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We consider ®rst the spline smoothing nonparametric estimation with variable smoothing parameter

and arbitrary design density function and show that the corresponding equivalent kernel can be

approximated by the Green function of a certain linear differential operator. Furthermore, we propose

to use the standard (in applied mathematics and engineering) method for asymptotic solution of linear

differential equations, known as the Wentzel±Kramers±Brillouin method, for systematic derivation of

an asymptotically equivalent kernel in this general case. The corresponding results for polynomial

splines are a special case of the general solution. Then, we show how these ideas can be directly

extended to the very general L-spline smoothing.
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1. Introduction

Consider the nonparametric regression problem of estimating the unknown response function

g(t) from noisy observations,

yi � g(ti)� Ei, i � 1, . . . , n,

where 0 , t1 , � � � , tn , 1 and E1, . . . , En are independent normal random variables with

zero mean and variance ó 2.

A widely known cubic smoothing spline estimator ĝ(:) is de®ned as a solution of the

following minimization problem:

ĝ(t) � arg min
f 2W 2

2

1

n

Xn

i�1

fyi ÿ f (ti)g2 � k

�1

0

f f 0(t)g2 dt

 !
, (1:1)

where W 2
2[0, 1] is the standard Sobolev space with the norm i f i2 � � ( f 2 � f 92 � f 02). The

smoothing parameter k controls the trade-off between the goodness of ®t to the data,

measured by the residual sum of squares, and smoothness of the estimate, expressed by the

integral term. The solution of (1.1) is unique and is a natural cubic spline with knots ti. The

explicit formula for ĝ has been given, for example, by Wahba (1978). The main results and
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extensive bibliographies on smoothing splines have been summarized by Eubank (1988) and

Wahba (1990).

However, the global value of the smoothing parameter k does not adapt to the local

behaviour of g(:) in regions of high curvature where the cubic spline tends to oversmooth.

This feature becomes especially problematic in the interval estimation discussed in Section

3. Nychka (1988) showed that bias, usually the modest part of the mean squared error

(MSE) of cubic spline estimators, increases signi®cantly in these regions. The use of a

variable smoothing parameter allows one to be more ¯exible in controlling the trade-off

between the bias and the variance of the estimate. Reducing the penalty for lack of

smoothness in regions of high curvature implies a decreasing bias; where the curvature is

low, the estimate emphasizes smoothness and reduces the variance that dominates the MSE.

The idea of using splines with a variable smoothing parameter and its estimation from the

data have been discussed by Abramovich and Steinberg (1996). Oehlert (1992) considered

smoothing splines with variable smoothing parameter (relaxed boundary splines in his

terminology) for decreasing the bias for cubic splines near the boundaries, which dominates

the integrated MSE of the estimate. For this purpose he studied the speci®c case

k(t) / tá(1ÿ t)á for some positive á.

To extend the de®nition (1.1) to the case of a variable smoothing parameter we de®ne

ĝ(t) as follows:

ĝ(t) � arg min
f2W 2

2

1

n

Xn

i�1

fyi ÿ f (ti)g2 �
�1

0

k(t)f f 0(t)g2 dt

 !
, (1:2)

where the variable smoothing parameter k(t) 2 W 2
2[0, 1] is strictly positive.

From the quadratic nature of (1.2), ĝ(:) is linear in the observations yi and, hence, may

be expressed as

ĝ(t) � 1

n

Xn

i�1

W n(t, ti)yi

for a certain weight function W n(t, ti). Thus ĝ(:) is essentially a weighted moving average

and, therefore, may be viewed as a kernel estimator with equivalent kernel W n(:, :).
The connection between spline smoothing and kernel estimation, originally based on

different ideas, has deep foundation. It is well known that for uniform design and for

constant smoothing parameter k the equivalent kernel W n(:, :) asymptotically (for small k)

may be well approximated by the Green function for the differential operator kD4 � I with

natural boundary conditions (Speckman 1981; Cox 1983; Silverman 1984; Messer 1991;

Nychka 1995). In this paper we extend these results to an arbitrary design density p(t) and

variable smoothing parameter k(t) and show that in the general case the corresponding

equivalent kernel is asymptotically connected to the Green function of the differential

operator Sk � (1=p)D2 kD2 � I.

In order to obtain the Green function of the operator Sk, one has to ®nd its fundamental

system. This can be done by directly solving the corresponding homogeneous differential

equation in the simplest case, where k(t) and p(t) are assumed to be constant (Speckman

1981, Cox 1983). However, the solution cannot be derived explicitly for general k(t) and
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p(t) and allows only an asymptotic approximation. Silverman (1984) considered this

problem for an arbitrary p(t) (but constant k) but did not give any constructive method for

®nding the equivalent kernel. He `̀ guessed'' the asymptotic approximation without hinting

at how it had been obtained.

In this paper we propose to use the Wentzel±Kramers±Brillouin (WKB) method for

asymptotic derivation of the fundamental system of the operator Sk (and, hence, its Green

function) in the general case. The WKB method is a standard method in applied

mathematics and engineering for the asymptotic solution of linear differential equations

(Coddington and Levinson 1955, Chapter 6; Bender and Orszag 1978, Chapter 10).

Concerning the problem at hand, it allows the systematic derivation of asymptotically

equivalent kernels for splines with an arbitrary variable smoothing parameter and design

density functions, yielding Silverman's result as a special case. Moreover, as we shall show,

the WKB method can also be used for ®nding asymptotically equivalent kernels for the

very general L splines, where the integral in (1.2) is of the form
�

(Lf )2 for some linear

differential operator L.

The ef®cient computational algorithms for spline smoothing procedure have been given

by Wecker and Ansley (1983) and Hutchinson and de Hoog (1986). The asymptotic

properties of spline estimators have been established, for example, by Nussbaum (1985) and

Speckman (1985). The equivalent kernel formulation developed in this paper is more of

conceptual interest, ®nding the relationship between two main nonparametric regression

approaches and providing an intuition into what spline smoothing does to the data.

In the main Section 2 we establish the connection between spline smoothing with variable

smoothing parameter and kernel estimation. Applying the WKB method we derive the

asymptotically equivalent kernel via the Green function of the operator Sk and estimate the

goodness of this asymptotic approximation for the original equivalent kernel W n(:, :). In

Section 3 we apply the results obtained in Section 2 to statistical inference for spline estimates

and, using the equivalence between Bayesian modelling and spline smoothing, we obtain

asymptotic error bounds for the unknown response function. The last Section 4 gives a sketch

for extension of the previous results to the very general L-spline smoothing. Remarkably, the

corresponding asymptotically equivalent kernel depends only on the highest-order coef®cient

of the operator L and in this sense, for large samples, general smoothing splines behave similar

to the `̀ usual'' smoothing spline with a corresponding variable smoothing parameter.

2. Derivation of an asymptotically equivalent kernel

We start this section with an intuitive explanation of the connection between the equivalent

kernel for a smoothing spline with variable smoothing parameter and the Green function of

the operator Sk de®ned in the introduction. Then we ®nd the asymptotic approximation of the

Green function and ®nally Theorem 1, formulated at the end of the section, justi®es our

preliminary considerations and rigorously summarizes all previous results.
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2.1. De®nition of the Lk-smoothing spline

Consider the model

y(ti) � g(ti)� Ei, i � 1, . . . , n, (2:1)

where 0 , t1 , � � � , tn , 1, E � (E1, . . . , En)9 � N (0, ó 2 I n).

We derive a smoothing spline with variable smoothing parameter ĝ(t) by (1.2). Applying

standard methods for solving (1.2) (see, for example, Kimeldorf and Wahba (1971) and

Wahba (1990)) it can be shown that ĝ(t) is an L spline for the differential operator

Lk � k1=2(t)D2 (Lk spline), where D2 is the second-order differentiation operator and is of

the form

ĝ(t) � á0 � á1 t �
Xn

j�1

d jQ(t j, t),

where

Q(s, t) �
�min(s, t)

0

k(u)ÿ1(t ÿ u)(sÿ u) du:

Exact expressions for the coef®cients á and d have been given by Abramovich and Steinberg

(1996) with minor changes due to their notation k2(t) for the smoothing parameter rather

than k(t) as we use here.

The estimate ĝ(:) satis®es the natural boundary conditions

fk(t) ĝ 0(t)g( p)(0) � fk(t) ĝ 0(t)g( p)(1) � 0, p � 0, 1: (2:2)

Since k(t) is strictly positive, these conditions are equivalent to

ĝ 0(0) � ĝ 0(1) � ĝ -(0) � ĝ -(1) � 0: (2:2a)

2.2. Equivalent kernel approach

As we have already mentioned in the introduction, from the quadratic nature of (1.2), ĝ(t) is

linear in the observations for ®xed k(t) and, hence,

ĝ(t) � 1

n

Xn

i�1

W n(t, ti)yi, (2:3)

where W n(:, :) is the equivalent kernel. Although W n(:, s) is de®ned in (2.3) only for the data

points s � ti for further considerations we would like to treat it as a usual function of two

variables. For this purpose we extend its de®nition for an arbitrary ®xed s 2 [0, 1], setting

W n(t, s) � arg min
f 2W 2

2

1

n

Xn

i�1

f (ti)
2 �

�1

0

k(t)f f 0(t)g2 dt ÿ 2 f (s)

 !
: (2:4)

A quadratic functional with a positive second functional derivative always has a unique
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minimum over a closed convex set of functions; so the de®nition (2.4) is legitimate. For

s � ti, (2.4) is, up to the constant, the functional in (1.2) where yj � näij, j � 1, . . . , n and

one may easily verify that the extended de®nition (2.4) coincides with (2.3) for the data

points.

Now we derive an explicit asymptotic formula for W n(:, :). In this subsection we show

the asymptotic connection between it and the Green function for the differential operator

Sk � (1=p)D2 kD2 � I .

Let Fn be the empirical distribution function of the design points, that is

Fn(t) � nÿ1 3 (number of design points < t)

and assume that the design points are distributed on [0, 1] with cumulative distribution

function (cdf) F, i.e. á(n) � sup t2[0,1]jFn(t)ÿ F(t)j ! 0 as n tends to in®nity. Suppose that

F is a differentiable function and let p � F9 be a design density. Suppose in addition that

p(t) . 0 on [0, 1]. Approximating the sum in (1.2) by the integral implies that asymptotically

ĝ(t) minimizes �1

0

fy(t)ÿ f (t)g2 p(t) dt �
�1

0

k(t) f 0(t)2 dt:

The Euler equation for this variational problem is

1

p(t)
fk(t) ĝ 0(t)g 0� ĝ(t) � y(t)

with boundary conditions (2.2).

One may see that this system is positive; so there exists a unique solution and

ĝ(t) �
�1

0

G(t, s)y(s) ds, (2:5)

where G(:, :) is the Green function of the operator Sk � (1=p)D2 kD2 � I acting on the

subspace of functions satisfying the boundary conditions (2.2).

Comparison of (2.5) with (2.3) indicates that for large samples the equivalent kernel

W n(t, s) for spline smoothing with variable smoothing parameter k(t) and design density

p(t) can be approximated by the kernel W (t, s) � G(t, s)=p(s) (of course, this claim still

must be rigorously formulated and proved!).

2.3. Asymptotical derivation of the Green function

The Green function G(:, :) in (2.5) cannot be obtained explicitly for general k(t) and p(t).

However, we can approximate it by replacing the natural boundary conditions (2.2) by a

requirement of vanishing G(t, s) as t tends to �1. The solution of the latter problem, say

H(:, :), is essentially the Green function for the operator (1=p)D2 kD2 � I acting on the

subspace of functions satisfying homogeneous conditions at �1 and can be obtained

asymptotically by the standard (in applied mathematics) method known as the WKB method.

The WKB method, based on an asymptotic expansion with respect to a large parameter, was
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originally proposed by Jeffreys (1924) and in the works of Wentzel, Brillouin and Kramers

(hence, it is called WKB or sometimes the WKBJ method) for an approximated solution of

the SchroÈdinger equation and then extended to other linear differential equations (see, for

example, Coddington and Levinson (1955, Chapter 6) and Bender and Orszag (1978, Chapter

10)). Theorem 1 will establish the goodness of the WKB approximation for W n(:, :) under

the very general assumptions given below.

We have ®nished now all the preliminary considerations and start the rigorous analysis.

First we formulate two assumptions on k(:) and p(:):

(i) Suppose that the smoothing parameter k(t) tends to zero as n increases. We assume

that k(t) is of the form k(t) � k0(t)=h4, where k0(t) is a ®xed known function independent

of n, and h is a parameter that depends on n in such a way that h!1 as n!1.

(ii) k0(:) and the design density function p(:) lie in C3[0, 1] and are bounded away from

zero.

To construct the Green function H(:, :) we start from ®nding the fundamental solutions.

Consider the homogeneous equation

1

p(t)
fk(t) f 0(t)g 0� f (t) � 0: (2:6)

Recall that k(t) � k0(t)=h4 and, hence, (2.6) is equivalent to

1

p(t)
fk0(t) f 0(t)g 0� h4 f (t) � 0:

We apply the WKB method to solve the latter equation. We rewrite it in the form

f (iv)(t)� 2
k90(t)

k0(t)
f -(t)� k 00(t)

k0(t)
f 0(t)� h4 p(t)

k0(t)
f (t) � 0: (2:7)

Following the idea of the WKB method the asymptotic (for large h) solution of (2.7) is

sought of the form

f (t) � exp h

� t

0

Ø(z) dz

� �X1
k�0

Ck(t)

hk
:

We prove in Appendix 1 that (2.7) satis®es the conditions of Theorem 6.3.1 of Coddington

and Levinson (1955) and, hence, the solution of this form exists and yields the following

fundamental system:

f j(t) � C0(t) exp hç j

� t

0

p

k0

� �1=4
( )

1� O
1

h

� �� �
, j � 1, . . . , 4,

as h!1, where the ç are the four fourth roots of (ÿ1). Substituting the latter expression

into (2.7) and expanding the left-hand side by powers of h, after straightforward calculus, one

obtains
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f j(t) � 1

k0(t)1=8 p(t)3=8
exp hç j

� t

0

p

k0

� �1=4
( )

1� O
1

h

� �� �
:

Construct the Green function H(t, s) as a linear combination of the fundamental

solutions by standard methods:

H(t, s) �

X4

j�1

è1 j(s) f j(t), 0 < t < s < 1,

X4

j�1

è2 j(s) f j(t), 0 < s < t < 1:

8>>>><>>>>:
The requirement that H(t, s) vanishes as t tends to �1 implies that four coef®cients of

f j(:) equal zero. The remaining four coef®cients are de®ned from the continuity conditions

of H(t, s) and its derivatives at the point t � s for every ®xed s:X2

j�1

fè2 j(s)ÿ è1 j(s)g f
(q)
j (s) � 0, q � 0, . . . , 2,

X2

j�1

fè2 j(s)ÿ è1 j(s)gfk2(t) f 0j(t)g9j t�s � p(s):

Solving the above system, one ®nally obtains that H(t, s) � H0(t, s)f1� O(1=h)g, where

H0(t, s) � h

2

p(s)5=8

fk0(t)k0(s)g1=8 p(t)3=8
eÿhÖ0( t,s) sin hÖ0(t, s)� ð

4

� �
(2:8)

and Ö0(t, s) � (2ÿ1=2)
�max( t,s)

min( t,s)
( p=k0)1=4.

2.4. The main theorem: proof and discussion

The main part of H(t, s) for large h, H0(t, s) is used now for approximating the original

equivalent kernel W n(t, s). De®ne the function W (t, s) � H0(t, s)=p(s). The following

theorem derives an error in approximation W n(:, :) by W (:, :):

Theorem 1. Suppose that assumptions (i) and (ii) are true. Then for all suf®ciently large n

W (t, s)

h
ÿ W n(t, s)

h
� O há(n)� 1

h

� �
uniformly over all t 2 [0, 1] and s 2 [ô1, ô2] for every ô1 and ô2, 0 , ô1 , ô2 , 1.

Before starting the proof we recall that h is a function of n, h!1 as n!1 and

á(n) � sup t2[0,1]jFn(t)ÿ F(t)j.
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Proof. The idea of the proof is somewhat similar to that of Silverman's (1984) Theorem A.

During the proof we use several lemmas proved in Appendix 1, section A.2. We denote for

convenience W (:, s) and W n(:, s) by Ws(:) and W ns(:) respectively, and all corresponding

derivatives will be taken with respect to t.

Let ô1 and ô2 be 0 , ô1 , ô2 , 1. Fix s 2 [ô1, ô2] and n (and, therefore, h). De®ne the

norm iui n in W 2
2 by iui2

n �
� 1

0
ku 02 � � 1

0
u2 dFn. De®ne a functional As in W 2

2 by

As(u) � 1
2
iui2

n ÿ u(s):

According to the de®nition (2.4), W ns is a minimizer of As over W 2
2. From now on we drop

the index s and denote the functional As simply by A.

It is easy to show that the functional derivative at v, A9(v)(u) � hv, uin ÿ u(s) for all v
and u in W 2

2, where the inner product hu, vin �
�

ku 0v 0� � uv dFn (see, for example, Tapia

and Thompson (1978)). Since A is a quadratic functional, its second functional derivative

A 0 is constant and

A 0(w, u) � A 0(v)(w, u)

� A9(v� w)(u)ÿ A9(v)(u)

� hv� w, uin ÿ u(s)ÿ hv, uin � u(s)

� hw, uin:

We have that W ns is a minimizer of A and, therefore, A9(W ns) is a zero functional.

Hence, for all u in W 2
2,

A9(Ws)(u) � fA9(Ws)ÿ A9(W ns)g(u)

� A 0(Ws ÿ W ns, u)

� hWs ÿ W ns, uin:

In particular,

A9(Ws)(Ws ÿ W ns) � iWs ÿ W ns i2

n: (2:9)

As we have mentioned above,

A9(Ws)(u) � hWs, uin ÿ u(s)

�
�

kW 0su 0�
�

Wsu dFn ÿ u(s):

(2:10)
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Lemma 1. For suf®ciently large h,�
kW 0su 0 � [(kW 0s )u9ÿ (kW 0s )9u]1

0 ÿ
�

pWsu� u(s) 1� O
1

h

� �� �
:

Substituting the result of Lemma 1 into (2.10) gives

A9(Ws)(u) � [(kW 0s )u9ÿ (kW 0s )9u]1
0 �

�
Wsu d(Fn ÿ F)� u(s)O

1

h

� �
: (2:11)

The following two lemmas derive upper bounds for the absolute values of the ®rst two terms

in (2.11) for suf®ciently large n, where the constants C1, C2 and ä used in the lemmas do not

depend on s, n and h.

Lemma 2. There exist ä. 0 and C1 such that

j[(kW 0s )u9ÿ (kW 0s )9u]1
0j < C1 exp(ÿäh) supjuj � supju9j

h

� �
:

Lemma 3. There exists C2 such that�����Wsu d(Fn ÿ F)

���� < C2 há(n) supjuj � supju9j
h

� �
:

Applying Lemmas 2 and 3 to (2.11) yields

jA9(Ws)(u)j < ãn supjuj � supju9j
h

� �
, (2:12)

where ãn � C0fhá(n)� exp(ÿäh)� 1=hg. For every ä we can choose h large enough so

that exp(ÿäh)� 1=h and, therefore, ãn < C(há(n)� 1=h).

Setting u � Ws ÿ W ns, (2.9) and (2.12) imply that

1

h4

�1

0

k0Ä 0n
2 dt �

�1

0

Ä2
n dFn(t) < ãn supjÄnj � supjÄ9nj

h

� �
, (2:13)

where Än(:) � Ws(:)ÿ W ns(:).
Set x � th and de®ne the functions ~Än(x) � Än(x=h) and ~Fn(x) � Fn(x=h). Then, from

(2.13) we have

1

h

� h

0

k0
~Ä 0n

2 dx�
� h

0

~Ä2
n d~Fn

 !
< ãn sup

[0,h]

j~Än(x)j � sup
[0,h]

j~Ä9n(x)j
� �

, (2:14)

where the derivatives of ~Än and ~Fn are with respect to x. By the Cauchy±Schwarz inequality� h

0

~Ä2
n d~Fn �

� h

0

~Ä2
n d~Fn

� h

0

d~Fn >

� h

0

~Än d~Fn

 !2
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and thereby

� h

0

k0
~Ä 0n

2 �
� h

0

~Ä2
n d~Fn > min(inf k0, 1)

� h

0

~Ä 0n
2 �

� h

0

~Än d~Fn

 !2
0@ 1A > c1 i ~Än i2

W2
2
[0,h]:

The last inequality directly follows from the classical theorem of equivalence of the norms in

Sobolev spaces (see, for example, Smirnov (1964, Theorem 114.3)). From the Sobolev

embedding theorem (e.g. (157) of Smirnov (1964))

supj~Änj � supj~Ä9nj < c2 i ~Än iW 2
2[0,h], (2:15)

where the constants c1 and c2 do not depend on s, n and h.

Thus, (2.14) yields

1

h
i ~Än i2

W2
2
[0,h] <

c2

c1

ãn i ~Än iW 2
2[0,h]:

Applying (2.15) again we ®nally get

1

h
supjÄnj � 1

h
supj~Änj < c2

2

c1

ãn

or

1

h
jW (t, s)ÿ W n(t, s)j < c3 há(n)� 1

h

� �
:

The last result holds uniformly over all t 2 [0, 1] and s 2 [ô1, ô2] for suf®ciently large n and

h. u

Remark 1. All three components of ãn in (2.12) have a very clear nature: the ®rst term

re¯ects the error caused by approximating the sum in (1.2) by the integral, the second

component appears from replacing the natural boundary conditions (2.2) by the requirement

that H(:, s) vanishes at �1, and the third term 1=h is implied from taking only the main

part H0(t, s) of the true Green function H(t, s) in the de®nition of W (t, s). Note that ä in the

second component is completely determined by the lengths of the boundary intervals [0, ô1]

and [ô2, 1] where the error bound obtained in Theorem 1 is not true. For every suf®ciently

large n, providing (2.13) uniformly over all t 2 [0, 1] and s 2 [ô1, ô2], we may always choose

ô1 and ô2 so that the corresponding ä satis®es exp(ÿhä) , 1=h. Thus, we can say that the

result of Theorem 1 holds uniformly over all t and over all s not `̀ too close'' to the

boundaries.

It is important to note that asymptotic equivalence between the kernels W n(t, s) and

W (t, s) established in Theorem 1 does not claim asymptotic equivalence between the

smoothing spline (1.2) itself and the corresponding kernel estimator with the kernel W (t, s)

but, nevertheless, gives intuition about what spline smoothing does to the data.

The obvious corollary from Theorem 1 con®rms our preliminary considerations that

W (:, :) can be called an asymptotically equivalent kernel in the following sense.
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Corollary 1. Assume in addition to (i) and (ii) that h!1 as n!1 in such way that

há(n)! 0. Then W n(t, s), the equivalent kernel for spline smoothing with variable

smoothing parameter k(t) � k0(t)=h4 and design density p(t), is `̀ asymptotically equivalent''

to W (t, s) in the sense that jW n(t, s)=hÿ W (t, s)=hj ! 0 uniformly over all t 2 [0, 1] and s

not `̀ too close'' to the boundaries, where

W (t, s) � h

2
fk0(t)k0(s)gÿ1=8fp(t) p(s)gÿ3=8 eÿhÖ0( t,s) sin hÖ0(t, s)� ð

4

� �
(2:16)

and Ö0(t, s) is de®ned in (2.8).

We ®nish this section with several remarks.

Remark 2. It is interesting to compare W (t, :) from (2.16) with the weight function K(t, :) of

the standard Priestley±Chao (1972) kernel estimator. The Priestley±Chao K(t, s) is of the

form K(t, s) � p(s)ÿ1bÿ1 K0(jt ÿ sj=b), where b is a bandwidth. The shape of K(t, :) is

de®ned by K0(:) and is the same for different t. The kernel W (t, s), however, is not of the

Priestley±Chao convolutional type; so spline smoothing is nearly general weighted moving

averaging of the data, where the shape of weight function varies with t.

Remark 3. The main results of this section may be extended to the case where the second

derivative f 0(:) in (1.2) is replaced by f (m)(:) for general m. As in the case when m � 2 the

derivation of W (t, s) is based on the use of the WKB method for ®nding a fundamental set

of solutions of the 2mth-order homogeneous equation (ÿ1)m(1=p)(k0 f (m))(m) � h2m f � 0

and is of the form

W (t, s) � h

m
fp(t) p(s)gÿ(2mÿ1)=4mfk0(t)k0(s)gÿ1=4m

3
Xm=2

j�1

eÿh Im(ç j) Ö0( t,s) sinfh Re(ç j)Ö0(t, s)� arg(ç j)g

for even m and

W (t, s) � h

m
fp(t) p(s)gÿ(2mÿ1)=4mfk0(t)k0(s)gÿ1=4m

3 1
2
eÿhÖ0( t,s) �

X(mÿ1)=2

j�1

eÿh Im(ç j) Ö0( t,s) sinfh Re(ç j)Ö0(t, s)� arg(ç j)g
0@ 1A

for odd m, where the ç are the 2mth roots of ÿ1, ç j � expfið(2 jÿ 1)=2mg and

Ö0(t, s) � �max( t,s)

min( t,s)
( p=k0)1=2m. For the uniform design and constant smoothing parameter this

result coincides with that of Messer and Goldstein (1993) for polynomial splines.

Remark 4. Consider k0(:) � 1, which corresponds to the standard polynomial spline
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smoothing. We note that in this particular case the asymptotic approximation for equivalent

kernel obtained here is more accurate than the well-known result of Silverman (1984) for

cubic splines. His asymptotic is derived from (2.16) setting p(:) � p(t) on the interval [t, s]

(cf. Corollary 1 here with Theorem A and (2.8) of Silverman) and, hence, implies a rougher

approximation. Thus, to obtain the results analogous to Theorem 1 of this section he had to

correct his approximation by an additional term (see Theorem B of Silverman).

Remark 5. The WKB approximation of the solution of linear differential equations can be

theoretically improved by adding higher terms of the WKB-series expansion.

3. Asymptotic error bounds

In this section we illustrate how the results of the previous section may be applied for

statistical inference for spline estimate and derive asymptotic error bounds for the unknown

response function.

Wahba (1978, 1983), Wecker and Ansley (1983), Silverman (1985) and Kohn and Ansley

(1988), using different prior models for g, showed that smoothing splines have a natural

interpretation as Bayes estimators of the unknown response function. Wahba's (1978, 1983)

prior model for cubic splines assumes that g 0(t) is a homoscedastic `̀ white noise''. Abra-

movich and Steinberg (1996) showed that letting g 0 be distributed a priori as a hetero-

scedastic `̀ white-noise'' process, satisfying the stochastic differential equation d2 X (t)=dt2 �
(ó=n1=2)k(t)ÿ1=2 dW (t)=dt, where W (t) is a Wiener process with varfW (1)g � 1, yields

the smoothing spline with variable smoothing parameter k(t) (1.2) as the posterior mean of

g(t) given observations yi. Relaxing the requirement of prior homoscedasticity for the

second derivative allows one to express more closely his prior belief about the local

properties of g(t). The variable smoothing parameter k(t) may serve as a vehicle for a

more accurate expression of information about the local nonlinearity of the response

function. The estimation of k(t) from the data was considered by Abramovich and Steinberg

(1996).

The Bayesian approach allows one to derive posterior pointwise probability intervals that

provide natural error bounds for the true function (Wahba 1983, Silverman 1985, Nychka

1988, Ansley et al. 1993). Using the standard Bayesian methodology, one can obtain the

posterior variance of g(t) at every point t. Wahba (1983) showed that for the design points

the posterior covariance cov((g(ti), g(t j))jy) � (ó 2=n)W n(ti, t j). This result may be

extended to arbitrary points. Applying a technique similar to that used for the solution

of the general spline smoothing problem (Kimeldorf and Wahba 1971, Wahba 1990),

straightforward but tedious calculus provides explicitly the minimizer of (2.4), W n(t, s).

After some matrix algebra it is possible to verify that W n(t, s) coincides with the posterior

covariance function cov(g(t), g(s)jy) derived by Gu and Wahba (1993) or by Abramovich

and Steinberg (1996). The rigorous proof and explicit formulae are omitted here. Hence, the

equivalent kernel W n(:, :) has a very clear statistical meaning and a (1ÿ á)-level Bayesian

interval for g(:) is
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ĝ(t)� z1ÿá=2

ó

n1=2
fW n(t, t)g1=2: (3:1)

Applying the results of the previous section and replacing W n(t, t) in (3.1) by W (t, t) we

can derive asymptotic (1ÿ á)-level Bayesian pointwise intervals.

Suppose that all the assumptions of Corollary 1 of Section 2 are true, i.e. h!1 as

n!1 in such way that há(n)! 0. Suppose in addition that h tends to in®nity not faster

than n, i.e. h � O(n). For example, if design points are `̀ regularly distributed with cdf F'',

i.e. ti � Fÿ1((iÿ 0:5)=n), then á(n) � O(1=n) and the additional assumption holds auto-

matically. Under the assumption h � O(n)���� W n

n

� �1=2

ÿ W

n

� �1=2����2 <

���� W n

n

� �1=2

ÿ W

n

� �1=2���� W n

n

� �1=2

� W

n

� �1=2
( )

<

����W n

n
ÿ W

n

����
< C

����W n

h
ÿ W

h

����
for some constant C and for all t and s. Corollary 1 implies that jW n=hÿ W=hj ! 0

uniformly over all t and s not `̀ too close'' to the boundaries and, therefore, for large h we

may replace asymptotically fW n(t, t)=ng1=2 in (3.1) by fW (t, t)=ng1=2 and an asymptotic

(1ÿ á)-level Bayesian interval for points not `̀ too close'' to the boundaries is

ĝ(t)� 2ÿ3=4z1ÿá=2

ó

n1=2
k(t)ÿ1=8 p(t)ÿ3=8: (3:2)

For constant k the analogous results were obtained by Silverman (1985) from his asymptotic

approximation of equivalent kernel discussed in the previous section. However, since his

kernel is not a symmetric function, it cannot be used for approximating posterior covariances.

The approximate intervals (3.2) lighten the role of smoothing parameter and design

density for error bounds. The length of the error intervals (3.2) for g(t) is reciprocal to

k(t)1=8 and p(t)3=8. For the ®xed design, one may control the length of the pointwise

intervals by controlling k(t). In examples considered in Abramovich and Steinberg (1996)

the appropriate choice of k(t) (estimated from the data) in `̀ almost linear'' regions led to

error intervals up to 30% narrower than the corresponding intervals for cubic splines with

no signi®cant drop in coverage probabilities. At the same time, decreasing k(t) in regions of

rapid local changes gave the estimate `̀ automatic'' protection by broadening the error

bounds and considerably improving coverage probabilities at those points. Equation (3.2)

gives a clue for understanding this phenomenon.

4. Extension to general L splines

This section gives a sketch of how the results of previous sections can be extended to the

very general L-spline smoothing. As in Section 2 we ®rst show that the corresponding
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equivalent kernel is asymptotically connected to the Green function of a certain differential

operator and then use the WKB method for its asymptotical derivation in this very general

case. Moreover, the WKB method will prove that the asymptotically equivalent kernel

depends only on the highest-order coef®cient of the operator L and, hence, it is the same

W (t, s) from Remark 3 in Section 2 with corresponding variable smoothing parameter. The

rigorous results analogous to those of Theorem 1 of Section 2 can be obtained in a similar

way but involve much more tedious technical details and are omitted.

De®ne ĝ(t) as the minimizer of

1

n

Xn

i�1

fyi ÿ f (ti)g2 � k

�1

0

f(L f )(t)g2 dt, (4:1)

where L is a general mth-order linear differential operator of the form L �Pm
j�1a j(t)Dj and

k is a smoothing parameter (Kimeldorf and Wahba 1971; Wahba 1978; 1985; Kohn and

Ansley 1983; 1988).

Let L� be an adjoint operator to L with respect to a standard inner product in L2. Then,

L� f (t) �
Xm

j�1

(ÿ1) j Djfa j(t) f (t)g: (4:2)

It is well known that the solution of (4.1) is a natural L spline with the sets of knots ftig
satisfying L�Lĝ � 0 everywhere, except, maybe, the data points ti and providing Lĝ � 0 in

[0, t1] and [t n, 1]. These boundary conditions yield 2m natural boundary conditions at the

end-points 0 and 1. The exact formula for ĝ has been given by Kimeldorf and Wahba (1971)

and Wahba (1990).

By the same arguments from Section 2, ĝ(:) may be expressed as

ĝ(t) � 1

n

Xn

i�1

W n(t, ti)yi, (4:3)

where W n(:, :) is the corresponding equivalent kernel.

Now we ®nd an asymptotic approximation to W n(:, :). Suppose again that the design

points are distributed in [0, 1] with cdf F and design density p � F9 which is strictly

positive. Replacing the sum in (4.1) by the integral for large n implies that asymptotically

ĝ(:) minimizes �1

0

fy(t)ÿ f (t)g2 p(t) dt � k

�1

0

f(Lf )(t)g2 dt: (4:4)

Consider the differential operator S � (k=p)L�L� I acting on the subspace of functions

satisfying natural boundary conditions, where the adjoint operator L� is given by (4.2).

De®ne in L2[0, 1] the weighted inner product [ f 1, f 2] � � f 1 f 2 p. Then, S is obviously a

positive self-adjoint operator with respect to this weighted inner product.

Consider the equation S f � y. Since S is a positive self-adjoint operator, there exists a

unique solution of the above equation:
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f (t) �
�

G(t, s)y(s) ds, (4:5)

where G(:, :) is the Green function of S. Moreover, the solution (4.5) is the minimizer of the

functional [S f , f ]ÿ 2[ f , y] over all f. Note that [S f , f ]ÿ 2[ f y] � � ( f 2 ÿ 2 fy) p� k
�

(Lf )2

and up to the constant term
�

y2 p coincides with (4.4). Thus, from (4.3) and (4.5) it follows

that W n(t, s) can be asymptotically approximated by G(t, s)=p(s). This result extends the

analogous results of Abramovich (1993) for uniform design density and the results from

Section 2 for Lk splines.

Suppose that k � 1=h2m and let h!1 as n!1. First we approximate G(t, s) for

large h by the Green function H(t, s) replacing the natural boundary conditions by the

requirement of vanishing as t tends to �1, and then use the WKB method to ®nd the main

part H0(t, s) of H(t, s).

We start from the homogeneous equation Sf � (hÿ2m=p)L�Lf � f � 0. After some

calculus, one can verify that

L�Lf � (ÿ1)mfa2
m f (2m) � m(a2

m)9 f (2mÿ1)g � R,

where R contains all terms with derivatives of f less than (2mÿ 1)th order. The original

homogeneous equation can be rewritten now as

f (2m) � m
(a2

m)9

a2
m

f (2mÿ1) � R1 � (ÿ1)m h2m p

a2
m

f � 0, (4:6)

where R1 � (ÿ1)m R=a2
m.

Following the WKB method, we seek the asymptotic solution for (4.6) in the form

f (t) � exp h

� t

0

Ø(z) dz

� �X1
k�0

Ck(t)

hk
: (4:7)

The slightly modi®ed Proposition 1 from Appendix 1 guarantees the conditions of

Theorem 6.3.1 of Coddington and Levinson (1955) and, thus, the solution of this form

exists.

Substituting (4.7) into (4.6) and expanding by powers of h after tedious straightforward

calculus, one has

Ø2m h2m � mC0

(a2
m)9

a2
m

Ø� (2mÿ 1)mC0Ø9� 2mC90Ø

 !
Ø2mÿ2 h2mÿ1

� R2 � (ÿ1)m p

a2
m

h2m � 0,

(4:8)

where R2 contains all powers of h less than 2mÿ 1. As h!1, only C0(:) is relevant in

(4.8) while all other Ck(:), k . 0 (and, therefore, R2), contribute O(1=h) to the resulting

solution. From (4.8) we immediately have
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Ø � ç j

p

a2
m

� �1=2m

, C0 � pÿ(2mÿ1)=4maÿ1=2m
m ,

where the ç j are the 2mth complex roots of (ÿ1) and, ®nally, the corresponding fundamental

solutions are

f j(t) � 1

p(t)(2mÿ1)=4mam(t)1=2m
exp hç j

� t

0

p

a2
m

� �1=2m
( )

1� O
1

h

� �� �
, j � 1, . . . , 2m:

(4:9)

It is important to note that the main part of the fundamental solutions (4.9) depends only on

the highest-order coef®cient am of the original operator L in (4.1). The Green function

H(t, s) is a linear combination of the fundamental solutions and, hence, its main part

H0(t, s) will also depend on t only through am(t). Moreover, since S is a self-adjoint

operator, H0(t, s)=p(s) is a symmetric function and, hence, H0(t, s) will also depend on s

only through am(s). Thus, the main part of the Green function of the operator S is completely

de®ned by the highest-order coef®cient am(:) of the operator L. The equivalent kernel

W n(t, s) in (4.3) can be asymptotically (for large h) approximated by W (t, s) � H0(t, s)=
p(s), where W (t, s) is exactly the same as in Remark 3 of Section 2 for the Lk-spline

smoothing with k0(:) � a2
m(:). These results may seem somewhat surprising for the `̀ spline

community'' but are quite `̀ natural'' in asymptotical theory of differential equations. The

WKB method is key for the understanding of this phenomenon.

Summarizing the main results of this section, we can conclude that, for large samples

and for small k, (a) the asymptotically equivalent kernel for the general L-spline smoothing

is the same as for the `̀ usual'' spline smoothing but with a variable smoothing parameter

de®ned by the highest-order coef®cient of the operator L and (b) general spline smoothing

is nearly weighted moving averaging of the data with the kernel W (:, :) given in Remark 3

of Section 2. Unlike the standard Priestley±Chao (1972) convolutional kernel, the shape of

the weight function at point t, W (t, :), varies with t.

Appendix 1

A.1. Derivation of the fundamental system of the homogeneous equation

(2.7)

The following Proposition 1 provides the theoretical ground for applying the WKB method

for solving this equation.

Proposition 1. Let the ç be the fourth roots of (ÿ1) and a function ö(t) 2 C[0, 1]. There

exists an angle Ù in the complex domain with a vertex at the origin such that for every pair

(i, j) the expression Re[h(çi ÿ ç j)fp(t)=k0(t)g1=4 � ö(t)] has the same sign for all t 2 [0, 1]

and for every suf®ciently large jhj, where h 2 Ù.
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Proof. It is suf®cient to show that

arg h(çi ÿ ç j)
p(t)

k0(t)

� �1=4

� ö(t)

( )
6� �ð

2
(A:1)

for all suf®ciently large jhj, h 2 Ù and for all t 2 [0, 1].

Note that

arg h(çi ÿ ç j)
p(t)

k0(t)

� �1=4
( )

� arg(h)� arg(çi ÿ ç j)� arg
p

k0

� �1=4

: (A:2)

The second term in (A.2) is a constant for every pair (i, j), while the third term is zero since

p=k0 is a positive real function. Thus, we can always choose Ù such that����� ð

2
ÿ arg h(çi ÿ ç j)

p(t)

k0(t)

� �1=4
( )���� > c . 0,

and, thereby, (A.1) always holds for suf®ciently large jhj due to the boundedness of ö(:).
u

Now we may directly apply all corresponding results from Coddington and Levinson

(1955, Section 6.3) to (2.7). Using their notation it is easy to show that

jA0(t)ÿ ëI j � ë4 � p(t)

k0(t)

where the matrix A0(t) is de®ned by Coddington and Levinson. The characteristic roots of

the matrix A0(t) are ë j � fp(t)=(k0(t)g1=4ç j. Proposition 1 ensures that the hypothesis H of

Coddington and Levinson (Section 6.3) holds and from their Theorem 6.3.1 for suf®ciently

large real h

f j(t) � C0(t) exp hç j

� t

0

p

k0

� �1=4
( )

1� O
1

h

� �� �
that justi®es the form of solution we sought.

A.2. Proof of the lemmas from Section 2

Here we prove the lemmas that were used in the proof of Theorem 1 in Section 2. Recall that

all the derivatives are with respect to t.

Proof of Lemma 1. Recall that Ws(t)f1� O(1=h)g � H(t, s)=p(s) where H(t, s) is the

Green function for the operator with the differential expression (1=p)D2 kD2 � I . Thus,
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p(s)

p(t)
fk(t)Ws(t) 0g 0 1� O

1

h

� �� �
� p(s)Ws(t) 1� O

1

h

� �� �
� ä(t ÿ s): (A:3)

Multiplying both parts of (A.3) by u(t) p(t)=p(s) and integrating we have�
(kW 0s ) 0u�

�
pWsu � u(s) 1� O

1

h

� �� �
: (A:4)

Taking the ®rst integral in (A.4) by parts twice completes the proof of the lemma. u

Proof of Lemma 2. Direct differentiation yields corresponding derivatives to be of the

form

[kW 0s ]1
0 �

1

h3
eÿhfÈ(1)ÿÈ(s)g X2

j�0

xj(1, s)h j ÿ eÿhfÈ(s)ÿÈ(0)g X2

j�0

xj(0, s)h j

0@ 1A, (A:5a)

[(kW 0s )9]1
0 �

1

h3
eÿhfÈ(1)ÿÈ(s)g X3

j�0

z j(1, s)h j ÿ eÿhfÈ(s)ÿÈ(0)g X3

j�0

z j(0, s)h j

0@ 1A, (A:5b)

where È(s) � � s

0
( p=k0)1=4, xj and z j are certain functions uniformly bounded with respect to

s and independent of n and h under assumptions (i) and (ii) of Section 2.

Choose ä. 0 such that

ä < min(ô1, 1ÿ ô2) inf
p

k0

� �1=4

:

Then

È(1)ÿÈ(s) �
�1

s

p

k0

� �1=4

> ä, È(s)ÿÈ(0) �
� s

0

p

k0

� �1=4

> ä:

So,

eÿhfÈ(1)ÿÈ(s)g < eÿäh, eÿhfÈ(s)ÿÈ(0)g < eÿäh

which together with (A.5) gives

j[(kW 0s )u9ÿ (KW 0s )9u]1
0j <

eÿäh

h3

X3

j�1

q1 j(s)h j

0@ 1A supjuj �
X2

j�1

q2 j(s)h j

0@ 1A supju9j
8<:

9=;,

where q1 j and q2 j are certain functions uniformly bounded with respect to s and independent

of n and h. Thus,

j[(kW 0s )u9ÿ (kW 0s )9u]1
0j < C1 eÿäh supjuj � supju9j

h

� �
,

where ä and C1 do not depend on s, n and h. u
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Proof of Lemma 3. Recall that Fn(0) � F(0) � 0 and Fn(1) � F(1) � 1. Thus, integrating

by parts we have�����1

0

Wsu d(Fn ÿ F)

���� � �����1

0

(Wsu)9(Fn ÿ F) dt

����
< á(n)

�1

0

jW 9suj �
�1

0

jWsu9j
 !

< á(n) supjuj
�1

0

jW 9sj � supju9j
�1

0

jWsj
 !

:

Proposition 2. There exist constants c1 and c2 independent of s and h such that

�1

0

jW 9sj < c1 h and

�1

0

jWsj < c2:

Proof of Proposition 2. From (2.8) the function Ws(t) is of the form

Ws(t) � hU1(t, s) exp ÿh

�max(s, t)

min(s, t)

U2(r) dr

 !

and, hence,

W 9s(t) � h exp ÿh

�max(s, t)

min(s, t)

U2(r) dr

 !
fP1(t, s)� hP2(t, s)g,

where jP1(t, s)j and jP2(t, s)j are bounded by some constant that does not depend on s and h

owing to the boundedness of all corresponding functions and their derivatives. Under

assumption (ii), U2(:) > â for some positive constant â. Then,

exp ÿh

�max(s, t)

min(s, t)

U2(r) dr

 !
< exp(ÿâhjt ÿ sj)

and, therefore,

jW 9sj < c0 h2 eÿâhj tÿsj:

So,
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�1

0

jW 9sj < c0 h2

�1

0

eÿâhj tÿsj dt

� c0 h2

� s

0

�
�1

s

 !

� c0 h2

âh
(eâh( tÿs)js0 ÿ eâh(sÿ t)j1s�

< c1 h:

Repeating the same arguments for jWsj we get the second inequality of Proposition 2 and the

rest of the proof of Lemma 3 follows immediately. u
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