[ηn].) If ν = akn, then

kn ∧ lν

νtν
= 1

at[akn]
[(

τη

t[akn]
)p

∧ 1
]
.
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If a ≥ γ τ−1
η , then for η sufficiently small, (12.17) says τη/t[akn] ≥ 1

2 . Combining
the last remarks, we conclude that for ν = akn and a ≥ γ τ−1

η , then for η suffi-
ciently small,

sup
mp[ηn]

Ṁpos(akn;µ) ≥ c0

at[akn] .(6.26)

Here c0 denotes an absolute constant.

6.4.2. Transition zone. For a ≤ a−1
1 and η ≤ η0 sufficiently small, we have,

uniformly in mp[ηn]:
0 ≤ Mtrn(akn;µ) ≤ c0τ

−1
η kn,(6.27)

Ṁtrn(akn;µ) ≤ c0

at2[akn] .(6.28)

To bound Ṁtrn(k;µ), introduce

h(µ, t) = etµ−µ2/2,

which increases from 1 to a global maximum of et2/2 = φ(0)/φ(t) as µ grows
from 0 to t . We have from (6.15) that Ṁ(k;µ) ≤ 2(qn/n)

∑
h(µl, tk). The argu-

ments for the two bounds run in parallel. We have

Mtrn(ν;µ) ≤
k′
n∑

kn

H1(µl) and Ṁtrn(ν;µ) ≤ (qn/n)

k′
n∑

kn

H2(µl),

where H1(µ) = 2�̃(tν − µ) and H2(µ) = h(µ ∧ tν, tν) are both increasing func-
tions of µ ≥ 0. By integral approximation,

k′
n∑

l=kn

H(µl) ≤
k′
n∑

kn

H1(µ̄l) ≤ nηp
n

∫ τη

τ−1
η

H(u)u−p−1 du.

For a ≤ a−1
1 , we have t = tν ≥ τη − 3/2 for η sufficiently small by (12.15),

while (12.17) shows that τ−1
η ≥ 1/(2tν). Let H̄ = supH ; we have∫ τη

τ−1
η

H(u)u−p−1 du ≤
∫ t

1/(2t)
H(u)u−p−1 du + (3/2)H̄ t−p−1 ≤ c0H̄ t−p−1

after using Lemma 6.7 below. For Mtrn, H̄ = 2 and we have from the previous
displays

Mtrn(akn;µ) ≤ c0nηnt[akn]−p−1 ≤ c0τ
−1
η kn,

since t[akn]−1 ≤ 2τ−1
η .
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For Ṁtrn, H̄ = h(tν, tν) = φ(0)/φ(tν), and since φ(tν) ≥ 1
2 tν�̃(tν),

Ṁtrn(akn;µ) ≤ qnη
p
n

c0h(tν, tν)

t
p+1
ν

≤ c0qnη
p
n

t
p+2
ν �̃(tν)

≤ c0

(
τη

t[akn]
)p 1

at2[akn] ,

and so (6.28) follows from (12.15).

LEMMA 6.7. For p ≤ 2 and t ≥ 2, and for h(u, t) given by either �̃(t −u) or
φ(t − u)/φ(t), there is an absolute constant c0 such that∫ t

1/(2t)

h(u, t) du

up+1 ≤ c0h(t, t)

tp+1 .

PROOF. Writing v for t −u, we find that in the two cases h(u, t)/h(t, t) equals
2�̃(v) or e−v2/2, respectively. By (12.3), 2�̃(v) ≤ e−v2/2 for v ≥ 0, so in either
case the integral in question is bounded by

h(t, t)

tp+1

∫ t−1/(2t)

0
exp{−v2/2 + (p + 1)g(v)}dv,

where the convex function g(v) = log t − log(t − v) is bounded for 0 < v <

t − 1 by 4v(log t)/t . Completing the square in the exponent gives an integrand
smaller than

√
2π times a unit-variance Gaussian density centered at µ(p, t) =

4(p + 1)(log t)/t . Since µ(p, t) ≤ c0 for p ≤ 2 and t ≥ 2, the previous integral is
bounded by

√
2π exp{1

2µ2(p, t)} ≤ c0. �

6.4.3. Negative zone. Under conditions described immediately below,

[1 − εp
n ]qnν ≤ Mneg(ν;µ) ≤ [1 + cδp(εn)]qnν,(6.29)

[1 − εp
n ]qn ≤ Ṁneg(ν;µ) ≤ [1 + cδp(εn)]qn.(6.30)

The lower bound in (6.29) holds for all n, ν,µ. All other bounds require µ ∈
mp[ηn] and n ≥ n(b). The upper bounds further require ν such that tν ≥ c(b).

Lower bounds. For Mneg(ν;µ) = ∑
l≥k′

n
pν(µl) this is simple because

pν(µl) ≥ pν(0) = qnν/n, so that Mneg(ν;µ) ≥ (n − k′
n)qnν/n = [1 − ε

p
n ]qnν.

For Ṁneg(ν;µ), we set f (µ, t) = e−µ2/2 cosh(tµ) and check that for given c1,
µ → f (µ, t) is increasing for tµ ≤ c1 and t ≥ √

c1. For l ≥ k′
n we have

µl ≤ µ̄l ≤ µ̄k′
n
= τ−1

η ≤ c1t
−1
1 ≤ c1t

−1
ν ,(6.31)

by (12.14), for c1 = c1(b). Consequently f (µl, tν) ≥ f (0, tν) = 1 and so

Ṁneg(ν;µ) = (qn/n)
∑
l≥k′

n

f (µl, tν) ≥ (qn/n)(n − k′
n) = [1 − εp

n ]qn.
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Upper bounds. The arguments run in parallel: we have

Mneg(ν;µ) ≤ ∑
l≥k′

n

H1(µl) and Ṁneg(ν;µ) ≤ (qn/n)
∑
l≥k′

n

H2(µl),(6.32)

where H1(µ) = 2�̃(tν − µ) and H2(µ) = h(µ, tν) are both increasing and convex
functions of µ ∈ [0,1], at least when t > 2. Using (6.31) along with t = tν , this
convexity implies

H(µl) ≤ (1 − tµl/c1)H(0) + (tµl/c1)H(c1/t)

and hence, since t ≤ cbτη from (12.14),

n−1
∑
l≥k′

n

H(µl) ≤ H(0) + cbc
−1
1 H(c1/t)τηn

−1
∑
l≥k′

n

µ̄l .(6.33)

By an integral approximation, since εn = ηnτη and k′
n/n = ε

p
n , we find

τηn
−1

n∑
l=k′

n

µ̄l ≤ τηηn

∫ 1

k′
n/n

x−1/p dx = pεn

∫ 1

εn

sp−2 ds = δp(εn).(6.34)

To apply these bounds to Mneg(ν,µ), we note that H1(0) = qnν/n while
from (12.4), for t ≥ √

2c1,

H(c1t
−1) ≤ 8ec1�̃(t) = 4ec1(qnν/n).

From (6.32), (6.33) and (6.34), we obtain (6.29).
Turning to Ṁneg(ν;µ), we note that H2(0) = 1 and H2(c1/t) = exp{c1 −

c2
1/(2t2)} ≤ ec1 and so the same bounds combine to yield (6.30).

6.4.4. Conclusion. The upper bound in (6.20) follows by combining those
in (6.25), (6.28) and (6.30). The lower bound (6.21) follows by combining
(6.26) and (6.30).

COROLLARY 6.8. Let dn = 2c0τ
−1
η [where c0 is the constant in (6.27)]. Uni-

formly in mp[ηn],
k(µ) ≤ (1 − qn − dn)

−1kn.(6.35)

PROOF. Let s = (1 − qn − dn)
−1. Combining the bounds on Mpos,Mtrn and

Mneg in (6.22), (6.27) and (6.29), we find for n > n(b) and η sufficiently small that

M(skn; µ̄) ≤ [
1 + c0τ

−1
η + qns

(
1 + cbδp(εn)

)]
kn ≤ [1 + qns + rn]kn,

where, since s ≤ (1 − q ′)−1,

rn = c0τ
−1
η + cδp(εn), c = c(b, q ′).
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We have

M(skn; µ̄)/(skn) ≤ 1 − qn − dn + qn + rn = 1 − dn + rn.

Since δp(εn) = o(τ−1
η ) (from the assumptions on ηn), clearly rn − dn < 0 for n >

n(b); for such n, M(skn; µ̄) < skn, and so k(µ̄) < skn, as required. �

We draw a consequence for later use. Define

κn =
{ [αn + (1 − qn)

−1]kn, for �0[ηn],
[αn + (1 − qn − dn)

−1]kn, for mp[ηn].(6.36)

Recall now the notational assumption (A). Clearly, for large n,

κn ∼ (1 − qn)
−1kn and κn ≤ kn/q

′′.(6.37)

From the remark after (5.3) (case �n = �0[ηn]), and from Corollary (6.8) (case
�n = mp[ηn]),

sup
µ∈�n

k+(µ) ≤ κn. �

7. Large deviations bounds for [k̂G, k̂F ]. We now develop exponential
bounds on the FDR interval [k̂G, k̂F ] that lead to a proof of Proposition 5.1.
“Switching” inequalities allow the boundary-crossing definitions of k̂G, k̂F to be
expressed in terms of sums of independent Bernoulli variables for which large
deviations inequalities in a “small numbers” regime can be applied.

7.1. Switching inequalities. We will write Yl for the absolute ordered values
|y|(l). Let 1 ≤ k̂G ≤ k̂F ≤ n be, respectively, the smallest and largest local min-
ima of k → Sk = ∑n

l=k+1 Y 2
l + ∑k

l=1 t2
l for 0 ≤ k ≤ n. The possibility of ties in

the sequence {Sk} complicates the exact description of local minima. Since ties
occur with probability zero, we will for convenience ignore this possibility in the
arguments to follow, lazily omitting explicit mention of “with probability 1.”

Define the exceedance numbers

N(tk) = #{i : |yi | > tk}, N+(tk) = #{i : |yi | ≥ tk}.
Clearly N(tk) and N+(tk) have the same distributions. We now have

k̂F = max{l :Yl > tl} = max{l :N(tl) ≥ l},(7.1)

k̂G + 1 = min{l :Yl < tl} = min{l :N+(tl) < l}.(7.2)

[We set k̂F = 0 or k̂G = n if no such indices l exist.] To verify the left-hand side
inequalities, note that Sk − Sk−1 = t2

k − Y 2
k , so that

Sk ≥ Sk−1 ⇐⇒ Yk ≤ tk.
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The largest local minimum of Sk occurs at k = k̂F exactly when Sk < Sk−1 but
Sl ≥ Sl−1 for all l > k. In other words Yk > tk but Yl ≤ tl for all larger l, which
is precisely (7.1). Similarly, the smallest local minimum of Sk occurs at k = k̂G

exactly when Sk+1 > Sk but Sl ≤ Sl−1 for all l ≤ k, and this leads immediately
to (7.2).

For the right-hand side inequalities, we simply note that

N(tk) ≥ k iff Yk > tk and N+(tk) < k iff Yk < tk.

7.2. Exponential bounds. First, recall Bennett’s exponential inequality
(e.g., [32], page 192) in the form which states that for independent, zero-mean
random variables X1, . . . ,Xn with |Xi | ≤ K and V = ∑

Var(Xi),

P {X1 + · · · + Xn ≥ η} ≤ exp
{
− η2

2V
B

(
Kη

V

)}
,

where B(λ) = (2/λ2)[(1 +λ) log(1 +λ)−λ] for λ > 0 is decreasing in λ. The ex-
tended version [3] gives the following consequence, useful for settings of Poisson
approximation.

LEMMA 7.1. Suppose that Yl, l = 1, . . . , n, are independent 0/1 variables
with P(Yl = 1) = pl. Let N = ∑n

1 Yl and M = EN = ∑n
1 pl. Then

P {N ≤ k} ≤ exp
{−1

4Mh(k/M)
}
, if k < M,(7.3)

P {N ≥ k} ≤ exp
{−1

4Mh(k/M)
}
, if k > M,(7.4)

where h(x) = min{|x − 1|, |x − 1|2}.

7.3. Bounds on k/Mk . The Lipschitz properties of k → Ṁ(k;µ) established
in Section 6 are now applied to derive bounds on the ratios k/Mk appearing in the
exponential bounds (7.3)–(7.4). In the following, we use b to denote the vector of
constants b = (b1, . . . , b4, q

′), and the phrase n > n0(b) to indicate that a statement
holds for n sufficiently large, depending on the constants b.

PROPOSITION 7.2. Assume hypotheses (Q), (H) and (A). If αnkn ≤ k1, then
for n > n(b), uniformly in µ ∈ �0[ηn] and mp[ηn],

M(k1 + αnkn;µ) − M(k1;µ) ≤ q ′αnkn.(7.5)

(a) If k(µ) ≤ k1 ≤ (1 − q ′)−1kn and k2 = k1 + αnkn, then

k2

Mk2

− 1 ≥ (1 − q ′)3αn =: αn.(7.6)
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(b) There is ζ > 0 so that, if 2αnkn ≤ k(µ) ≤ (1 − q ′)−1kn and k1 = k(µ) −
αnkn, then

1 − k1

Mk1

≥ (1 − q ′)2αn ≥ ζαn.(7.7)

PROOF. Formulas (6.15)–(6.16) show that ν → Ṁ(ν;µ) is positive and de-
creasing and so the left-hand side of (7.5) is positive and bounded above by
Ṁ(αnkn;µ). For µ ∈ �0[ηn], (6.19) shows that for n > n(b), Ṁ(αnkn;µ) ≤ q ′
for all µ in �0[ηn]. That the same bound holds uniformly over mp[ηn] also is a
consequence of (6.20) and (6.18).

(a) To prove (7.6), note that the assumption k(µ) ≤ k1 entails Mk1 ≤ k1, so
from (7.5),

Mk2 = Mk1 + Mk2 − Mk1 ≤ k1 + q ′αnkn.

Since k1 ≤ kn/(1 − q ′) and q ′ < 1, we have

Mk2

k2
≤ k1 + q ′αnkn

k1 + αnkn

≤ 1 + q ′(1 − q ′)αn

1 + (1 − q ′)αn

.

Thus, since αn = O(1/
√

logn ), for n > n(b), we find

k2

Mk2

− 1 ≥ (1 − q ′)2αn

1 + q ′(1 − q ′)αn

≥ (1 − q ′)3αn.

(b) The assumption that k(µ) ≥ 2αnkn yields k1 ≥ αnkn, and so the Lipschitz
bound (7.5) implies Mk(µ) − Mk1 ≤ q ′αnkn. Hence, since k(µ) ≤ kn/(1 − q ′),

Mk1

k1
≥ k(µ) − q ′αnkn

k(µ) − αnkn

≥ 1 − q ′(1 − q ′)αn

1 − (1 − q ′)αn

,

which leads to (7.7) by simple rewriting. �

PROOF OF PROPOSITION 5.1. 1. Let k1 = k(µ) ∨ αnkn and k2 = k1 + αnkn.
From (7.1),

{k̂F ≥ k2} ⊂ ⋃
l≥k2

{N(tl) ≥ l}.(7.8)

For l > k2 > k(µ), we necessarily have EµN(tl) = M(l;µ) < l, and so from
Lemma 7.1

Pµ{N(tl) ≥ l} ≤ exp
{−1

4Mlh(l/Ml)
}
, Ml = M(l;µ).(7.9)

For x ≥ 1, the function h(x) is increasing, and for l > k2, l → l/Ml is increasing
and so h(l/Ml) ≥ h(k2/Mk2). Now k1 and k2 satisfy the assumptions of Proposi-
tion 7.2(a) and so from (7.6), h(k2/Mk2) ≥ ζ 2α2

n. Since l → Ml is increasing, we
have from Proposition 6.4 that

Ml ≥ M(1;µ) ≥ c(logn)γ−3/2.(7.10)
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Combining (7.8), (7.9) and (7.10), we find

Pµ{k̂F > k2} ≤ ∑
l>k2

exp
{−1

4M1ζ
2α2

n

}

≤ n exp{−cα2
n(logn)γ−3/2}

≤ n exp{−c′(logn)γ−5/2},
for c′ depending on q ′ and b4.

2. Now assume that k(µ) ≥ 2αnkn; we establish a high probability lower bound
for k̂G. Let k1 = k(µ) − αnkn; from (7.2)

{k̂G < k1} = {k̂G + 1 ≤ k1} ⊂ ⋃
l≤k1

{N+(tl) < l}.

For l ≤ k1 < k(µ), we necessarily have Ml > l and so

P {N+(tl) < l} = P {N(tl) < l} ≤ exp
{−1

4Mlh(l/Ml)
}
.

Since l → l/Ml ≤ 1 is increasing, and since k1 and k(µ) satisfy the assumptions
of Proposition 7.2(b), we obtain from (7.7) that

h(l/Ml) ≥
(

1 − k1

Mk1

)2

≥ ζ 2α2
n.

In addition l → Ml is increasing, and so Ml ≥ M1. Since k(µ) ≥ 2αnkn ≥ αnkn,
we have from Proposition 6.4 that (7.10) holds here also. Hence

Pµ{k̂G < k1} ≤ k1 exp
{−1

4M1ζ
2α2

n

} ≤ n exp{−c′(logn)γ−5/2},
in the same way as for (7.11). �

8. Lemmas on thresholding. This section collects some preparatory results
on hard (and in some cases soft) thresholding with both fixed and data-dependent
thresholds. These are useful for the analysis and comparison of the various FDR
and penalized rules, and are perhaps of some independent utility.

8.1. Fixed thresholds. First, we give an elementary decomposition of the �r

risk of hard thresholding.

LEMMA 8.1. Suppose that x ∼ N(µ,1) and that ηH (x, t) = xI {|x| ≥ t}.
Then

ρH (t,µ) = E|ηH (x, t) − µ|r
(8.1)

=
∫ t

−t
|µ|rφ(x − µ)dx +

∫
|x|>t

|x − µ|rφ(x − µ)dx

= D(µ, t) + E(µ, t),(8.2)
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where

D(µ, t) = |µ|r [�(t − µ) − �(−t − µ)],(8.3)

E(µ, t) = |t − µ|r−1φ(t − µ) + |t + µ|r−1φ(t + µ)
(8.4)

+ ε(t − µ) + ε(t + µ),

|ε(v)| = |r − 1|
∫ ∞
v

zr−2φ(z) dz ≤ vr−3φ(v), v > 0, 0 < r ≤ 2.(8.5)

We note that for 0 ≤ r ≤ 2

ρH (t,0) = 2
∫ ∞
t

zrφ(z) dz = 2t r �̃(t)(1 + θt−2), 0 ≤ θ ≤ r,(8.6)

and that E(µ, t):

(i) is globally bounded: 0 ≤ E(µ, t) ≤ cr = ∫ |z|rφ(z) dz,

(ii) is increasing in µ, at least for 0 ≤ µ ≤ t − √
2,

(iii) satisfies E(1, t) ≤ c0t
r �̃(t − 1) for t > 1.

A consequence of (8.6) is that for some |θ2| ≤ 1,

k∑
l=1

tkl = ktrk (1 + θt−2
k ) + θ2t

r
1 = ktrk

(
1 + o(1)

)
,(8.7)

so long as k → ∞ and k/n → 0.

This is proven in the extended version on which this article is based [3]; the
same is true for the next lemma, which concerns covariance between the data and
hard thresholding. This helps analyze �2 loss; for the �r analog, see Section 11.3.

LEMMA 8.2. Let x ∼ N(µ,1). ξ(t,µ) = Eµ(x − µ)[ηH (x, t) − µ] has the
properties:

(i)

ξ(t,µ) = t[φ(t − µ) + φ(t + µ)] + �̃(t − µ) + �(−t − µ),(8.8)

(ii)

ξ(t,µ) ≤
{

2, for |µ| ≤ t − √
2 log t ,

t + 1, for all µ,
(8.9)

(iii)

µ → ξ(t,µ) is symmetric about 0, increasing for 0 ≤ µ ≤ t,(8.10)

and convex for 0 ≤ µ ≤ t/3 if t ≥ 3,(8.11)

(iv)

sup
|µ|≤t/3

|ξµµ(t,µ)| ≤ c0.(8.12)
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8.2. Data-dependent thresholds.

LEMMA 8.3. Let x = µ+z ∼ N(µ,1) and η(x, t̂ ) denote soft or hard thresh-
olding at t̂ . For r > 0,

|η(x, t̂ ) − µ|r ≤ 2(r−1)+(|z|r + |t̂ |r ).(8.13)

PROOF. Check cases and use |a + b|r ≤ 2(r−1)+(|a|r + |b|r ). �

LEMMA 8.4. Suppose that y ∼ Nn(µ, I) and that µ̂(y) corresponds to soft or
hard thresholding at random level t̂ : µ̂(y)i = η(yi, t̂ ). Suppose that t̂ ≤ t almost
surely on the event A (with t ≥ [E|z|2r ]1/2r ). Then for r > 0,

Eµ[‖µ̂ − µ‖r ,A] ≤ 2r∨1/2t rnPµ(A)1/2.(8.14)

REMARK. The notation E[X,A] denotes EXIA where IA is the indicator
function of the event A.

PROOF OF LEMMA 8.4. Rewrite the left-hand side and use Cauchy–Schwarz:

n∑
i=1

E[|η(yi, t̂ ) − µi |r ,A] ≤ P(A)1/2
n∑
1

{E[|ηi − µi |2r ,A]}1/2.

Now (8.13) and the bound on t̂ imply

E[|ηi − µi |2r ,A] ≤ 2(2r−1)+[E|zi |2r + t̂2r ] ≤ 22r∨1t2r . �

Continuing with y ∼ Nn(µ, I), the next lemma matches the �r risks of two hard
threshold estimators µ̂(y)i = ηH (yi; t̂ ) and µ̂′ with data-dependent thresholds t̂

and t̂ ′ if those thresholds are close. Assume also that there is a nonrandom bound
t such that t̂ , t̂ ′ ≤ t with probability 1. Then

|ηH (yi, t̂ ) − ηH (yi, t̂
′)| ≤

{
t, if |yi | lies between t̂ , t̂ ′,
0, otherwise.

Let N ′ = #{i : |yi | ∈ [t̂ , t̂ ′]}—clearly ‖µ̂ − µ̂′‖r
r ≤ t rN ′. In various cases, N ′ can

be bounded on a high probability event, yielding:

LEMMA 8.5. Let βn be a specified sequence, and with the previous definitions,
set Bn = {N ′ ≤ βn}. For 0 < r ≤ 2,

|ρ(µ̂,µ) − ρ(µ̂′,µ)| ≤ 2βnt
r + rI {r > 1}ρ(µ̂′,µ)1−1/rβ1/r

n t
(8.15)

+ 8t rnPµ(Bc
n)

1/2.
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PROOF. To develop an �r analog of (9.21), we note a simple bound valid for
all a, z ∈ R:

∣∣|a + z|r − |a|r ∣∣ ≤ { |z|r , 0 < r ≤ 1,
r(|a| + |z|)r−1|z|, 1 < r .

(8.16)

(For r > 1, use derivative bounds for y → |y|r .) We consider here only 1 < r ≤ 2;
the case r ≤ 1 is similar and easier. Thus, setting ε = µ̂ − µ̂′, � = µ̂ − µ and
similarly for �′,∣∣∣∣∣E

{∑
i

|�i |r − |�′
i |r ,Bn

}∣∣∣∣∣ ≤ rE

{∑
i

|�′
i |r−1|εi | + |εi |r ,Bn

}
.

Using Hölder’s inequality and defining εn = E{‖µ̂ − µ̂′‖r
r ,Bn}, we obtain

|E{‖�‖r
r − ‖�′‖r

r ,Bn}| ≤ rρ(µ̂′,µ)(r−1)/rε1/r
n + rεn.(8.17)

From the definition of event Bn and the remarks preceding the lemma, εn ≤ βnt
r .

On Bc
n, apply Lemma 8.4 to obtain (8.15). �

9. Upper bound result: �2 error. We now turn to the upper bound, Theo-
rem 4.1. We begin with the simplest case: squared-error loss. Only the outline of
the argument is presented in this section, with details provided in the next section.
The extensions to �r error measures, of considerable importance to the conclusions
of the paper, are not straightforward. The proofs are postponed until Section 11.

The approach taken in this section was sketched in the Introduction; see
(1.11) and (1.13). We define certain empirical and theoretical complexity func-
tions—the empirical complexity being minimized by µ̂2. A basic inequality
bounds the theoretical complexity of µ̂2 by the minimal theoretical complexity
plus an “error term” of covariance type. When maximized over a sparse parame-
ter set �n, the minimum theoretical complexity has the same leading asymptotics
as the minimax estimation risk for �n. To complete the proof, the error term is
bounded. This analysis is sketched in Section 9.3; the detailed proof relies on an
average case and large deviations analysis of the penalized FDR index k̂2. The
upshot is that these terms are negligible if q ≤ 1/2, but add substantially to the
maximum risk when q > 1/2; this was foreshadowed in Proposition 5.5 and its
discussion. Finally, a risk comparison is used to extend the conclusion from the
penalized estimate µ̂2 to the original FDR estimate µ̂F .

9.1. Empirical and theoretical complexities. In Section 1.8 we have de-
fined µ̂2 as the minimizer of the empirical complexity K(µ̃, y) = ‖y − µ̃‖2 +
Pen(µ̃) (note that now we set σ 2 = 1). Substituting y = µ+z into K(µ̂2, y) yields
the decomposition

K(µ̂2, y) = K(µ̂2,µ) + 2〈z,µ − µ̂2〉 + ‖z‖2.(9.1)
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Now let µ0 = µ0(µ) denote the minimizer over µ̃ of the theoretical complexity
K(µ̃,µ) corresponding to the unknown mean vector µ,

K(µ0,µ) = inf
µ̃

‖µ − µ̃‖2 + Pen(µ̃).(9.2)

There is a decomposition for K(µ0, y) that is exactly analogous to (9.1),

K(µ0, y) = K(µ0,µ) + 2〈z,µ − µ0〉 + ‖z‖2.

Since by definition of µ̂2, K(µ0, y) ≥ K(µ̂2, y), we obtain, after noting the can-
cellation of the quadratic error terms and rearranging,

K(µ̂2,µ) ≤ K(µ0,µ) + 2〈z, µ̂2 − µ0〉.(9.3)

Thus the complexity of µ̂2 is bounded by the minimum theoretical complexity plus
an error term. Up to this point, the development is close to that of [14], as well as
work of other authors (e.g., [43]). Since

K(µ̂2,µ) = ‖µ̂2 − µ‖2 + Pen(µ̂2),(9.4)

we obtain a bound for ρ(µ̂2,µ) = Eµ‖µ̂2 − µ‖2 by taking expectations in (9.3).
Since the error term has zero mean, we may replace µ0 by µ and obtain the basic
bound

ρ(µ̂2,µ) ≤ K(µ0,µ) + 2Eµ〈z, µ̂2 − µ〉 − Eµ Pen(µ̂2).(9.5)

We view the right-hand side as containing a “leading term” K(µ0,µ)—the the-
oretical complexity—and an “error term,”

Err2(µ, µ̂2) ≡ 2Eµ〈z, µ̂2 − µ〉 − Eµ Pen(µ̂2).(9.6)

We now claim that the maximum theoretical complexity over sparsity classes �n

is asymptotic to the minimax risk.

PROPOSITION 9.1. Assume (Q), (H). Then

sup
µ∈�n

K
(
µ0(µ),µ

) ∼ Rn(�n), n → ∞.(9.7)

The same minimax risk bounds the error term:

PROPOSITION 9.2. Assume (Q), (H). With u2p = 1 for �0 and strong �p , and
u2p = 1 − p/2 for weak �p ,

sup
µ∈�n

Err2(µ, µ̂2) =

Rn(�n)u2p

(2q − 1)

1 − q
, q > 1/2,

o(Rn(�n)), q ≤ 1/2 .
(9.8)

Together these propositions give the upper bound result in the squared-error
case.
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9.2. Maximal theoretical complexity. We prove Proposition 9.1, beginning
with the nearly-black classes �n = �0[ηn].

As in Section 1.8, decompose the optimization problem (9.2) defining K(µ0,µ)

over the number of nonzero components in µ̃. Assign these to the largest compo-
nents of µ: hence

K(µ0,µ) = inf
k

n∑
l=k+1

µ2
(l) +

k∑
l=1

t2
l .(9.9)

On �0[ηn], at most kn = [nηn] components of µ can be nonzero. Hence the infi-
mum over k may be restricted to 0 ≤ k ≤ kn. This implies

sup
µ∈�0[ηn]

K(µ0,µ) =
kn∑
1

t2
l .(9.10)

Indeed, choosing k = kn in (9.9) shows the left-hand side to be smaller than the
right-hand side in (9.10), while equality occurs for any µ with nonzero entries
µ1 = · · · = µkn > t1. Noting

k∑
1

t2
l ∼ kt2

k , t2
k ∼ 2 log

(
n

k

2

q

)
if k = o(n)(9.11)

[cf. (8.7) and Lemma 12.3], along with ηn = O(n−δ), we get

kn∑
1

t2
l ∼ knt

2
kn

∼ nηn2 logη−1
n ∼ Rn(�0[ηn]),

which establishes (9.7) in the �0 case.

REMARK. Using a fixed penalty Penfix(µ) = t2‖µ‖0 in the above argument
would yield supK = knt

2 ≈ nηnt
2, but the t2 term is unable to adapt to varying

signal complexity.

Weak �p . The maximum of (9.9) over µ ∈ mp[ηn] occurs at the extremal
vector µ̄l = Cnl

−1/p , where Cn = n1/pηn. Define kn to be the solution of

C2
nk

−2/p
n = t2

kn
. Using (9.11), we obtain

sup
µ∈mp[ηn]

K(µ0,µ) = inf
k

C2
n

n∑
k+1

l−2/p +
k∑
1

t2
l

∼ C2
nτpk1−2/p

n + knt
2
kn

, τp = p

2 − p
(9.12)

= (1 + τp)knt
2
kn

.
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Thus kn is the optimal number of nonzero components and may be rewritten as

kn = Cp
n t

−p
kn

= nηp
n t

−p
kn

.(9.13)

A little analysis using (9.11) and the equation for kn shows that t2
kn

∼ 2 logη
−p
n .

(For this reason, we define kn = nη
p
n τ

−p
η .) From (3.4) we then conclude t2

kn
∼ µ2

n,

which via (3.6) and (3.7) shows that the right-hand side of (9.12) is asymptotically
equivalent to R(mp[ηn]), as claimed.

REMARK. The least-favorable configuration for µ is thus given by µl =
min(Cnl

−1/p, tl) = min(ηn(l/n)−1/p, tl), which, after noting (9.11), is essentially
identical with the least-favorable distribution (3.8). In addition, the maximization
has exactly the same structure as the approximate evaluation of the Bayes risk
of soft thresholding over this least-favorable distribution; compare (3.9)–(3.11).
Replacing the slowly varying boundary l → tl by mk = t[kn] + α leads to the con-
figurations (5.17).

Strong �p . The maximal theoretical complexity is the value of the optimization
problem(

Q(n,ηp
n )

)
max

∑
min

(
µ2

(l), t
2
�

)
subject to

∑
�

µ
p
(�) ≤ nηp

n .

The change of variables x� = µ
p
(�) allows to write this as

max
∑
�

min(x
2/p
� , t2

� ) subject to
∑
�

x� ≤ nηp
n , x1 ≥ x2 ≥ · · · .

Since p < 2, the objective function is strictly convex on ��[0, t2
� ], and the con-

straint set is convex. The maximum will be obtained at an extreme point of the
constraint set, that is, roughly at a sequence vanishing for � > k (for some k) and
equal to t

1/p
� for � ≤ k. Let k̃n be the largest k for which

k∑
�=1

t
p
� ≤ nηp

n .

Then the maximal theoretical complexity obeys

k̃n∑
�=1

t2
� ≤ val

(
Q(n,ηp

n )
) ≤

k̃n+1∑
�=1

t2
� .

Again using (9.11), we get

sup{K(µ0,µ) :µ ∈ �p[ηn]} ∼ k̃nt[k̃n]2 ∼ nηp
n τ 2−p

η .

So (9.7) follows in the �p[ηn] case.
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9.3. The error term. We outline the proof of (9.8). Recall the definitions k±
and t± from Section 5, at (5.6), (5.5), (5.8), and their use in Proposition 5.1. We
will rely on the fact that it is �n-likely under Pµ that k̂2 ≤ k+(µ) and hence that
t̂2 ≥ t−(µ). First write

〈z, µ̂2 − µ〉 =
n∑
1

zi[ηH (yi, t̂2) − µi].(9.14)

We exploit monotonicity of the error term for small components µi . Indeed, if
|µi | ≤ t−(µ) ≤ t̂2, then (cf. Lemma 10.1)

zi[ηH (yi, t̂2) − µi] ≤ zi

[
ηH

(
yi, t−(µ)

) − µi

]
,(9.15)

as may be seen by checking cases. This permits us to replace t̂2 by the fixed thresh-
old value t−(µ) for the vast majority of components µi, with Proposition 5.1 pro-
viding assurance that t̂2 ≥ t−(µ) with high probability. We recall the definition of
the covariance kernel ξ in Lemma 8.2. For z1 ∼ N(0,1) and scalar mean µ1,

ξ(t,µ1) = Ez1[ηH (z1 + µ1, t) − µ1].
The function ξ(t,µ1) is the covariance between y1 and ηH (y1, t) when the data

y1 ∼ N(µ1,1). Lemma 8.2 shows that ξ is even in µ1, and has a minimum of
2tφ(t) at µ1 = 0, rising to a maximum near µ1 = t (though always bounded by
t + 1), and dropping quickly to 1 for large µ1. It turns out that, uniformly on
nearly-black sequences µ ∈ �n, the main contribution to the sum comes from
components µ1 near 0.

Similarly, it is �n-likely that

Pen(µ̂2) =
k̂2∑
1

t2
l ≥ k−(µ)t2+(µ).

We proceed heuristically here, leaving the (necessary!) careful verification
to Section 10. Interpreting “≈” to mean “up to terms whose positive part is
o(Rn(�)),” we have, uniformly on �n,

Err2(µ, µ̂2) ≈ 2
∑

ξ
(
t−(µ),µi

) − k−(µ)t2+(µ)(9.16)

≈ 4nt−(µ)φ(t−(µ)) − k−(µ)t2+(µ)(9.17)

≈ [4n�̃(t−(µ)) − k−(µ)]t2+(µ)(9.18)

≈ (2qn − 1)k−(µ)t2+(µ).(9.19)

At (9.17) we first use the fact that ξ(t,0) = 2tφ(t). Second, for the at most kn

nonzero terms, we use the bound ξ(t,µ) ≤ t + 1 ≤ t1 + 1—compare (8.9)—and
note that their contribution is at most O(knt1) = o(Rn). At (9.18) we use φ(t) ∼
t�̃(t) as t → ∞, and at (9.19) the definitions of t+(µ), k− and the asymptotics of
each.
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Expression (9.19) is negative if qn < 1/2, making Err2 for our purposes negli-
gible. For qn ≥ 1/2, since k → kt2

k is increasing [cf. (12.10)], we use the bound
of (5.3), namely k(µ) ≤ k̃n on �0[ηn], along with (9.11) to conclude that (9.19) is
not larger than

(2qn − 1)k̃t2
k̃

∼ 2qn − 1

1 − qn

Rn(�0[ηn]).(9.20)

This motivates (9.8) in the �0 case.

Weak �p . The outline is much as above, although there is detailed technical
work since all means may be nonzero (subject to the weak-�p sparsity constraint),
for example, in the transition (9.16) to (9.17). Again, after (9.19) we are led to max-
imize k−(µ) over mp[η] and from (5.4), find k−(µ) ≤ k(µ̄) ≤ kn/(1 − qn) = k̃,
say. Here kn = nη

p
n τ

−p
η is the effective nonzero index for weak �p defined af-

ter (9.13).
Consequently, since t

k̃
∼ τη, and using the expressions (3.6) and (3.7) for mini-

max risks, we obtain

(2qn − 1)k−(µ)t2+(µ) ≤ (2qn − 1)k̃t2
k̃

(
1 + o(1)

)
∼ 2qn − 1

1 − q
knτ

2
η ∼ 2qn − 1

1 − q
nηp

n τ 2−p
η

∼ 2qn − 1

1 − q
Rn(�p[ηn]) ∼ u2p

2qn − 1

1 − q
R(mp[ηn]),

with u2p = (1 − p/2).

Strong �p . The inclusion �p[ηn] ⊂ mp[ηn] and the previous display give

(2qn − 1)k−(µ)t2+(µ) ≤ 2qn − 1

1 − q
Rn(�p[ηn])(1 + o(1)

)
.

If the above arguments were complete—rather than just sketches—we would
now have the right-hand side of (9.8) in Proposition 9.2. Details will come in
Section 10.

9.4. From penalized to original FDR. We extend the adaptive minimaxity re-
sult for the penalized estimator µ̂2 which thresholds at t̂2 to any threshold t̂ in the
range [t̂F , t̂G] defined in Section 1.8. In particular, the adaptive minimaxity will
apply to the original FDR estimator µ̂F .

First compare the squared error of a deviation δ̂2 = µ̂2 − µ with that of δ̂ =
µ̂ − µ:

‖δ̂‖2
2 − ‖δ̂2‖2

2 = ‖µ̂ − µ̂2‖2
2 + 2(µ̂ − µ̂2) · (µ̂2 − µ).(9.21)
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Now suppose µ̂D (“D” for “data dependent”) has the form (4.1). All such estima-
tors differ from µ̂2 at most in those coordinates yl with k̂G ≤ l ≤ k̂F , and on such
coordinates the difference between the two estimates is at most t̂G ≤ t1 = z(q/2n).

Hence

‖µ̂ − µ̂2‖2
2 ≤ t2

1 (k̂F − k̂G).

Proposition 5.1 and (5.7) show that FDR control, combined with sparsity, forces
the “crossover interval” [k̂G, k̂F ] to be relatively small, having length bounded by
γαnkn.

On the event described in Proposition 5.1, we have

‖µ̂ − µ̂2‖2
2 ≤ γαnknt

2
1 = o(Rn(�n)).(9.22)

We summarize, with remaining details deferred to Section 11.4.

THEOREM 9.3. If µ̂D satisfies (4.1), then for each r ∈ (0,2]
sup

µ∈�n

|ρ(µ̂D,µ) − ρ(µ̂r ,µ)| = o(Rn(�n)),

so that asymptotic minimaxity of µ̂r implies the same property for any such µ̂D.

10. Error term: quadratic loss. We now formalize the error term analysis of
Section 9.3, collecting and applying the tools built up in earlier sections.

LEMMA 10.1. If |µ| ≤ t1 ≤ t2, then

(x − µ)[ηH (x, t2) − µ] ≤ (x − µ)[ηH (x, t1) − µ].
PROOF. The difference RHS − LHS equals

(x − µ)[ηH (x, t1) − ηH (x, t2)] = (x − µ)xI {t1 ≤ |x| ≤ t2} ≥ 0,

since sgnx = sgn(x − µ) if |x| ≥ t1 ≥ |µ|. �

We proceed with the formal analysis of the error term (9.6). Set

êi = ei(t̂2) = 2(yi − µi)[ηH (yi, t̂2) − µi]
and

An = An(µ) = {t− ≤ t̂2 ≤ t+}, Sn(µ) = {i : |µi | ≤ t−}.
We have

2E〈z, µ̂2 − µ〉 = E
∑

êi
(10.1)

= E

[ ∑
Sn(µ)

êi ,An

]
+ E

[ ∑
Sc

n(µ)

êi ,An

]
+ E

[∑
êi ,A

c
n

]

= Dan + T2n + T3n,(10.2)
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where we use Dan,Dbn and so on to denote “dominant” terms, and Tjn to denote
terms that will be shown to be negligible.

Let ei = ei(t−): the monotonicity of errors for small components (shown in
Lemma 10.1) says that the first term on the right-hand side is bounded above by

E

[ ∑
Sn(µ)

ei,An

]
= E

[ ∑
Sn(µ)

ei

]
− E

[ ∑
Sn(µ)

ei,A
c
n

]
= Dbn + T4n.

Recalling the definition of ξ(t,µ) from Section 8.2, we have Eei = 2ξ(t−,µi) and

Dbn = 2|Sn(µ)|ξ(t−,0) + 2
∑

Sn(µ)

[ξ(t−,µi) − ξ(t−,0)]

≤ 2nξ(t−,0) + T1n(µ),

say. To summarize, we obtain the following decomposition for the error term (9.6):

Err2(µ, µ̂2) ≤ Dcn(µ) +
4∑

j=1

Tjn(µ),

where

Dcn(µ) = 2nξ(t−,0) − Eµ Pen(µ̂2).

Recall that Rn(�n) � knτ
2
η for both �0[ηn] and mp[ηn]. In the following, we

will show negligibility of error terms by establishing that they are O(knτη) [or, in
one case, o(knτ

2
η )] uniformly over �0[ηn] or mp[ηn], respectively.

Dominant term. Using (12.1),

ξ(t,0) = 2tφ(t) + 2�̃(t) ≤ 2t2�̃(t) + 6�̃(t).

Since 2�̃(t−) = qnk+n−1, we obtain

2nξ(t−,0) ≤ 2qnk+t2− + 6qnk+ ≤ 2qnk−t2− + cknτη,(10.3)

after observing that k+ − k− ≤ 3αnkn ≤ cknτ
−1
η by assumption (A), and that t− ≤

cτη from (12.14).
For the penalty term in Dcn, we note that on An, k̂2 ≥ k−, and so Pen(µ̂2) =∑k̂2
1 t2

l ≥ k−t2+ ≥ k−t2−. On the other hand, since An is �n-likely,

Eµ

[
k̂2∑
1

t2
l ,Ac

n

]
≤ nt2

1 Pµ(Ac
n) ≤ cknτη.

As a result

Eµ Pen(µ̂2) ≥ k−t2− + O(knτη).(10.4)
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Combining (10.3) and (10.4), we obtain

Dcn(µ) ≤ (2qn − 1)k−t2− + O(knτη).

If qn ≤ 1/2, then of course the leading term is nonpositive, while in the case
1/2 ≤ qn < 1, we note from the monotonicity of k → kt2

k [cf. (12.10)] and the
definition (6.37) of κn that

k−t2− ≤ k+t2[k+] ≤ κnt
2[κn] ∼ (1 − qn)

−1knτ
2
η ,

which leads to the second term in the upper bound of (4.2).

Negligibility of T1n − T4n. Consider first the term T1n(µ). For the nonzero µl

(of which there are at most nηn), use the bound (8.9) to get

T1n(µ) ≤ kn(t1 + 1) ≤ knτη.

For the large signal component term T2n, we have, using Lemma 8.4 and the
bound t̂2 ≤ t1 = O(log1/2 n),

T2n ≤ ∑
Sc

n(µ)

E[êi ,An]

≤ 2
∑

Sc
n(µ)

{E[η(yi, t̂2) − µi]2}1/2

(10.5)
≤ c0t1|Sc

n(µ)|
≤ |Sc

n(µ)|(c0 logn)1/2.

On �0[ηn], clearly |Sc
n(µ)| ≤ nηn and so T2n(µ) ≤ c1knτη.

For the small threshold term T3n, note first that
∑

êi ≤ 2‖z‖‖µ̂2 − µ‖, so that

T3n(µ) ≤ 2(E‖z‖2)1/2{E[‖µ̂2 − µ‖2,Ac
n]}1/2.

Now E‖z‖2 = n, and since Ac
n is a rare event, apply Lemma 8.4, noting the bound

t̂2 ≤ t1. Thus

T3n(µ) ≤ 8nt1Pµ(Ac
n)

1/4 ≤ c1nt1 exp{−c2 log2 n} = o(Rn(�0[ηn])),
uniformly on �0[ηn] after applying Proposition 5.1.

The remaining term T4n is handled exactly as was T3n: if we let µ̂F denote hard
thresholding at the (fixed) threshold t−, then

∑
Sn(µ) ei ≤ ‖z‖‖µ̂F − µ‖; and now

Lemma 8.4 and Proposition 5.1 can be used as before.
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Weak �p . A little extra work is required to analyze T1n(µ), so we first dispose
of T2n − T4n. The analysis of T3n and T4n is essentially as above. For T2n, we
bound |Sc

n(µ)| using the extremal element of mp[ηn], namely µ̄l = ηn(n/l)1/p.

Thus, for all µ ∈ mp[ηn],
Sc

n(µ) ⊂ {l : µ̄l > t−(µ)},
and since, for η sufficiently small,

t−(µ) = t[k+(µ)] ≥ t[k+(µ̄)] ≥ τη − 3/2 = τη

(
1 + o(1)

)
,(10.6)

we have

|Sc
n(µ)| ≤ nηp

n t
−p
− (µ) ≤ nηp

n τ−p
η

(
1 + o(1)

)
.(10.7)

From (3.6) we have Rn = R(�p[ηn]) ∼ nη
p
n τ

2−p
η , and so from (10.5) and (10.7)

we get

T2n(µ) ≤ c0t1nηp
n τ−p

η ≤ cknτη.

For the T1n term, we obtain from Lemma 8.2 that

ξ(t,µ) − ξ(t,0) ≤ c(µ2 ∧ t),

and so T1n(µ) ≤ 2c
∑

µ̄2
l ∧ t1. The negligibility of T1n is a consequence of the

following.

LEMMA 10.2. For 0 < p < r ≤ 2, we have∑
l

µ̄r
l ∧ t

(r−1)+
1 = o(knτ

r
η ).

PROOF. Define k̃ by µ̄
k̃
= τη/ log τη so that k̃ = nη

p
n τ

−p
η logp τη. We have

n∑
l=1

µ̄r
l ∧ t

(r−1)+
1 ≤ k̃t

(r−1)+
1 + ∑

l>k̃

µ̄r
l .

Since t1 ≤ cτη,

k̃t
(r−1)+
1 ≤ cknτ

(r−1)+
η logp τη = o(knτ

r
η ).

By integral approximation, since 0 < p < r ,

∑
l>k̃

µ̄r
l ≤ nηr

n

∫ 1

k̃/n
x−r/p dx ≤ crpnηr

n(k̃/n)1−r/p

= crpnηp
n τ r−p

η logp−r τη = o(knτ
r
η ). �
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11. �r losses. This section retraces for �r loss the steps used for squared er-
ror in Section 9, making adjustments for the fact that the quadratic decomposi-
tion (9.1) is no longer available. It turns out that this decomposition is merely a
convenience—the asymptotic result of Theorem 4.1 is as sharp for all 0 < r ≤ 2.

However, the analysis of the error term is more complex than in Section 10, requir-
ing bounds developed in Lemmas 11.1 and 11.2.

11.1. Empirical complexity for �r loss. For an �r loss function, we use a mod-
ified empirical complexity,

K(µ̃, y; r) = ‖y − µ̃‖r
r +

N(µ̃)∑
l=1

t rl .

The minimizers of empirical and theoretical complexity are defined, respectively,
by

µ̂r = arg min
µ̃

K(µ̃, y; r),

µ0 = arg min
µ̃

K(µ̃,µ; r).

For �r loss, the quadratic decomposition of (9.1) is replaced by

K(µ̃,µ + z) = K(µ̃,µ) + ‖µ − µ̃ + z‖r
r − ‖µ − µ̃‖r

r .(11.1)

The key inequality

K(µ̂r, y) ≤ K(µ0, y),

when combined with (11.1), applied to both µ̃ = µ̂r and µ0, yields the analog
of (9.3),

K(µ̂r,µ) ≤ K(µ0,µ) + D(µ̂r ,µ0,µ, y).

Setting

δ̂ = µ − µ̂r , δ0 = µ − µ0, y = µ + z,(11.2)

we have for the error term

D̂ = D(µ̂r ,µ0,µ, y) = ‖δ0 + z‖r
r − ‖δ0‖r

r − ‖δ̂ + z‖r
r + ‖δ̂‖r

r =
n∑
1

d̂l .(11.3)

Thus, with Errr ≡ EµD̂ − Eµ Penr (µ̂r ),

E‖µ̂r − µ‖r
r ≤ K(µ0,µ; r) + Errr (µ, µ̂r).(11.4)
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11.2. Maximum theoretical complexity. The theoretical complexity corre-
sponding to µ is given by

K(µ0,µ; r) = inf
k

n∑
k+1

|µ|r(l) +
k∑
1

t rl .(11.5)

We may argue as in Section 9.2 that for �n = �0[ηn],

sup
µ∈�n

K(µ0,µ) ≤
kn∑
1

t rl ∼ knt
r
kn

∼ nηn(2 logη−1
n )r/2 ∼ Rn(�n; r),(11.6)

and that for �n = mp[ηn],

sup
µ∈�n

K(µ0,µ) = inf
k

Cr
n

n∑
k+1

l−r/p +
k∑
1

t rl ∼ Rn(�n; r).

Finally, for �n = �p[ηn], we may argue that

sup
µ∈�n

K(µ0,µ) ∼ max
k

{
k∑
1

t rl :
k∑
1

t
p
l ≤ nηp

n

}
∼ Rn(�n; r).

We remark that if k(µ) is an index minimizing (11.5), then µ0i is obtained from
hard thresholding of µi at t0 = t[k(µ)] [interpreted as t1 if k(µ) = 0]. In any event,
this implies

|δ0i | = |µi − µ0i | ≤ |µi | ∧ t1.(11.7)

11.3. The �r error term. There is an �r analog of bound (9.15); this allows
us to replace the random threshold t̂r by the fixed threshold value tκ for the most
important cases.

Indeed, suppose that |µi | ≤ tκ ≤ t̂r . Let µ̄i(y) = ηH (yi, tκ) denote hard thresh-
olding at tκ , and let δ̄i = µi − µ̄i denote the corresponding deviation. We claim
that

|δ̂i |r − |δ̂i + zi |r ≤ |δ̄i |r − |δ̄i + zi |r .(11.8)

Indeed, δ̂i = δ̄i unless tκ ≤ |yi | ≤ t̂r . In this case, we have µ̂i = 0 so that δ̂i = µi ,
while µ̄i = yi so that δ̄i = −zi. In this case, (11.8) reduces to

|µi |r − |yi |r ≤ |zi |r ,
which is trivially true since |µi | ≤ tκ ≤ |yi |.

We now derive the �r analog of the error decomposition (10.1). Recalling the
notation (11.2)–(11.4), we have

d̂i = di(t̂r ) = |δ0i + zi |r − |δ0i |r − |δ̂i + zi |r + |δ̂i |r .(11.9)
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Defining as in Section 9.3 the sets An = {t− ≤ t̂r ≤ t+} and Sn(µ) = {i : |µi | ≤ t−},
we obtain

EµD̂ = E
∑

d̂i = E

[ ∑
Sn(µ)

d̂i ,An

]
+ E

[ ∑
Sc

n(µ)

d̂i ,An

]
+ E

[∑
d̂i ,A

c
n

]

= Dan + T2n + T3n.

Let di = di(t−); the monotonicity of errors for small components [cf. (11.8)] says
that the leading term

Dan ≤ E

[ ∑
Sn(µ)

di,An

]
= E

[ ∑
Sn(µ)

di

]
− E

[ ∑
Sn(µ)

di,A
c
n

]
= Dbn + T4n.

Consider first the dominant term Dbn. First, write

Edi = Eµ|δ0i + zi |r − |δ0i |r − |δ̄i + zi |r + |δ̄i |r
(11.10)

= ψr(δ0i ) + ξr(t−,µi),

where, for y = µ + z, z ∼ N(0,1) and 0 < r ≤ 2, we define

ψr(a) = E[|a + z|r − |a|r − |z|r ],(11.11)

ξr(t,µ) = E[|ηH (y, t) − µ|r − |ηH (y, t) − y|r + |y − µ|r ].(11.12)

[Note that a term E|z|r has been introduced in both ψr and ξr ; as a result ψ2(a) ≡ 0
and ξ2(t,µ) = 2ξ(t,µ) as defined at (8.8).] The next lemmas, proved in the ex-
tended version [3], play the same role as Lemma 8.2 for the �2 case.

LEMMA 11.1. The function ψr(a) defined at (11.11) is even in a and

|ψr(a)| ≤
{

C1|a|r , for all a,
C2|a|(r−1)+, for |a| large.

(11.13)

LEMMA 11.2. The function ξr(t,µ) defined at (11.12) is even in µ and satis-
fies

ξr(t,0) = 2
∫
|z|>t

|z|rφ(z) dz,(11.14)

|ξr(t,µ)| ≤ C
[
t (r−1)+ + 1

]
, µ ∈ R, t > 0.(11.15)

With the preceding notation, we may therefore write

Dbn(µ) = ∑
Sn(µ)

ψr(δ0i ) + ξr(t−,µi) = |Sn(µ)|ξr(t−,0) + T1n(µ),
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say. To summarize, we obtain the following decomposition for the error term
in (11.4):

EµD̂ − Eµ Penr (µ̂) ≤ Dcn(µ) +
4∑

j=1

Tjn(µ),

Dcn(µ) = nξr(t−,0) − Eµ Penr (µ̂r ).

Dominant term. Using (8.6),

ξr(t,0) ≤ 4t r �̃(t)[1 + 2t−2].
Since 2�̃(t−) = qnk+n−1, we obtain

nξr(t−,0) ≤ 2qnk+t r− + 8qnk+t r−2− ≤ 2qnk−t r− + cknτ
r−1
η ,

since k+ − k− ≤ cknτ
−1
η and t−(µ) � τη.

For the penalty term, arguing as before yields

Eµ Penr (µ̂r ) ≥ k−t r− + O(knτ
r−1
η ).

Combining the two previous displays, we obtain

Dcn(µ) ≤ (2qn − 1)k−t r− + O(knτ
r−1
η ).

If qn ≤ 1/2, of course the leading term is nonpositive, while in the case 1/2 ≤
qn < 1, we note from (12.10) and the definition (6.37) of κn that

k−(µ)tr−(µ) ≤ k+t r [k+] ≤ κnt
r [κn] ∼ (1 − qn)

−1knτ
r
η ,

which shows that Dcn(µ) is bounded by the second term in the upper bound
of (4.2).

Negligibility of T1n − T4n. Since there are at most kn nonzero terms in T1n,
from Lemmas 11.1 and 11.2 we obtain

T1n(µ) ≤ Cknt
(r−1)+
1 = o(knτ

r
η ).

To bound T2n, we first note from the properties of hard thresholding [cf. (8.13)]
that

|δ̂i | = |µ̂r,i − µi | ≤ t̂r + |zi | ≤ t1 + |zi |.
Inequality (11.7) shows that |δ0i | ≤ t1.

Combined with (11.9) and (8.16), this shows, for 1 < r ≤ 2,

|d̂i | ≤ 3t r−1
1 |zi | + 6|zi |r ,(11.16)

while for 0 < r ≤ 1 only the |zi |r term is needed. Consequently, there exist con-
stants Ci such that for 0 < r ≤ 2

E|d̂l| ≤ C1t
(r−1)+
1 and Ed̂2

i ≤ C2t
2(r−1)+
2 .(11.17)
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Thus

|T2n| ≤
∑

Sc
n(µ)

E|d̂i | ≤ C|Sc
n(µ)|t (r−1)+

1 .(11.18)

And so on �0[ηn],
|T2n| ≤ Cnηnt

(r−1)+
1 = o(knτ

r
η ).

To bound T3n(µ), use (11.17) and Cauchy–Schwarz:

T3n(µ) ≤ P(Ac
n)

1/2
∑
i

(Ed̂2
i )1/2 ≤ cnt

(r−1)+
1 exp{−c0(logn)2/2} = o(Rn(�n)),

since An is �n-likely. Argue similarly for T4n, with threshold at t−(µ) instead
of t̂r .

Weak �p . For the T1n term, we use a consequence of Lemmas 11.1 and 11.2,
proved in the extended report [3], to bound the summands in T1n(µ):

ψr(δ0i ) + |ξr(t−,µi) − ξr(t−,0)| ≤ C
[|µi |r ∧ t

(r−1)+
1

]
.(11.19)

Combined with Lemma 10.2, this shows that supmp[ηn] T1n(µ) = o(knτ
r
η ).

For T2n, we use (10.7) in (11.18) to obtain

|T2n| ≤ Cnηp
n tr−p

η t
(r−1)+−r
1 = o(Rn(�n)).

The analysis of T3n and T4n is as for the �0 case.

11.4. From penalized to original FDR.

PROOF OF THEOREM 9.3. Apply Lemma 8.5 with µ̂ = µ̂D and µ̂′ and
t = t1. We abbreviate the minimax risk Rn(�n) by Rn. Theorem 4.1 shows that
for sufficiently large n, sup�n

ρ(µ̂r ,µ) ≤ c0Rn, so that the bound established by
Lemma 8.5 yields

sup
µ∈�n

|ρ(µ̂D,µ) − ρ(µ̂r ,µ)|
(11.20)

≤ 2βnt
r
1 + 2c0I {r > 1}R1−1/r

n (βnt
r
1 )1/r + 8ntr1 sup

�n

Pµ(Bc
n)

1/2.

The thresholds t̂D and t̂r corresponding to µ̂D and µ̂r both lie in [t̂G, t̂F ], and
so with probability 1,

N ′ = #{i : |yi | ∈ [t̂D, t̂r ]} ≤ #{i : t̂F ≤ |yi | < t̂G} ≤ k̂F − k̂G.

[The first inequality is valid except possibly on a zero probability event in which
some |yi | = t̂G. To see the second inequality, note from (7.1) that l > k̂F implies
Yl ≤ tl < t̂F , while (7.2) entails that l ≤ k̂G implies Yl ≥ tl ≥ t̂G. Consequently
t̂F ≤ Yl < t̂G implies k̂G < l ≤ k̂F , which yields the required inequality.]
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If we take βn = 3αnkn, then Proposition 5.1 implies that

Pµ(Bc
n) = Pµ(N ′ > βn) ≤ Pµ(k̂F − k̂G > 3αnkn) ≤ c0 exp{−c1 log2 n},

so that the third term in (11.20) is o(Rn). Finally βnt
r
1 ≤ cαnknτ

r
η ≤ cαnRn so that

the first two terms are also o(Rn), completing the proof. �

12. Gaussian tails and quantiles. We collect in this section some results
about the normal density φ, the normal CDF � and the normal quantile function
z(·); these have been used extensively above. All proofs are given in the extended
report [3].

LEMMA 12.1. We have

φ(v) ≤ (v + 2v−1)�̃(v), v ≥ √
2.(12.1)

More generally, Mills’ ratio M(y) = y�̃(y)/φ(y) increases from 0 to 1 as y in-
creases from 0 to ∞. In particular,

φ(v)/(2v) ≤ �̃(v) ≤ φ(v)/v, v ≥ 1,(12.2)

2�̃(v) ≤ e−v2/2, v ≥ 0,(12.3)

�̃(v − c/v) ≤ 4ec�̃(v), v ≥ √
2c.(12.4)

LEMMA 12.2. Suppose that k and α are such that max{α,1/α} ≤ C logk.
Then √

2 logkα =
√

2 log k + θ
√

C,(12.5)

and if α ≥ 1, then 0 ≤ θ ≤ √
2/e ≤ 1, while if α ≤ 1, then −1.1 ≤ −√

8/e ≤ θ ≤ 0.

LEMMA 12.3. (1) Let z(η) = �̃−1(η) denote the upper (1 − η)th percentile
of the Gaussian distribution. If η ≤ 0.01, then

z2(η) = 2 logη−1 − log logη−1 − r2(η), r2(η) ∈ [1.8,3],(12.6)

z(η) =
√

2 logη−1 − r1(η), r1(η) ∈ [0,1.5].(12.7)

(2) We have z′(η) = −1/φ(z(η)), and hence if η2 > η1 > 0, then

z(η1) − z(η2) ≤ η2 − η1

η1z(η1)
.(12.8)

In addition, if tν = z(νq/2n) ≥ 1, then

−∂tν/∂ν = θ/(νtν), θ ∈ [1
2 ,1

]
,(12.9)

and for 0 ≤ r ≤ 2 and t2
ν > 2,

∂(νtrν )/∂ν = t r−2
ν [1 − rθt−2

ν ] > 0.(12.10)
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(3) If n−1 log5 n ≤ η
p
n ≤ b2n

−b3, then

2b3 logn − 2 logb2 ≤ τ 2
η ≤ 2 logn − 10 log logn,(12.11)

and so for n > n(b), we have

τ 2
η = 2γn logn, 0 < c(b) ≤ γn ≤ 1.(12.12)

(4) If qn ≥ b1/ logn and ν ≤ b2n
1−b3 , then for n ≥ n(b2, b3),

−3/2 ≤ tν −
√

2 log(n/ν) ≤ 2(b1b3)
−1/2.(12.13)

(5) (i) For n > n(b),

t1/τη ≤ c(b).(12.14)

(ii) If a ≤ 1 and η
p
n ≤ e−1/2, then

t[akn] ≥ τη − 3/2.(12.15)

If a ≤ δ−1, the same inequality holds for η < η(p, δ) sufficiently small.
(iii) If a ≥ γ τ−1

η , then for η
p
n ≤ η(γ,p, b1, b3) sufficiently small (and not

the same at each appearance),

t[akn] ≤ τη + c(b1, b3),(12.16)

t[akn] ≤ 2τη.(12.17)

(iv) In particular, for a ∈ [γ τ−1
η , δ−1], then as ηn → 0,

t[akn] ∼ τη.(12.18)

13. Proofs of lower bounds. This final section combines ideas from Sections
6–8 to finish the lower bound result.

PROOF OF PROPOSITION 5.2. From the structure (5.9) of the configuration
µα , the total risk can be written in terms of the univariate component risks as

ρ(µ̂H,t ,µα) = knρH (t,mα) + (n − kn)ρH (t,0).

From (8.6) together with the definition of t = t[akn], we obtain

nρH (t[akn],0) = aknqnt
r [akn](1 + θ),

with 0 ≤ θ ≤ 2t[akn]−2. Since t[akn] ∼ τη by (12.18), we conclude that

(n − kn)ρH (t[akn],0) ∼ aqnknτ
r
η .

In the notation of (8.2),

ρH (t,mα) = mr
α[�(t − mα) − �(−t − mα)] + E(mα, t),
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and as noted there, 0 ≤ E(mα, t) ≤ cr . In addition, mr
α�(−t − mα) ≤ c′

r , and
as noted at (5.13), mα − t = α + O(τ−1

η ) and so �(t − mα) = �̃(α) + O(τ−1
η ).

Consequently, since mα ∼ τη, we conclude that

knρH (t,mα) ∼ knτ
r
η �̃(α)

(
1 + o(1)

)
. �

PROOF OF PROPOSITION 5.3. We use (8.2) to decompose the total risk

ρ(µ̂H,t ,µα) = ∑
l

D(µαl, t) + E(µαl, t) = D + E,

say. To bound the “bias” or “false-negative” term D, we choose an index lα =
nη

p
nm

−p
α so that µ̄lα = mα ∼ τη. Now decompose D into D1 + D2 according as

l ≤ lα or l > lα . For l ≤ lα, we have identically µαl ≡ mα , and so

D1 = lαmr
α[�(t − mα) − �(−t − mα)] = lαmr

α�̃(α)
(
1 + o(1)

)
by the same arguments as for Proposition 5.2. And since mα ∼ τη, we have

lαmr
α = nηp

nmr−p
α ∼ nηp

n τ r−p
η = knτ

r
η .

The novelty with the weak-�p risk comes in the analysis of

D2 = ∑
l>lα

µ̄r
l [�(t − µ̄l) − �(−t − µ̄l)].

The second term is negligible, being bounded in absolute value by �̃(t)
∑

l>lα
µ̄r

l =
o(knτ

r
η ). For the first term we have an integral approximation [with µ̄(x) =

ηn(n/x)1/p]

D2 ∼
∫ n

lα

µ̄r (x)�
(
t − µ̄(x)

)
dx = plαmr

α

∫ 1

ηn/mα

vr−p−1�(t − mαv)dv,

after setting x = lαv−p .

REMARK. To bound the error in the integral approximation, observe that if
f ′(x) is smooth with at most one zero in [a, b], then the difference between∑b

a f (l) and
∫ b
a f is bounded by sup[a,b] |f |.

For 0 < v < 1, we have t − mαv ∼ (1 − v)τη → ∞, and so from the dominated
convergence theorem, the integral converges to

∫ 1
0 vr−p−1 dv, so

D2 ∼ [p/(r − p)]lαmr
α ∼ [p/(r − p)]knτ

r
η .

Putting together the analyses of D1 and D2, we find that the false-negative term

D = [
�̃(α) + [p/(r − p)]]knτ

r
η

(
1 + o(1)

)
.
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To bound the “variance” or “false-positive” term E, decompose the sum into
three terms, corresponding to indices in the ranges [1, l1], (l1, l2] and (l2, n], where

l1 = nηp
n ↔ µ̄l1 = 1 and l2 = nηp

n t2p
η ↔ µ̄l2 = τ−2

η .

We use (i)–(iii) of Lemma 8.1 to show that terms E1 and E2 are negligible. For E1,
the global bound (i) gives E1 ≤ cr l1 = o(knτ

r
η ). For E2, properties (ii) (monotonic-

ity) and (iii) show that

E(µ̄l, t) ≤ E
(
µ̄l1, t

) = E(1, t) ≤ c0t
r �̃(t − 1) ≤ c1τ

r
η �̃(τη − 5/2),

where the last inequality uses t = t[akn] ∼ τη and that t ≥ τη − 3/2 from (12.15).
Hence

E2 ≤ l2E(1, t) ≤ c0knτ
r
η τ 3p

η �̃(τη − 5/2) = o(knτ
r
η ).

Finally, we focus on the dominant term E3 = ∑
l>l2

E(µ̄l, t). For l > l2, we
have µ̄l ≤ τ−2

η and t ≤ cτη so that

φ(t ± µ̄l) = φ(t) exp{∓tµ̄l − µ̄2
l /2} = φ(t)

(
1 + O(τ−1

η )
)
.

Now if |µ| ≤ τ−1
η and t = t[akn] ≤ 2τη [from (12.17)], then

φ(t − µ) = φ(t) exp(tµ − µ2/2) = φ(t)
(
1 + O(τ−1

η )
)
,

and so

γ (t − µ) = |t − µ|r−1φ(t − µ) = t r−1φ(t)
(
1 + O(τ−1

η )
)
,

ε(t − µ) ≤ |t − µ|r−3φ(t − µ) ≤ t r−3φ(t)
(
1 + O(τ−1

η )
)
.

Consequently, using (8.4) and t−1φ(t) ∼ �̃(t), we get

E3 = 2(n − l2)t
r−1φ(t)

(
1 + O(τ−1

η )
) = aqnknτ

r
η

(
1 + o(1)

)
,

using the manipulations of (5.14)–(5.16). �

PROOF OF PROPOSITION 5.4. Fix a1 > 0. The idea, both for �0[η] and for
mp[ηn], is to obtain bounds

M−(k) ≤ M(k;µα) ≤ M+(k), k ∈ [a1kn, a
−1
1 kn],

for which solutions k± to M±(k) = k can be easily found. From monotonicity of
k → M(k;µα), it then follows that k− ≤ k(µα) ≤ k+.

In both cases we establish a representation of the form

M(akn;µα) = kn[�(α) + θ1τ
−1
η ] + [1 + θ2δ(ηn)]qnk,(13.1)

where |θi | ≤ c(α, a, b) and δ(ηn) → 0 as ηn → 0. From this, expressions for k±
are easily found and k± ∼ kn�(α)/(1 − qn) is easily checked.

For �0[ηn], (13.1) follows from (5.19) and (5.13). For mp[ηn], we formulate a
lemma, proven in the extended report [3].
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LEMMA 13.1. Let a and α be fixed. If |f | and |f ′| are bounded by 1, then

k−1
n

kn∑
l=1

f (µαl − t[akn]) = f (α) + θτ−1
η , |θ | ≤ c(α, a, b).

We exploit the division into the “positive,” “transition” and “negative” zones
defined in Section 6.4. Applying the preceding lemma with f = � yields

Mpos(k;µα) = kn[�(α) + θ3τ
−1
η ],

while from (6.27) and (6.29) we obtain

Mtrn(k;µα) = θ4knτ
−1
η and Mneg(k;µα) = [1 + θ5δp(εn)]qnk.

Putting together the last two displays, we recover (13.1) and the result. �

PROOF OF PROPOSITION 5.5. Let t ′ denote the fixed threshold t ′ = t[a0kn],
where a0 = (1 − q)−1�(α). We will use Lemma 8.5 to show that

|ρ(µ̂F ,µα) − ρ(µ̂H,t ′,µα)| = o(knτ
r
η ),

so that the conclusion will follow from Proposition 5.3.
To apply Lemma 8.5, set µ̂ = µ̂F and µ̂′ = µ̂H,t ′ , so that the thresholds t̂ = t̂F

and t̂ ′ = t ′, respectively, which are both bounded by t1.
Let k± = k±(µα) = k(µα) ± αnkn and recall that the event An = {k− ≤ k̂F ≤

k+} is mp[ηn]-likely. If we set t± = t[k∓], then on event An,

N ′ = #{i : |yi | ∈ [t̂F , t ′]} ≤ N ′′ = #{i : |yi | ∈ [t−, t+]}.
Hence P(N ′ > βn) ≤ P(Ac

n) + P(N ′′ > βn).
We use the exponential bound of Lemma 7.1 to choose βn so that P(N ′′ > βn)

is small. From the definition of the threshold function, M(k) = M(k;µα), we have

M ′′ := EN ′′ = M(k+) − M(k−).

Since k → Ṁk is decreasing, and using the derivative bounds of Proposition 6.6,
we find that for n sufficiently large,

(k+ − k−)Ṁ(k+) ≤ M ′′ ≤ (k+ − k−)Ṁ(k−).(13.2)

CLAIM. Ṁ(k±;µα) = θ [qn + c(α)τ−1
η ] for some θ ∈ [1/2,2].

PROOF. We again use the positive-transition-negative decomposition, this
time of Ṁ(akn;µα). Write, with ν = akn,

Ṁpos(akn;µα) = (−∂tν/∂ν)

kn∑
1

φ(t − µαl) + φ(t + µαl).



FALSE DISCOVERY RATE THRESHOLDING 651

From (12.8) and (12.9), we have −kn(∂tν/∂ν) ∼ 1/(aτη). Applying Lemma 13.1
to f (x) = φ(−x), we conclude that for n sufficiently large,

Ṁpos(akn;µα) = (θ1/(aτη))[φ(α) + θ2τ
−1
η ].

Appealing to (6.28) and (6.30),

Ṁtrn(akn;µα) = θ3τ
−2
η and Ṁneg(akn;µα) = [1 + θ4δp(εn)]qn.

Combining the last two displays and noting that k± = k(µα)±αnkn correspond to
a = φ(α)(1 − qn)

−1, we obtain the claim. �

Now set qαn = qn + c(α)τ−1
η and select βn = 8αnknqαn. From (13.2) and the

claim, we have

αnknqαn ≤ M ′′ ≤ 4αnknqαn,

and so βn/M
′′ ≥ 2. Consequently,

P(N ′′ > βn) ≤ exp{−(1/4)M ′′h(βn/M
′′)}

≤ exp{−(1/4)αnknqαnh(2)}
≤ c0 exp{−c1 log2 n}.

Now βnt
r
1 � αnqαnknτ

r
η = o(knτ

r
η ), while Proposition 5.3 shows that

ρ(µ̂H,t ′,µα) = O(knτ
r
η ). So Lemma 8.5 applies and we are done. �
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