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Abstract

The objective of the paper is to study accuracy of multi-class classification in high-

dimensional setting, where the number of classes is also large (“large L, large p, small n”

model). While this problem arises in many practical applications and many techniques have

been recently developed for its solution, to the best of our knowledge nobody provided a rigorous

theoretical analysis of this important setup. The purpose of the present paper is to fill in this

gap.

We consider one of the most common settings, classification of high-dimensional normal

vectors where, unlike standard assumptions, the number of classes could be large. We derive

non-asymptotic conditions on effects of significant features, and the low and the upper bounds

for distances between classes required for successful feature selection and classification with

a given accuracy. Furthermore, we study an asymptotic setup where the number of classes

is diverging with the dimension of feature space and while the number of samples per class is

possibly limited. We point out on an interesting and, at first glance, somewhat counter-intuitive

phenomenon that a large number of classes may be a “blessing” rather than a “curse” since, in

certain settings, the precision of classification can improve as the number of classes grows. This

is due to more accurate feature selection since even weaker significant features, which are not

sufficiently strong to be manifested in a coarse classification, being shared across the classes,

have a stronger impact as the number of classes increases. We supplement our theoretical

investigation by a simulation study and a real data example where we again observe the above

phenomenon.

Keywords: Feature selection; high-dimensionality; misclassification error; multi-class classification;

sparsity.
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1 Introduction

Classification has been studied in many contexts. In the era of “Big Data” one is usually interested

in classifying objects that are described by a large number of features and belong to many different

groups. For example the large hand-labeled ImageNet dataset http://www.image-net.org/

contains 10,000,000 labeled images depicting more than 10,000 object categories where each image,

on the average, is represented by 482 × 415 ≈ 200, 000 pixels (see Russakovsky et al., 2015 for

description and discussion of this data set). The challenge of handling large dimensional data got

the name of “large p small n” type of problems which means that dimensionality of parameter

space p by far exceeds the sample size n. It is well known that solving problems of this type require

rigorous model selection. In fact, the results of Bickel and Levina (2004), Fan and Fan (2008),

Shao et al. (2011) demonstrate that even for the standard case of two classes, classification of

high-dimensional normal vectors without feature selection is as bad as just pure random guessing.

However, while analysis of high-dimensional data (“Big data”) became ubiquitous, to the best of

our knowledge, there are no theoretical studies that examine the effect of large number of classes

on classification accuracy. The objective of the present paper is to fill in this gap.

At first glance, the problem of successful classification when the number of classes is large

seems close to impossible. On the other hand, humans have no difficulty in distinguishing between

thousands of objects, and the accuracy of state-of-the-art computer vision techniques is approaching

human accuracy. In fact, in some settings, the accuracy of classification improves when the number

of classes grows. How is this possible? One of the reasons why multi-class classification succeeds is

that selection of appropriate features from a large sparse p-dimensional vector becomes easier when

the number of classes is growing since even weaker significant features that are not sufficiently strong

to be manifested in a coarse classification with a small number of classes may nevertheless have a

strong impact as the number of classes grows. Simulation studies in Davis, Pensky and Crampton

(2011) and Parrish and Gupta (2012) support such a claim. Arias-Castro, Candès and Plan (2011)

reported on a similar occurrence for testing in the sparse ANOVA model. Our paper establishes

a firm theoretical foundation under the above phenomenon and confirms it via simulation studies

and a real data example.

Although there exists an enormous amount of literature on classification, most of the existing

theoretical results have been obtained for the binary classification (L = 2) (see Boucheron, Bousquet

and Lugosi, 2005 and references therein for a comprehensive survey). In particular, binary

classification of high-dimensional sparse Gaussian vectors was considered in Bickel and Levina

(2004), Fan and Fan (2008), Donoho and Jin (2009 ab), Ingster, Pouet and Tsybakov (2009) and

Shao et al. (2011) among others.

In the meantime, a significant amount of effort has been spent on designing methods for

the multi-class classification in statistical and machine learning literature. We can mention here
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techniques designed to adjust pairwise classification to multi-class setting (Escalera et al., 2011; Hill

and Doucet, 2007; Jain and Kapoor, 2009), adjustment of the support vector machine technique

to the case of several classes (Crammer and Singer, 2001; Lee, Lin and Wahba, 2004) as well

as a variety of approaches to expand the linear regression and the neural networks techniques to

accommodate the multi-category setup (see, e.g., Gupta, Bengio and Weston, 2014). Tewari and

Bartlett (2007) and Pan, Wang and Li (2016) generalized theoretical results for binary classification

to the case of multi-class classification and established consistency of the proposed classification

procedures. However, all above-mentioned investigations considered only the “small L, large p,

small n” setup, where the number of classes was assumed to be fixed.

This paper is probably the first attempt to rigorously investigate “large L, large p, small n”

classification and the impact of the number of classes on the accuracy of feature selection and

classification. In particular, we explore the somewhat counter-intuitive phenomenon, where the

large number of classes may become a “blessing” rather than a “curse” for successful classification

as more significant features may be revealed. For this purpose, we consider a well-known problem

of multi-class classification of high-dimensional normal vectors. We assume that only a subset of

truly significant features really contribute to separation between classes (sparsity). For this reason,

we carry out feature selection and, following a standard scheme, assign the new observed vector

to the closest class w.r.t. the scaled Mahalanobis distance in the space of the selected significant

features. Our paper considers a realistic scenario where the number of classes as well as the number

of features is large while the number of observations per class is possibly limited (“large L, large

p, small n” model). We do not fix the total number of observations since in the real world the

experience of each new class comes with its own, usually finite, set of observations.

We start with a non-asymptotic setting and derive the conditions on effects of significant

features, and the low and the upper bounds for the distances between classes required for successful

feature selection and classification with a given accuracy. All the results are obtained with the

explicit constants and remain valid for any combination of parameters. Our finite sample study is

followed by an asymptotic analysis for a large number of features p, where, unlike previous works,

the number of classes L may grow with p while the number of samples per class may grow or stay

fixed. Our findings indicate that having larger number of classes aids the feature selection and,

hence, can improve classification accuracy. On the other hand, larger number of classes require

having larger number of significant features p1 for their separation which automatically leads to a

“large p” setting. Nevertheless, due to increasing point isolation in high-dimensional spaces (see

e.g. Giraud, 2015, Section 1.2.1), those separation conditions become attainable when p is large.

We ought to point out that our paper does not propose a novel methodology for feature selection

or classification. Rather than that, it studies one of the most popular Gaussian setting and adapts

to the case of a large number of classes a standard general scheme, where feature selection is

implemented by a thresholding technique with the properly chosen threshold and classification is
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carried out on the basis of the minimal Mahalanobis distance (we consider both the known and

the unknown covariance matrix scenarios). This is a common widely used general scheme for

classification and feature selection in such setting (see, e.g., Fan and Fan 2008; Shao et al., 2011

and Pan, Wang and Li, 2016 for similar approaches that differ mostly by selections of thresholds

and distances). Nevertheless, the setup is simple enough for derivations of conditions required for

successful classification with a specified precision when the number of classes is large. Therefore, in

our simulation study we do not compare these simple and well known techniques with the state of

the art classification methodologies but instead investigate how these popular procedures perform

when p is large and both the number of classes L and the number of significant features p1 are

growing. In particular, simulations support our finding that classification precision can improve

when L is increasing. The real data example confirms that the phenomenon above is not due to an

artificial construction and is possible in a real life setting.

The rest of the paper is organized as follows. In Section 2 we present the feature selection and

multi-class classification procedures and derive the non-asymptotic bounds for their accuracy. An

asymptotic analysis is considered in Section 3. Section 4 discusses adaptation of the procedure

in the case of the unknown covariance matrix. In Section 5 we illustrate the performance of the

proposed approach on simulated and real-data examples. Some concluding remarks are summarized

in Section 6. All the proofs are given in the Appendix.

2 Feature selection and classification procedure

2.1 Notation and preliminaries

Consider the problem of multi-class classification of p-dimensional normal vectors with L classes:

Yli = ml + εεεli, l = 1, . . . , L; i = 1, . . . nl, (1)

where ml ∈ Rp is the vector of mean effects of p features in the l-th class and εεεli ∼ N(0p,Σ)

with the common non-singular covariance matrix Σ ∈ Rp×p. To clarify the proposed approach we

assume meanwhile that Σ is known and discuss the situation with the unknown Σ in Section 4.

In what follows, we study a realistic scenario where the number of classes as well as the number

of features is large while the number of observations per class is possibly limited (“large L, large

p, small n” model). We do not fix the total number of observations since in the real world the

experience of each new class comes with its own, usually finite, set of observations.

After averaging over repeated observations within each class, model (1) yields

Ȳl = ml + εεε∗l , l = 1, . . . , L (2)

where εεε∗l ∼ N(0p, n
−1
l Σ).
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The objective is to assign a new observed feature vector Y0 ∈ Rp to one of the L classes. Denote

N =
L∑
l=1

nl, ρl = nl/(nl + 1) and L1 = L− 1, (3)

where evidently 1/2 ≤ ρl < 1.

Since Var(Y0 − Ȳl) = ρ−1l Σ, we assign Y0 to the class l with the nearest centroid Ȳl w.r.t to

the scaled Mahalanobis distance:

l̂ = arg min
1≤l≤L

{
ρl (Y0 − Ȳl)

tΣ−1(Y0 − Ȳl)
}
. (4)

It is well-known (see, e.g., Bickel and Levina, 2004, Fan and Fan, 2008 and Shao et al., 2011)

that the performance of classification procedures is worsening as the number of features grows (curse

of dimensionality). Hence, dimensionality reduction by feature selection prior to classification is

crucial for large values of p.

Re-write (2) in terms of the one-way multivariate analysis of variance (MANOVA) model as

follows:

Ȳl = δδδ + βββl + εεε∗l , l = 1, . . . , L; (5)

where ml = δδδ + βββl, δδδ is the vector of mean main effects of features and βlj , j = 1, . . . , p is the

mean interaction effect of j-th feature with l-th class, with the standard identifiability conditions∑L
l=1 βlj = 0 for each j = 1, . . . , p.

The impact of j-th feature on classification depends on its variability between the different

classes characterized by the interactions βlj , l = 1, . . . , L in the model (5). The larger are the

interactions, the stronger is the impact of the feature. A natural global measure of feature’s

contribution to classification is then b2j =
∑L

l=1 β
2
lj . Note that a feature may still have a strong

main effect δj but its contribution to classification nevertheless remains weak if it does not vary

significantly between classes, that is, if b2j is small. The main goal of feature selection is to identify

a sparse subset of significant features for further use in classification.

2.2 Oracle classification

First, we consider an ideal situation where there is an oracle that provides the list of truly significant

features with b2j > 0. In this case, we would obviously use only those features for classification,

thus, reducing the dimensionality of the problem. Define indicator variables xj = I{b2j > 0}, and

let p1 =
∑p

j=1 xj and p0 = p − p1 be, respectively, the numbers of significant and non-significant

features. Without loss of generality, we can always order features in such a way that those p1

significant features are the first ones. The classification procedure (4) then becomes

l̂ = argmin
1≤l≤L

{
ρl (Y

∗
0 − Ȳ∗l )

t(Σ∗)−1(Y∗0 − Ȳ∗l )
}
, (6)
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where Y∗0,Y
∗
l ∈ Rp1 are the truncated versions of Y0 and Ȳl respectively: Y ∗0j = Y0j and

Y ∗lj = Ȳlj , j = 1, . . . , p1, and Σ∗ ∈ Rp1×p1 is the corresponding upper left sub-matrix of Σ.

Theorem 1 provides an upper bound for misclassification error of the oracle classification

procedure (6):

Theorem 1. Consider the model (1) and the equivalent model (5). Let m∗k ∈ Rp1 , k = 1, . . . , L,

be the truncated versions of class centers mk and assume that for all pairs of classes

(m∗k −m∗k′)
t(Σ∗)−1(m∗k −m∗k′) ≥

8 ln(L1/α)

min(ρk, ρk′)

[
1 +

1√
2 min(nk, nk′)

(
1 +

√
2p1

ln(L1/α)

)]
(7)

for some 0 < α ≤ 1.

Let a new observation Y0 from the class l be assigned to the l̂-th class according to classification

rule (6). Then, the misclassification error is

P (l̂ 6= l) ≤ α (8)

Condition (7) verifies that classes should be sufficiently separated from each other (in terms

of Mahalanobis distance) to achieve the required classification accuracy. In fact, the requirements

in (7) are also essentially necessary. Theorem 2 below, which is a direct consequence of Fano’s

lemma for the lower bound of misclassification error (see, e.g., Ibragimov and Hasminskii, 1981,

Section 7.1), implies that the first term O (ln(L1/α)) in the RHS of (7) is unavoidable for successful

classification and cannot be significantly improved (in the minimax sense) even in the idealized

case, where the class centers m∗k are known:

Theorem 2. Consider the model (1). Let a new observation YYY 0 be from one of L classes. If

∆̃2 = min
l 6=k

(mmm∗l −mmm∗k)t(Σ∗)−1(mmm∗l −mmm∗k) ≤ 2ℵ lnL1 (9)

for some ℵ > 0, then

inf
ψ

max
1≤l≤L

Pl(ψ(YYY 0) 6= l) ≥ 1− ℵ − ln 2

lnL1
, (10)

where Pl is the probability evaluated under the assumption that YYY 0 belongs to the l-th class, and the

infimum is taken over all classification rules ψ(YYY 0) : YYY 0 → {1, . . . , L}.

The second term in the RHS of (7) appears due to replacing the unknown p1-dimensional class

centers m∗k’s by the corresponding within-class sample means Ȳ∗k’s in (6). Indeed, straightforward

extension of the results of Theorem 1 of Fan and Fan (2008) for a general L ≥ 2 yields that, unless

for all pairs (k, k′), (m∗k −m∗k′)
t(Σ∗)−1(m∗k −m∗k′) ≥ C

√
p1 lnL1

min(nk,nk′ )
for some C > 0, the curse

of dimensionality affects the accumulated error in estimating high-dimensional m∗k’s and yields

classification performance nearly the same as random guessing.
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2.3 Feature selection procedure

Consider now classification setup in the MANOVA model (5) with a more realistic scenario, where

a set of significant features is unknown and should be identified from the data.

To simplify the calculus and to avoid complications with post-selection inference, we split the

data at random into two sets Y
(1)
lj ’s and Y

(2)
lj ’s in some fixed proportion φ ∈ (0, 1) (in the simplest

case, the sizes of both sets are equal with φ = 1/2). Subsequently, use Y
(1)
lj ’s for feature selection

and Y
(2)
lj ’s for classification based on the selected features. More specifically, for l-th class, split

its nl observations Ylj ’s into two sub-samples of sizes n
(1)
l and n

(2)
l at the same proportion π, i.e.

n
(1)
l = bπnlc, where b·c is the integer part, and n

(2)
l = nl − n

(1)
l , l = 1, . . . , L. Denote the total

sample sizes of the resulting two sets by N1 =
∑L

l=1 n
(1)
l and N2 =

∑L
l=1 n

(2)
l , so that N1 +N2 = N .

Following our previous arguments, a j-th feature is not significant (irrelevant) for classification

if it has zero interaction effects with all classes, that is, if βlj = 0, j = 1, . . . , L or, equivalently,

b2j = 0. Then, for each j = 1, . . . , p we need to test the null hypothesis H0j : b2j = 0. An obvious

test statistic is then

ζj = σ−2j

L∑
l=1

n
(1)
l (Ȳ

(1)
lj − Ȳ

(1)
·j )2, (11)

where σ2j = Σjj and Ȳ
(1)
·j = (n

(1)
l )−1

∑L
l=1 Y

(1)
lj . Under the null, ζj ∼ χ2

L1
, while under the

alternative ζj ∼ χ2
L1;µj

, where χ2
L1;µj

is the non-central chi-square distribution with the non-

centrality parameter µj = σ−2j
∑L

l=1 n
(1)
l β2lj . Note that unless Σ is diagonal, ζj ’s are correlated.

For a given 0 < α ≤ 1, define a threshold

λ = L1 + 2
√
L1 ln(2p/α) + 2 ln(2p/α) (12)

and select the j-th feature as significant (reject H0j) if

ζj = σ−2j

L∑
l=1

n
(1)
l (Ȳ

(1)
lj − Ȳ

(1)
·j )2 > λ (13)

The following theorem shows that under certain conditions on the minimal required effect for

significant features, the proposed feature selection procedure correctly identifies the true (unknown)

subset of significant features with probability at least 1− α:

Theorem 3. Consider the feature selection procedure (13) with the threshold (12) for some

0 < α ≤ 1. Define indicator variables x̂j = I{σ−2j
∑L

l=1 n
(1)
l (Ȳlj − Ȳ

(1)
·j )2 > λ}, j = 1, . . . , p.

Let

µ∗ = min
1≤j≤p1

σ−2j

L∑
l=1

n
(1)
l β2lj (14)

and assume that for all p1 truly significant features one has

µ∗ ≥ 4
(

3 ln(2p/α) +
√
L1 ln(2p/α)

)
(15)
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Then,

P (x̂ = x) ≥ 1− α

The condition (15) on the total minimal effect for significant features can be re-formulated in

terms on their average effect per class:

1

σ2jL

L∑
l=1

n
(1)
l β2lj ≥ 4

(
3 ln(2p/α)

L
+

√
ln(2p/α)

L

)
, j = 1, . . . , p1 (16)

Thus, as the number of classes in model (1) increases, even significant features with weaker effects

within each class become manifested and contribute to classification. Effect of a certain feature

that remains latent and unnoticed in coarse classification with a small number of classes may be

expressed in a finer classification.

2.4 Classification rule and misclassification error

Consider now the classification rule (6) applied on the second set of the data with Ȳ
(2)∗
l , where

the unknown true xj are replaced by x̂j following the proposed feature selection procedure. Let

p̂1 =
∑p

j=1 x̂j be the number of features declared significant and p̂0 = p − p̂1. Again, order the

features in such a way that those p̂1 features selected as significant are the first ones. Thus, the

resulting classification rule can then be presented as follows:

l̂ = argmin
1≤l≤L

{
ρl (Y

∗
0 − Ȳ

(2)∗
l )t(Σ∗)−1(Y∗0 − Ȳ

(2)∗
l )

}
, (17)

where the truncated vectors Y∗0, Ȳ
(2)∗
l ∈ Rp̂1 , l = 1, . . . , L are defined now as Y ∗0j = Y0j , Y

(2)∗
lj =

Ȳ
(2)
lj , j = 1, . . . , p̂1, and Σ∗ ∈ Rp̂1×p̂1 is the corresponding upper left sub-matrix of Σ, and

ρl = n
(2)
l /(n

(2)
l + 1).

We have

P (l̂ 6= l) ≤ P (l̂ 6= l | x̂ = x) + P (x̂ 6= x), (18)

where, due to the fact that different data was used for feature selection and classification, by

Theorem 1 and Theorem 3, each probability in the RHS of (18) is at most α. Thus, the following

result holds:

Theorem 4. Consider the model (1) and the corresponding model (5). Assume the conditions (7)

(with nl replaced by n
(2)
l ) and (15) hold for some 0 < α ≤ 1/2. Apply feature selection procedure

(13) and use the selected features for classification via the rule (17). Then,

P (correct classification) ≥ 1− 2α
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3 Asymptotic analysis

Conditions (7) and (15) (or (16)) of Theorems 1 and 2, respectively, provide the non-asymptotic

lower bounds on the minimal distance between different classes and the minimal effect of significant

features required for the perfect feature selection and classification error bounded above by 2α. In

order to gain better understanding of these conditions, we consider an asymptotic setup.

Standard asymptotics considered in classification literature assume that the number of features

p and the sample sizes nl increase whereas the number of classes L is fixed (see, e.g., Fan and Fan,

2008; Shao et al., 2011 for L = 2 and Pan, Wang and Li, 2016, for a general but fixed L). On the

contrary, our study is motivated by the case where the number of classes may also be large (“large

L, large p, small n”).

Recall that N =
∑L

l=1 nl is the total sample size and let the number of features p → ∞.

Following Pan, Wang and Li (2016), assume that all eigenvalues of the p1×p1 covariance matrix of

significant features Σ∗ are finite and bounded away from zero, i.e., there exist absolute constants

τ1 and τ2 such that

0 < τ1 ≤ λmin(Σ∗) ≤ λmax(Σ∗) ≤ τ2 <∞. (19)

The samples sizes nl within classes also grow with p. For simplicity of exposition, we assume

that they are of the same asymptotic order and splitted more or less equally between the two sets

(π ∼ 1/2), that is, n
(1)
l ∼ n

(2)
l ∼ n for all l = 1, . . . , L, where n = N/(2L) and a ∼ b means

a = b(1 + o(1)). In such asymptotic setup, ρl ∼ 1 − 1/n, while
√

1− ρlρk ∼
√

2/n. Though the

results in the previous section allow one to study various other settings with unequal class sizes, the

asymptotic analysis of a vast variety of such possible scenarios is beyond the scope of this paper.

Consider now the condition (7) of Theorems 1 and 4 on the minimal separation Mahalanobis

distance between any two class centers as p tends to infinity, while n, the number of significant

features p1 and the number of classes L may increase with p, and α may depend on n, p and L.

Thus, (7) yields:

min
k 6=k′

(mmm∗k −mmm∗k′)t(Σ∗)−1(mmm∗k −mmm∗k′) ≥ ∆2
∗ ∼ 8 ln(L1/α)

(
1 +

1√
2n

(
1 +

√
2p1

ln(L1/α)

))
(20)

Define

η1 = lim
p→∞

√
p1

n ln(L1/α)

Depending on η1, the condition (20) implies two possible asymptotic regimes for ∆2
∗:

∆2
∗ ∼

 8 ln
(
L1
α

)
(1 + η1), 0 ≤ η1 <∞ (sparse regime - small number of significant features)

8

√
p1 ln(L1/α)

n , η1 =∞ (dense regime - large number of significant features)

(21)
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For sparse regime (η1 < ∞), the required minimal between-class distance ∆2
∗ grows slowly as lnL

and from Theorem 2 it immediately follows that this is the lowest possible rate for successful

classification:

Proposition 1. Let L→∞ and p1 →∞ as p→∞. Let a new observation YYY 0 be from one of L

classes. If

∆2
∗ ∼ 2 δp1 lnL1,

where δp1 → 0 arbitrarily slow as p→∞, then

lim
p→∞

inf
ψ

max
1≤l≤L

Pl(ψ(YYY 0) 6= l) = 1,

where Pl is the probability evaluated under the assumption that YYY 0 belongs to the l-th class, and the

infimum is taken over all classification rules ψ(YYY 0) : YYY 0 → {1, . . . , L}.

For dense regime, the number of significant features p1 is large enough for the accumulated

error of estimating p1-dimensional m∗k’s by Ȳ
(1)∗
k ’s to become dominant (see Section 2.2) and the

classes should be, therefore, much stronger separated to deal with the curse of dimensionality.

It is natural that for successful classification the between-class distances should grow with L.

Note, however, that unless the number of classes increases exponentially with p1, the growth rate

of ∆2
∗ is o(p1) and the corresponding average per-feature distances 1

p1
(mmm∗k−mmm∗k′)t(Σ∗)−1(mmm∗k−mmm∗k′)

still tend to zero.

Similarly, from the condition (15) in Theorems 3 and 4 on the minimal effect for significant

features required for the perfect feature selection, we have asymptotically

b2∗ = min
1≤j≤p1

σ−2j b2j ∼
4

n

(
3 ln(2p/α) +

√
L1 ln(2p/α)

)
Let

η2 = lim
p→∞

√
ln(2p/α)

L1

Then,

b2∗ ∼

{
4n−1

√
L1 ln(2p/α)(1 + 3η2), 0 ≤ η2 <∞ (large number of classes)

12n−1 ln(2p/α), η2 =∞ (small number of classes)
(22)

and the threshold λ in (12) for feature selection can be presented as

λ ∼

{
L1(1 + 2η2 + 2η22), 0 ≤ η2 <∞
2 ln(2p/α), η2 =∞

To gain some insight on the minimal required effect for a significant feature to contribute to

classification as the number of classes increases, assume for simplicity that each significant feature
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has equal effects on each class, that is, βlj in (5) vary only in signs: β2lj = β2j , l = 1, . . . , L. Since

0 ≤ η2 <∞ implies that L is large, so that L1 = L− 1 ∼ L, condition (22) yields as p→∞:

β2j ∼

{
4σ2j n

−1 η2(1 + 3η2), 0 ≤ η2 <∞ (large number of classes)

12σ2j n
−1 L−1 ln(2p/α), η2 =∞ (small number of classes)

(23)

Since η2 is decreasing with L for a given value of α, the required minimal level for β2j in the

RHS of (23) decreases as L grows and, therefore, more significant features become manifested

in classification for larger number of classes. Thus, while it might be hard to perform coarse

classification with a set of weak features, their impacts grow as one considers finer and finer

separation between objects (see also the corresponding remarks at the end of Section 2.3).

Although in this section our goal was to explore the case when L → ∞, calculations above

remain valid for a fixed value of L (commonly, L = 2). In particular, if L is fixed and n = o(p),

conditions (20) and (23) are of the form ∆2
∗ ∼ C1

√
p1
n and β2j ∼ C2n

−1 ln(p/α), C1, C2 > 0 and are

similar to those of Fan and Fan (2008, Theorem 1 and Theorem 3). See also the results of Donoho

and Jin (2009 a,b) and Ingster, Pouet and Tsybakov (2009) for closely related setups.

4 Unknown covariance matrix

So far the covariance matrix Σ was assumed to be known. In practice, however, it should usually

be estimated from the data. The standard MLE estimator based on the first sub-sample

Σ̂(1) =
1

N1

L∑
l=1

n
(1)
l∑
i=1

(
Y

(1)
il − Ȳ

(1)
l

)(
Y

(1)
il − Ȳ

(1)
l

)t
(24)

and the similar unbiased pooled estimator commonly used in MANOVA behave poorly for high-

dimensional data. However, under the sparsity assumption, the proposed classification procedure

requires only to estimate the variances σ2j in feature selection procedure (11) and the inverse of

the upper left sub-matrix Σ∗ ∈ Rp̂1×p̂1 of Σ in classification rule (17). Thus, when p1 � p, a

low-dimensional matrix (Σ̂∗)−1 may still be a good estimator of the true sub-matrix (Σ∗)−1 and

(under some additional mild conditions) may be used instead of the latter in (17).

Assume that p ≤ α
2 e

(N1−L)/4. Replace σ2j in (11) by σ̂2j = Σ̂
(1)
jj and consider the feature selection

procedure (13) with a somewhat larger threshold

λ1 =
λ

1− κ
, (25)

where λ is the threshold (12) used for the case of known variances and

κ = κ(p,N1, L, α) = 2

√
ln(2p/α)

N1 − L
+ 2

ln(2p/α)

N1 − L
< 1 (26)
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The following theorem shows that under slightly stronger conditions on the minimal required effect

for significant features, the above feature selection procedure with estimated σ2j still controls the

probability of correct identification of the true subset of significant features.

Theorem 5. Let 0 < α ≤ 1/2 and assume that p ≤ α
2 e(N1−L)/4. Define indicator variables

x̂j = I{σ̂−2j
L∑
l=1

n
(1)
l (Ȳ

(1)
lj − Ȳ

(1)
·j )2 > λ1}, j = 1, . . . , p (27)

with λ1 given in (25). Assume that µ∗ in (14) satisfies

µ∗ + L1 − 2
√

(L1 + 2µ∗) ln(2p/α) > λ1(1 + κ) (28)

Then,

P (x̂ = x) ≥ 1− 2α

Consider now the classification procedure (17). In what follows we assume that Σ∗ is non-

singular. Consider an estimator Σ̂∗ of Σ∗ of the form

Σ̂∗ =
1

N2

L∑
l=1

n
(2)
l∑
i=1

(Y
(2)∗
il − Ȳ

(2)∗
l )(Y

(2)∗
il − Ȳ

(2)∗
l )t, (29)

where Y
(2)∗
il are the corresponding p̂1-dimensional truncated versions of Y

(2)
il .

Assign Y0 the l̂-th class by replacing the true (unknown) (Σ∗)−1 in (17) by (Σ̂∗)−1:

l̂ = argmin
1≤l≤L

{
ρl (Y

∗
0 − Ȳ

(2)∗
l )t(Σ̂∗)−1(Y∗0 − Ȳ

(2)∗
l )

}
. (30)

Then the following version of Theorem 4 holds:

Theorem 6. Consider the model (1) and the corresponding model (5), where p ≤ α
2 e(N1−L)/4,

max

(
L, 2 ln

(
2

α

))
< p1 <

1

4C1

(
λmin(Σ∗)

λmax(Σ∗)

)4

N2 (31)

for some 0 < α < 1/4 and C1 is an absolute constant specified in the proof. Denote

γp1,N2 = 2
λ2max(Σ∗)

λ2min(Σ∗)

√
C1p1
N2

(32)

and note that γp1,N2 < 1 due to (31). Assume the condition (28) and a somewhat stronger version

of the condition (7), namely,

(m∗k −m∗k′)
t(Σ∗)−1(m∗k −m∗k′) ≥

8 ln(L1/α)

(1− γp1,N2) min(ρk, ρk′)

×

1 +

√√√√ 1

2 min
(
n
(2)
k , n

(2)
k′

) + γ2p1,N2
·

(
1 +

√
2p1

ln(L1/α)

) (33)

12



Apply feature selection procedure (27) and use the selected features for classification via the rule

(30). Then,

P (correct classification) ≥ 1− 4α

Theorem 6 shows that for a sparse setup the proposed classification procedure can still be used

when the covariance matrix is unknown and estimated from the data.

5 Examples

In this section we demonstrate the performance of the proposed feature selection and classification

procedure on simulated and real-data examples. Its main goal is to illustrate the phenomenon of

improving the accuracy as the number of classes grows discussed in the previous sections.

We found that in practice there is no real need to split the original data and used the entire

data set for both feature selection and classification.

5.1 Simulation study

Simulated examples follow the settings presented in Pan, Wang and Li (2016).

We generated the class means as i.i.d. normal vectors mmml ∼ N(0, σ2mX), l = 1, . . . , L, where

Xp×p is a diagonal matrix with xi = 1 for p1 indices and xi = 0 for others. Since the vectors

generated in this manner do not necessarily satisfy our assumptions, in order to reduce an impact

of a particular choice of vectors mmml, we generated M1 replications of the class means. Furthermore,

following the model (2), for each replication of class means mmml, l = 1, . . . , L we generated M2 sets

of training samples Ȳlji = mlj + ε∗lji, j = 1, . . . , p; i = 1, . . . , n, where ε∗lji are i.i.d. N(0, n−1Σ).

Finally, for each of M1 ·M2 sets of training samples, we drew a test set of M3 new vectors from

randomly chosen classes as i.i.d. normal vectors N(mmml,Σ).

We used the same three choices for covariance matrix Σ as in Pan, Wang and Li (2016). In

Example 1 features were independent, i.e. Σ = σ2Ip. In Example 2 we used the autoregressive

covariance structure with Σh1,h2 = σ2 0.5|h1−h2|, while in Example 3 we set Σh1,h2 = σ2 (0.5 +

0.5I{h1 = h2}), h1, h2 = 1, . . . , p implying equal variances σ2 and all covariances equal to σ2/2

(compound symmetric structure). We carried out simulations with both the true covariance matrix

Σ and its MLE Σ̂ given by (24). Since the performances of feature selection and classification

procedures in both cases were similar, in what follows we present only the results obtained with Σ̂.

For each training sample we first carried out the feature selection procedure described above

with the threshold λ1 defined in (25) and α = 0.05. Subsequently, we used the selected features for

classifying M3 vectors from the corresponding test set according to the rule (30). In the case when

it delivered a non-unique solution, we chose one of the suggested solutions at random.

In all simulations we used M1 = M2 = M3 = 50, p = 500, σ = 1 and n = 20. Note that

classification precision depends on the variance ratio τ2 = σ2m/(σ
2/n) that may be viewed as a

13
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Figure 1: Average misclassification errors as functions of τ for various combinations of p1 and L

for Example 1.

signal-to-noise ratio. For this reason, we studied performance of feature selection and classification

for various combinations of p1, L and τ . In particular, we used p1 = 10, 50, 100, 200, L = 2, 10, 20, 50

and several values of τ depending on p1.

The results of simulations indicate that for such data generating model (somewhat different

from that analyzed in the paper), the threshold λ1 in (25) (as well as λ in (12) for the known

variances) might be too high, especially for small values of τ . The latter led to an over-conservative

feature selection procedure. Thus, in all simulations the feature selection procedure did not detect

false positive features. The information on the proportions of false negative features (over the total

number of significant features) for several combinations of p1, L and τ over M1 ·M2 = 2500 training

samples is summarized in Table 1 for Example 1 and Example 2 (the results for Example 3 were

similar and we omit their presentation to save the space). In particular, Table 1 clearly shows that

for small values of τ and small L, due to the over-conservative feature selection procedure, almost
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Figure 2: Average misclassification errors as functions of τ for various combinations of p1 and L

for Example 2.

not a single significant feature has been detected and the resulting classification is then essentially

reduced to just a pure random guess. However, for any τ the detection rate improves as L grows.

The improvement rate is very fast for τ ≥ 2. Thus, for L = 50 the vast majority of significant

features were detected in spite of high level of noise. As we have mentioned, this improves the

classification precision since weaker significant features that remained latent in coarse classification

become active and may have a strong impact with increasing L.

For each combination of p1, L and τ we calculated the corresponding average misclassification

errors: see Figures 1–3 for Examples 1–3, respectively. Figures 1-3 show similar behavior for

all three examples. For any p1 and L misclassification error tends to zero as τ increases. The

decay is faster for larger p1 – the more significant features, the easier is classification. The figures

demonstrate also another interesting phenomenon: for moderate and large p1, the larger L, the

faster is the decay. As we have argued, this is due to the fact that the impact of weaker significant
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Figure 3: Average misclassification errors as functions of τ for various combinations of p1 and L

for Example 3.

features becomes stronger with increasing L. For small τ (strong noise), misclassification errors

are higher for larger number of classes L. This is naturally explained by the failure of feature

selection procedure to detect significant features in this case (see comments above), so that the

resulting classification is similar to a random guess with a misclassification error 1 − 1/L (see

Figures 1-3). However, as τ increases, even the first few detected significant features strongly

improve classification precision.

5.2 Real-data example

We applied feature selection techniques discussed above to a dataset of communication signals

recorded from South American knife fishes of the genus Gymnotus. These nocturnally active

freshwater fishes generate pulsed electrostatic fields from electric organ discharges (EODs). The

three-dimensional electrostatic EOD fields of Gymnotus can be summarized by two-dimensional
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Example 1 Example 2

p1 τ L = 2 L = 10 L = 20 L = 50 L = 2 L = 10 L = 20 L = 50

10 1 1.000 .996 .975 .785 1.000 1.000 .978 .788

2 .936 .297 .033 .000 .991 .592 .186 .000

3 .880 .158 .006 .000 .898 .147 .003 .000

50 1 1.000 .995 .976 .785 1.000 .995 .977 .783

2 .975 .604 .187 .001 .979 .609 .172 .001

3 .896 .158 .005 .000 .901 .146 .004 .000

100 1 1.000 .996 .975 .784 1.000 .996 .976 .782

2 .976 .601 .177 .001 .981 .611 .169 .000

3 .895 .149 .005 .000 .898 .142 .004 .000

200 1 1.000 .995 .976 .783 1.000 .995 .977 .783

2 .975 .605 .172 .000 .980 .617 .175 .000

3 .892 .150 .004 .000 .895 .150 .004 .000

Table 1: Average proportions of false negative features for p = 500 and various values of L, p1 and

τ over M1 ·M2 = 2500 training samples.

head-to-tail waveforms recorded from underwater electrodes placed in front of and behind a fish.

EOD waveforms vary among species and are used by genus Gymnotus in order to recognize its own

kind for more productive mating and other purposes.

The data set consists of 512-dimensional vectors of the Symmlet-4 discrete wavelet transform

coefficients of signals obtained from eight genetically distinct species of Gymnotus (G. arapaima

(G1), G. coatesi (G2), G. coropinae (G3), G. curupira (G4), G. jonasi (G5), G. mamiraua (G6),

G. obscurus (G7), G. varzea (G8)) at various stages of their development. In particular, species

were divided into six ontogenetic categories: postlarval (J0), small juvenile (J1), large juvenile (J2),

immature adult (IA), mature male (M) and mature female (F). The EODs were recorded from 42 of

48 possible combinations of eight species and six categories. There are 677 samples from 42 classes

with sizes varying from 3 to 69. The complete description of the data can be found in Crampton

et al. (2011).

As it is evident from Crampton, Lovejoy and Waddell (2011), there is no expectation that these

groups should all be mutually separable: there is considerable overlaps between developmental

stages of the same specie as well as among juveniles of different species. For this reason, we

reduced the number of classes to include only those species/categories that might be potentially

separated. In particular, we ran our feature selection and classification procedure with the data

sets comprised of 10 to 16 classes listed in the order they appear: G2-M, G4-M, G5-M, G1-F, G2-F,

G5-F, G7-F, G8-F, G2-J1, G4-J1, G2-F, G1-J1, G7-AI, G1-F, G6-M, G7-J1.
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L Ntrain Ntest p̂1 Misclassification error

10 32 10 67.0 .077 (.006)

11 38 13 68.3 .092 (.006)

12 46 16 65.3 .127 (.007)

13 51 18 67.6 .166 (.007)

14 57 20 83.7 .149 (.006)

15 64 23 87.4 .130 (.006)

16 68 24 86.8 .162 (.007)

Table 2: The sample sizes of train (Ntrain) and test (Ntest) sets, the numbers of selected significant

features (p̂1) and misclassification errors with standard errors in brackets averaged over 100 splits

for the Gymnotus fish data.

We split the respective data sets into training and test parts. For this purpose, in each class

we chose at random at most 1/3 of the total number of observations for validation leaving the rest

of the data as training samples. Using those training samples, we carried out feature selection and

subsequent classification of vectors in the test part of the data set. We repeated the process 100

times for various splits and recorded the average misclassification errors and their standard errors

for each of the cases (L = 10, 11, . . . , 16). Table 2 presents results of the study: the average sample

sizes of train (Ntrain) and test (Ntest) sets for each L, the average number of selected significant

features (p̂1) and average misclassification error with the corresponding standard errors.

The table shows that when one starts with 10 well separated classes the misclassification error

is initially grows when L increases from 10 to 13. However, at L = 13 there is a strong jump in the

numbers of detected features and the misclassification errors again start to decrease when L grows

from 13 to 15 due to better feature selection. For L > 15 the misclassification error grows again

with L due to poor separation of juvenile Gymnotus EOD waveforms shapes.

6 Concluding remarks

The paper considers multi-class classification of high-dimensional normal vectors, where the number

of classes may diverge. This is a first attempt to rigorously study “large L, large p, small n”

classification problem. Our main goal was not to propose a novel methodology but to explore

interesting phenomena arising in such a new setup. In particular, our results indicate that the

precision of classification can improve as a number of classes grows. This is, at first glance, a

somewhat counter-intuitive conclusion and has not been observed so far due to shortage of literature

on multi-class classification. It is explained by the fact that even weaker significant features, that

might be undetected for smaller L, being shared across classes, can strongly contribute to successful
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classification when the number of classes is large. We believe that the results of the paper motivate

further investigation of “large L, large p, small n” classification in other, more complicated setups.

The contents of this paper can be extended in a variety of ways. To begin with, an extension

to different covariance matrices across the classes is straightforward. One can also allow different

supports of sparsity for different clusters and/or relax the Gaussian assumption by considering

sub-Gaussian or sub-exponential data in a similar way, though such generalizations will require to

re-derive the corresponding conditions for correct classification.
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7 Appendix

We start from recalling two lemmas of Birgé (2001) that will be used further in the proofs.

Lemma 1 (Lemma 8.1 of Birgé, 2001). Let ζ ∼ χ2
k,µ, µ > 0. Then, for any x > 0

P (ζ > µ+ k + 2
√

(k + 2µ)x+ 2x) ≤ e−x (34)

and

P (ζ < µ+ k − 2
√

(k + 2µ)x) ≤ e−x (35)

Lemma 2 (Lemma 8.2 of Birgé, 2001). Let X be a random variable such that

log[E
(
esX
)
] ≤ (as)2

1− bs
for 0 < s < b−1,

where a and b are positive constants. Then

P [X ≥ 2a
√
x+ bx] ≤ e−x for all x > 0.

Proof of Theorem 1 Note that

P (l̂ 6= l) =
∑
k 6=l

P (l̂ = k) ≤ L1 max
k 6=l

P (l̂ = k), (36)
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For a given k 6= l define a (2p1)-dimensional random vector Ỹ =

(
Y∗0 −Y∗l

Y∗0 −Y∗k

)
, where the vectors

Y∗0,Y
∗
l and Y∗k are defined just after (6). A straightforward calculus yields

Ỹ ∼ N (θθθ, V ) with θθθ =

(
0p1

m∗l −m∗k

)
, V = σ2

(
ρ−1l Σ∗ Σ∗

Σ∗ ρ−1k Σ∗

)
(37)

where ρl is defined in (3). Then, it follows from (6) that

P (l̂ = k) ≤ P
(
ρl(Y

∗
0 −Y∗l )

t(Σ∗)−1(Y∗0 −Y∗l ) > ρk(Y
∗
0 −Y∗k)

t(Σ∗)−1(Y∗0 −Y∗k)
)

= P (ỸtAỸ ≥ 0),

where

A =

(
ρl (Σ

∗)−1 0p1×p1

0p1×p1 −ρk (Σ∗)−1

)

Consider a random variable ξ = ỸYY
t
AỸYY . Since V −1 is a symmetric positive-definite matrix and

A is symmetric, they can be simultaneously diagonalized, that is, there exists a matrix W , such that

W tV −1W = I and W tAW = Λ, where Λ is a diagonal matrix of the eigenvalues ϕj , j = 1, . . . , 2p1

of R = V A. Then, from the known results on the distribution of quadratic forms of normal variables

(e.g., Imhof, 1961), ξ can be represented as a weighted sum of independent (generally) non-central

chi-square variables, namely,

ξ =

2p1∑
j=1

ϕjχ
2
1,η2j

, (38)

where ηηη is such that θθθ = Wηηη with θθθ given by (37). By a straightforward matrix calculus, obtain

R2 =

(
(1− ρkρl) Ip1 0p1×p1

0p1×p1 (1− ρkρl) Ip1

)
and, therefore, all eigenvalues ϕj , j = 1, . . . , 2p1, of matrix R = V A are of the forms

ϕj = ±ϕ∗, where ϕ∗ =
√

1− ρkρl, j = 1, . . . , 2p1 (39)

Consider now the logarithm of the moment generating function of the centered random variable

ξ − E(ξ), where ξ is defined in (38). We have Eξ =
∑2p1

j=1 ϕj(1 + η2j ) =
∑2p1

j=1 ϕjη
2
j , where recall

that Wηηη = θθθ. Hence, using formula (39), for s < 1/(2ϕ∗), we have

lnEes(ξ−Eξ) =

2p1∑
j=1

η2jϕjs

1− 2ϕjs
− 1

2

2p1∑
j=1

ln(1− 2ϕjs)− s
2p1∑
j=1

ϕj(1 + η2j )

=

2p1∑
j=1

(
η2jϕjs

1− 2ϕjs
− η2jϕjs

)
− 1

2

2p1∑
j=1

(ln(1− 2ϕjs) + 2ϕjs)

≤
2p1∑
j=1

2s2η2jϕ
2
∗

1− 2ϕjs
+

2p1∑
j=1

s2ϕ2
∗

1− 2ϕjs
≤ 2s2

1− 2ϕ∗s
ϕ2
∗||ηηη||2 +

2s2ϕ2
∗p1

1− 4ϕ2
∗s

2

≤ 2s2

1− 2ϕ∗s
ϕ2
∗||ηηη||2 +

2s2ϕ2
∗p1

1− 2ϕ∗s
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Denote

∆2 = (m∗l −m∗k)
t(Σ∗)−1(m∗l −m∗k)

Using W tV −1W = I, W tAW = Λ and Wηηη = θθθ, one can verify that ϕ2
∗||ηηη||2 = ηηηtΛ2ηηη = θθθtAV Aθθθ =

ρk ∆2, where θθθ and V are defined in (37). Thus,

lnEes(ξ−Eξ) ≤ a2s2

1− bs
,

where b = 2ϕ∗ and

a =
√

2ρk ∆2 + 2ϕ2
∗p1 ≤

√
2 (
√
ρk |∆|+ ϕ∗

√
p1)

In addition,

Eξ = ηηηtΛηηη = θθθtAθθθ = −ρk ∆2

A straightforward calculus shows that, under the condition (7) of Theorem 1, one has ρk ∆2 ≥
2a
√

ln(L1/α) + b ln(L1/α). Then, applying Lemma 2, one obtains

P (ξ > 0) ≤ P
(
ξ ≥ −ρk ∆2 + 2a

√
ln(L1/α) + b ln(L1/α)

)
≤ α

L1

that, together with (36), complete the proof.

Proof of Theorem 3 Let p̂01 =
∑p

j=1 I{x̂j = 1 | xj = 0} and p̂11 =
∑p

j=1 I{x̂j = 1 | xj = 1} be

the numbers of erroneously and truly identified significant features respectively, where obviously

p̂01 and p̂11 are independent, and p̂01 + p̂11 = p̂1. Note that

P (x̂ 6= x) ≤ P (p̂01 > 0) + P (p̂11 < p1)

Recall that for xj = 0, the corresponding ζj ∼ χ2
L1

. Let uj , j = 1, . . . , p0 be any, possibly

correlated, χ2
L1

random variables. Then,

P (p̂01 > 0) = P

(
max

1≤j≤p0
uj > λ

)
≤ p P

(
uj > L1 + 2

√
L1 ln(2p/α) + 2 ln(2p/α)

)
Apply Lemma 1 for the particular case µ = 0 to obtain

P
(
uj > L1 + 2

√
L1 ln(2p/α) + 2 ln(2p/α)

)
≤ α

2p
,

so that P (p̂01 > 0) ≤ α/2. Similarly, let µ∗ = min1≤j≤p1 µj = min1≤j≤p1 σ
−2
j

∑L
l=1 n

(1)
l β2lj and

consider any, possibly correlated, non-central chi-squared variables vj ∼ χ2
L1;µ∗

, j = 1, . . . , p1. We

have

P (p̂11 < p1) ≤ P
(

min
1≤j≤p1

vj ≤ λ
)
≤ p P (vj < λ)

A straightforward calculus shows that, under the condition (15) on µ∗, one has µ∗ + L1 −
2
√

(L1 + 2µ∗) ln(2p/α) > λ. Thus, Lemma 1 yields P (vj < λ) ≤ α/(2p) and, therefore,

P (p̂11 < p1) ≤ α/2, which completes the proof.

Proof of Theorem 5 We start with the following lemma:
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Lemma 3.

P

(
max
1≤j≤p

∣∣σ̂2j /σ2 − 1
∣∣ ≤ κ) ≥ 1− α,

where κ was defined in (26).

Let A be the event {max1≤j≤p

∣∣∣σ̂2j /σ2 − 1
∣∣∣ ≤ κ} and IA its indicator. By Lemma 3,

P (x̂ 6= x) ≤ P ((x̂ 6= x)IA) + α, (40)

where

P ((x̂ 6= x)IA) ≤ P ((p̂01 > 0)IA) + P ((p̂11 < p1)IA) (41)

Let ζ̂j = σ̂−2j
∑L

l=1 n
(1)
l (Ȳ

(1)
lj − Ȳ

(1)
·j )2. Then, on the event A

P
(

(ζ̂j > λ1)IA | xj = 0
)

= P
((
uj > λ1 σ̂

2
j /σ

2
j

)
IA
)
≤ P (uj > λ)

where uj ∼ χ2
L1
, j = 1, . . . , p0. Hence, following the arguments of Theorem 3, by Lemma 1

P ((p̂01 > 0)IA) ≤ P
(

( max
1≤j≤p

ζ̂j > λ1)IA | xj = 0

)
≤ P ( max

1≤j≤p0
uj > λ) ≤ α

2
(42)

Similarly, P
(

(ζ̂j < λ1)IA | xj = 1
)
≤ P (vj < λ1(1 + κ)) where vj ∼ χ2

L1;µ∗
, j = 1, . . . , p1. Then,

under the condition (15) of the theorem, Lemma 1 yields

P ((p̂11 < p1)IA) ≤ P
(

min
1≤j≤p1

vj ≤ λ1(1 + κ)

)
≤ α

2
(43)

Combination of (40)-(43) completes the proof.

Proof of Theorem 6 Assume that Y0 is from the l-th class. From (18) we have P (l̂ 6= l) ≤
P (l̂ 6= l | x̂ = x) +P (x̂ 6= x), where P (x̂ 6= x) ≤ 2α by Theorem 5. Consider a set Ω = {ω : x̂ = x}
with P (Ω) ≥ 1− α. In order to bound above P (l̂ 6= l | x̂ = x) we assume that ω ∈ Ω. We will use

the following two lemmas:

Lemma 4. If ||Σ̂∗ − Σ∗|| ≤ λmin(Σ∗)/2, then ||(Σ̂∗)−1 − (Σ∗)−1|| ≤ 2 λ−2min(Σ∗) ||Σ̂∗ − Σ∗||

Lemma 5. Under the condition (31), P
(
||Σ̂∗ − Σ∗|| ≤ λmax(Σ∗)

√
C1p1
N2

)
≥ 1− 2α

From Lemma 4 and Lemma 5 it follows that under (31),

P
(
||(Σ̂∗)−1 − (Σ∗)−1|| ≤ γp1,N2

)
≥ 1− 2α (44)

where γp1,N2 is defined in (32). Furthermore, for any 1 ≤ k ≤ L,

(Y∗0 − Ȳ∗k)
t
(

(Σ̂∗)−1 − (Σ∗)−1
)

(Y∗0 − Ȳ∗k)

(Y∗0 − Ȳ∗k)
t(Σ∗)−1(Y∗0 − Ȳ∗k)

≤ ||Σ∗
(

(Σ̂∗)−1 − (Σ∗)−1
)
|| ≤ τ2||(Σ̂∗)−1 − (Σ∗)−1)||

(45)
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Since the sample mean and the sample covariance matrix are independent in the case of the normal

distribution, inequalities (44) and (45) imply that with probability at least 1− 2α

ρl (Y
∗
0 − Ȳ

(2)∗
l )t(Σ̂∗)−1(Y∗0 − Ȳ

(2)∗
l )− ρk (Y∗0 − Ȳ

(2)∗
k )t(Σ̂∗)−1(Y∗0 − Ȳ

(2)∗
k )

= ρl (Y
∗
0 − Ȳ

(2)∗
l )t(Σ∗)−1(Y∗0 − Ȳ

(2)∗
l )− ρk (Y∗0 − Ȳ

(2)∗
k )t(Σ∗)−1(Y∗0 − Ȳ

(2)∗
k )

+ ρl (Y
∗
0 − Ȳ

(2)∗
l )t

(
(Σ̂∗)−1 − (Σ∗)−1

)
(Y∗0 − Ȳ

(2)∗
l )− ρk (Y∗0 − Ȳ

(2)∗
k )t

(
(Σ̂∗)−1 − (Σ∗)−1

)
(Y∗0 − Ȳ

(2)∗
k )

≤ ρl(1 + γp1,N2) (Y∗0 − Ȳ
(2)∗
l )t(Σ∗)−1(Y∗0 − Ȳ

(2)∗
l )− ρk(1− γp1,N2) (Y∗0 − Ȳ

(2)∗
k )t(Σ∗)−1(Y∗0 − Ȳ

(2)∗
k )

Define ρ′l = ρl(1 + γp1,N2) and ρ′k = ρk(1− γp1,N2). In particular, note that ρ′lρ
′
k = ρlρk(1− γ2p1,N2

).

Repeating the proof of Theorem 1 but with ρ′l and ρ′k and under the stronger condition (33), obtain

P (l̂ 6= l | x̂ = x) ≤ 2α that, together with (18) and P (x̂ 6= x) ≤ 2α, completes the proof.

Proof of Lemma 3 Note that σ−2j (N1 − L)σ̂2j ∼ χ2
N1−L and apply Lemma 1 to obtain

P (|σ̂2j /σ2 − 1| ≥ κ) ≤ α/p for all j = 1, . . . , p and, therefore, P
(

max1≤j≤p |σ̂2j /σ2 − 1| ≥ κ
)
≤ α

Proof of Lemma 4 Under the condition of the lemma we have

||(Σ̂∗)−1||−1 = min
||a||=1

atΣ̂∗a ≥ min
||a||=1

atΣ∗a− max
||a||=1

at(Σ̂∗ − Σ∗)a ≥ λmin(Σ∗)/2

and, therefore,

||(Σ̂∗)−1 − (Σ∗)−1|| ≤ ||(Σ̂∗)−1|| · ||Σ̂∗ − Σ∗|| · ||(Σ∗)−1|| ≤ 2λ−2min(Σ∗) ||Σ̂∗ − Σ∗||

Proof of Lemma 5 Define Zil = (Y∗il)
(2) −m∗l ∼ N(0p1 ,Σ

∗), i = 1, . . . , n
(2)
l ; l = 1, . . . , L. The

sample covariance matrix is translation invariant and, therefore,

Σ̂∗ =
1

N2

L∑
l=1

n
(2)
l∑
i=1

(Zil − Z̄l)(Zil − Z̄l)
t =

1

N2

L∑
l=1

n
(2)
l∑
i=1

ZilZ
t
il −

1

N2

L∑
l=1

n
(2)
l Z̄lZ̄

t
l = S1 − S2

Thus,

||Σ̂∗ − Σ∗|| ≤ ||S1 − Σ∗||+ ||S2|| (46)

By Remark 5.51 of Vershynin (2012), under the conditions of the lemma there exists an absolute

constant C0 such that

P

(
||S1 − Σ∗|| ≤ τ2

√
C0p1
N2

)
≥ 1− α (47)

Consider now S2. Define the p1 × L-dimensional matrix Z̄ with columns Z̄l, l = 1, · · · , L and the

diagonal matrix D = diag(

√
n
(2)
1 , · · · ,

√
n
(2)
L ). It is easy to see that S2 = N−1 (Z̄D)(Z̄D)t and

that matrix Ξ = (Σ∗)−1/2Z̄D has i.i.d. N(0, 1) entries. Indeed, columns Ξl =

√
n
(2)
l (Σ∗)−1/2 Z̄l of

matrix Ξ are independent with Cov(Ξl) = Ip1 . Hence,

‖S2‖ = N−12 ‖Z̄D‖
2 = N−12 ‖

√
Σ∗ Ξ‖2 ≤ N−12 λmax(Σ∗)‖Ξ‖2.
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Then, by Corollary 5.35 of Vershynin (2012)

P

(
||S2|| ≤ N−12 λmax(Σ∗)

(√
p1 +

√
L+

√
2 ln(2/α)

)2)
≥ 1− α

that, under (31), yields

P
(
||S2|| ≤ 9λmax(Σ∗)N−12 p1

)
≥ 1− α (48)

Combination of (46)-(48) completes the proof with C1 = max(
√
C0, 9).
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