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SUMMARY

A wide variety of scientific settings involve indirect noisy measurements where one faces
a linear inverse problem in the presence of noise. Primary interest is in some function f(t)
but data are accessible only about some linear transform corrupted by noise. The usual
linear methods for such inverse problems do not perform satisfactorily when f(t) is
spatially inhomogeneous. One existing nonlinear alternative is the wavelet-vaguelette
decomposition method, based on the expansion of the unknown/(t) in wavelet series. In
the vaguelette-wavelet decomposition method proposed here, the observed data are
expanded directly in wavelet series. The performances of various methods are compared
through exact risk calculations, in the context of the estimation of the derivative of a
function observed subject to noise. A result is proved demonstrating that, with a suitable
universal threshold somewhat larger than that used for standard denoising problems, both
the wavelet-based approaches have an ideal spatial adaptivity property.

Some key words: Exact risk analysis; Near-minima* estimation; Singular value decomposition; Spatially
adaptive estimation; Statistical linear inverse problem; Vaguelette; Wavelet

1. I N T R O D U C T I O N

Suppose we wish to estimate an unknown function f(i) but we can observe data only
about (Kf)(t), where K is some linear operator. Suppose also that the data are observed
at discrete points t{ and are corrupted by noise, so that the observed data y(tt) are

+ e(t,), (1)

where e(t) is a Gaussian white noise process. We use the term statistical linear inverse
problem for the problem of estimating / from noisy data y in the model (1). Many such
problems fall into the category of ill-posed problems, where, even in the absence of noise,
one cannot recover / numerically from Kf simply by inverting the transform K. Ill-posed
problems are usually treated by applying some linear regularisation procedure, often based
on a singular value decomposition; see Tikhonov & Arsenin (1977) for general theory and
O'Sullivan (1986) for a more specifically statistical discussion.

Turning to nonlinear methods, Donoho (1995) proposed the wavelet-vaguelette
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116 F. ABRAMOVICH AND B. W. SILVERMAN

decomposition, which works by expanding the function / in a wavelet series, constructing
a corresponding vaguelette series for Kf and then estimating the coefficients using a
suitable thresholding approach. As an alternative, we propose the use of a vaguelette-
wavelet decomposition where Kf is expanded in a wavelet series. The corresponding
wavelet coefficients of Kf are estimated by thresholding the empirical wavelet coefficients
of the data. Mapping them back into the vaguelette expansion in the original space yields
the vagxielette-wavelet decomposition estimator of/. Some important conceptual aspects
of vaguelette-wavelet decomposition are discussed in the conclusions in § 6.

We shall use as a test problem the estimation of the derivative of a function g. This fits
into the framework of (1) by setting K to be the integration operator and g = Kf. It is an
important statistical problem, in contexts such as growth curves, to make inferences about
growth rates, in economics, for example when estimating inflation rates from prices, and
elsewhere.

In our numerical study, the two wavelet-based methods yield similar results, generally
better than those obtained by a singular value decomposition approach. Interestingly, the
ideal threshold levels are somewhat larger than those appropriate for the estimation of
the directly observed function g = Kf. We study the theoretical grounds for these phen-
omena, and prove that both wavelet-based methods for linear inverse problems have an
ideal adaptivity property. The theory indicates the amount by which the thresholds for
function estimation from direct data should be inflated for inverse problems.

The paper is set out as follows. In § 2 we review the singular value decomposition and
wavelet-vaguelette decomposition approaches, providing the framework within which
the vaguelette-wavelet decomposition method is then defined and discussed. In § 3, exact
risk formulae are obtained for the various approaches, and these are used in § 4 to carry
out a comparison on several examples without any need for simulation. In § 5 and
the Appendix, the theoretical minimax properties of the estimators are explored. Some
concluding remarks are made in § 6.

2. APPROACHES TO STATISTICAL LINEAR INVERSE PROBLEMS

21. Singular value decompositions and Fourier series
The underlying idea of singular value decomposition methods is the use of a pseudo-

inverse operator (K^K)'1^, where K* is the adjoint operator to the operator K.
The unknown / is expanded in a series of eigenfunctions ej of the self-adjoint operator
K*Kas

ZTJ>eJ=ZcJeJ, (2)
J j

say, where yj are the eigenvalues of K*K and hj = Kej/\\Kej\\. We use the notation <., .>
for the standard inner product in L^. Ill-posed problems are characterised by the fact that
the eigenvalues yj tend to zero.

In the presence of noise in the data we can replace Kf in (2) by y and define
Cj = y]~1(y,hJyej. The truncated singular value decomposition estimator of/ is then
defined to be

M
>SVD _ V1 A

J M ~ L CJeJ>

for some truncation point M. Johnstone & Silverman (1990,1991) showed that a properly
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Wavelet approaches to inverse problems 117

chosen truncated singular value decomposition estimator is asymptotically the best esti-
mator, in a certain minimax sense, over classes of functions that display homogeneous
variation.

In singular value decomposition, the basis is denned entirely by the operator K and
ignores the specific physical nature of the problem under study. For example, the Fourier
basis that arises for stationary operators does not provide a parsimonious approximation
of signals which are smooth in some regions while having rapid local changes in others.
Thus, for such operators the use of singular value decomposition inherently restricts one
within the class of spatially homogeneous functions; see Donoho (1995) for further
discussion.

2-2. The wavelet-vaguelette decomposition
In response to these limitations, Donoho (1995) proposed the wavelet-vaguelette

decomposition method, which depends on expanding the function / as a wavelet series.
Wavelet series are generated by translations and dilations of a single fixed function i(/,
called the mother wavelet: if/jk(t) = 2jl2ij/(2jt — k) (j, k e Z). Examples of mother wavelets
can be found in Chui (1992) and Daubechies (1992). Wavelets can be easily calculated,
are localised in both the time and frequency domains, and allow parsimonious represen-
tation of a wide class of functions. Choosing the mother wavelet with appropriate regu-
larity properties, one can generate not only an orthonormal basis in L2(R) but also
unconditional bases in a wide range of more specific spaces corresponding to varying
degrees and kinds of smoothness; see § 5 below for more detailed discussion.

In the wavelet-vaguelette decomposition approach, the unknown function / is rep-
resented in terms of a wavelet expansion

Let x¥Jk = Kil/jk. The crucial point of wavelet-vaguelette decomposition is that for some
operators K there exist constants /J^ such that the set of scaled functions v^ = ^ / /J / t
form a Riesz basis in L2 norm; that is there exist two constants 0 < A ^ B < oo such that

j k j k

for all square summable sequences {c^}. The functions vJk are called vaguelettes.
Obviously, only special operators K satisfy (3). For example, the condition holds for

homogeneous operators, which, for all t0, satisfy

for some constant a, called the index of the operator. Examples of homogeneous operators
include integration, fractional integration and, in the two-dimensional case with an appro-
priate coordinate system, the Radon transform. For homogeneous operators / ^ = Cp2~Ja

and the corresponding vaguelettes vjk are translations and dilations of a single mother
function, but are not mutually orthogonal. The property (3) also holds for various con-
volution operators; see Donoho (1995). We mainly restrict attention to operators K
satisfying (3).

Provided the wavelet basis ij/Jk is chosen appropriately, any function g in the range of
K can be expanded in a vaguelette series as

£=££<£>";*>;*>
j k
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118 F. ABRAMOVICH AND B. W. SILVERMAN

where (u^) is a dual vaguelette basis satisfying K*ujk = fijkil/jk. The dual bases (u^) and
(vJk) are biorthogonal, that is (vJk, u,m> = 8^8^. Thus, if we observed the signal Kf without
noise, we could expand it in a vaguelette series as

J k

and then recover the original function / as

j k j k

where tyJk = u^/fi^ and, hence, K*tyjk = \l/ik.
In the case of noisy data, we expand the observed signal y in terms of vaguelettes, with

coefficients h^ = <y, ̂  > which satisfy

bji = bjk + wJk, (5)

where bjk = (Kf, ^Jky are the noiseless vaguelette coefficients from (4) and tv^ = <e, T^)
are the vaguelette decomposition of a white noise. Since the vaguelettes *?^ are
not orthonormal, the coefficients w^ will not be independent or have equal variances, in
general, but the rescaled coefficients defined by fy = bJk/\\

1?!jk\\ will all have the same
variance OQ.

Extraction of the important £% is then based on the idea that only the 'large' |fe^|
contribute to the real signal, and can be naturally performed by thresholding, applying
the soft threshold function

8x(x) = sign(x)(\x\-X)+

or the hard threshold function

\o otherwise,

for some threshold value X 5* 0. Mapping the thresholded coefficients back into the wavelet
expansion in the original space yields the resulting wavelet-vaguelette decomposition
e s t i m a t o r / ™

j k

The computations will be easier for homogeneous operators, because the y?Jk will
be multiples of translations and dilations of a single mother vaguelette 'I'oo with tyJk =
2J'2JI2$'00(2

Jt - k). The norms || *¥# || are equal within each level j and, therefore, although
the variances of the vaguelette coefficients £>jk on the jth level increase like 22Ja as a direct
consequence of the ill-posedness of the inverse problem, within each given level j they all
have the same variance. Therefore (6) is exactly equivalent to the level-dependent thresh-
olding of the coefficients h^ using thresholds X} proportional to 2"j. Kolaczyk (1996)
considers in detail the wavelet-vaguelette decomposition algorithms for the Radon trans-
form operator which arises, for example, in positron emission tomography, a problem
also considered by Johnstone & Silverman (1990).

The wavelet-vaguelette decomposition estimator, provided with optimally chosen
threshold X, has attractive theoretical properties, especially for spatially inhomogeneous
functions / ; for details see § 5 below.
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Wavelet approaches to inverse problems 119

2-3. The vaguelette-wavelet decomposition
A natural alternative to wavelet-vaguelette decomposition is the vaguelette-wavelet

decomposition, which expands Kf rather than / in a wavelet series: threshold the wavelet
coefficients of the observed data y to obtain an estimate of the wavelet expansion of Kf
and then map back by K'1 to obtain an estimate of/ in terms of vaguelette series.

Suppose we have a wavelet expansion

*/=EEMo*. (7)
j k

where i/^ are wavelets constructed to ensure that i/^ is in the range of K for all j and k,
and dp = (Kf, </^>. Note that, although for convenience we keep the same notation for
wavelets, the \\i^ are now wavelets in the range of K and generally will be different from
those in the original domain used in § 2-2. The same will be true for the vaguelettes
introduced below. Assume the existence of constants fi^ such that (3) holds for vJk =
K~1i{'jk/fljk- If -K is homogeneous of index a then the f}Jk will be proportional to 2aJ. The
function / is then recovered from (7) by expanding in the vaguelette series

/ = E Z <Kf, </0*>iW = E E <Kf, ^ * > ^ , (8)
j k J k

where x¥jk = K~1\li}k.
As in wavelet-vaguelette decomposition the wavelet coefficients of a noisy signal y,

a*jk = (y, ipjk}, are contaminated by noise, so that a*Jk = dJk + wJk, where wJk = <£, i/^> are
the coefficients of the wavelet decomposition of a white noise, and therefore are themselves
a white noise; note that this is not the case for the corresponding vaguelette coefficients
ftp in (5) used in wavelet-vaguelette decomposition. Therefore the ^ need to be denoised,
for example by thresholding. The resulting vaguelette-wavelet decomposition estimator
/ will then be

/ * » * * . (9)

where Sx(.) is a soft or hard thresholding operator.
We can of course consider the vaguelette-wavelet decomposition approach as a plug-in

estimator, in that we find a wavelet-based estimator of Kf and then apply K'1 to estimate
/itself. The way in which the wavelets have been specified means that the operator K~l

can be applied to each wavelet individually. This allows the obvious extension of the
vaguelette-wavelet decomposition approach to more general linear operators K; as long
as the individual wavelets are in the range of K, the K'1^^ can be found either analytically
or by stable numerical methods, and therefore an estimate of Kf that has been found by
a wavelet thresholding approach can be inverted term by term to give an estimate of/.
The fact that wavelet thresholding has been used means that the estimate of Kf will in
any case be a linear combination of only a small number of wavelets ipJk, thus contributing
to the numerical stability of the procedure. Furthermore, in cases where the K " 1 ^ have
to be found individually by a numerical technique, it is only necessary to find those K'1^^
that correspond to nonzero coefficients.

2-4. Discrete wavelet and vaguelette transforms
In practice, given the discrete data, we implement both approaches making use of a

discrete wavelet or vaguelette transform to find the corresponding empirical wavelet
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120 F. ABRAMOVICH AND B. W. SILVERMAN

or vaguelette coefficients. For the discrete case, all inner products are redefined in the
/2-sense, so that </,g) =f1g1 + ... +fngn.

Suppose the original data are observed at points f, = i/n, where n — 2J for some J. Let
y be the vector of observations y(tt) in the model (1). The discrete wavelet transform,
as described, for example, by Mallat (1989), yields empirical wavelet coefficients 2.^ for
j = O,...,J — \ and k = 0 , . . . , 2J — 1, given by <J = Wy. Here W is an orthogonal matrix
satisfying yJnWJki—il/jk(i/ri) = 2JI2il/(2H/n — k). Both the transform and its inverse require
only O(n) operations. Several standard implementations are available, for example the
WaveThresh package described by Nason & Silverman (1994). Note that, for any function
/ , the coefficients produced by a discrete wavelet transform of the sequence f{tt) are
approximately *Jn times the corresponding continuous wavelet coefficients </, i/^>.

By analogy we can define the discrete vaguelette transform of the data y as b = Vy,
where yJnVikA = "^(i/n). The matrix V is no longer an orthogonal matrix, and varies for
different K, so performing the discrete vaguelette transform and its inverse may be compu-
tationally expensive in the general case. Since there will be no zero value in the vaguelette
expansion of y, in general, the wavelet-vaguelette decomposition method may require the
whole matrix V, implicitly or explicitly. For homogeneous operators, Kolaczyk (1996)
provides efficient algorithms for the discrete vaguelette transform and its inverse, each
requiring O(n log2^) operations.

The following diagram summarises the wavelet-vaguelette decomposition and vague-
lette-wavelet decomposition approaches in practice, using the abbreviations DWT and
DVT for discrete wavelet and vaguelette transforms respectively, and IDWT and IDVT for
their inverses:

, , . . DVT f re«cale *n thre»hold . .fn. IDWT ->
wavelet-vaguelette decomposition: y > b • o * ox(b") •/,

. , , . . DWT Athrahold . ,A , IDVT \
vaguelette-wavelet decomposition: y • a > ox(d) •/.

The inverse discrete vaguelette transform step may be carried out by performing an expan-
sion in terms of the functions 4 ^ = K~14'jk, or by performing an inverse discrete wavelet
transform and then applying X" 1 to the result.

3. DERIVATION OF AVERAGE MEAN SQUARED ERRORS

A natural measure of the global performance of an estimator / of an unknown function
/ i s the mean integrated squared error £{J ( / — f)2}. In order to compare the performance
of the various approaches, we studied the discrete version of this error measure, the average
mean squared error, defined as

In this section we derive and use exact formulae for the mean squared error in the individ-
ual thresholded vaguelette and wavelet coefficients in (6) and (9) respectively.

The discrete vaguelette transform of the observed y in the wavelet-vaguelette decompo-
sition, followed by appropriate rescaling, yields vaguelette coefficients b0^ ~N(b<jk, a2).
Straightforward calculations, given as (A21) and (A2-2) of Donoho & Johnstone (1994)
for the special case a = 1, give the following formulae for the mean squared error of the
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Wavelet approaches to inverse problems 121

individual vaguelette coefficients:

El{dx(b%) - b%}2l = (b%)2 - {(b%)2 - a2 - X2} [&{0l - b%)/a} + 0{(A + b%)la}-]

-(X + b%)am-b%yo}-(l-b%)om + b%)/o} (10)

for soft thresholding, and

El{5Ab%)-b%}^ = (b%)2- {(b%)2-o2}tf>{{X-b%)/a} + ${(A + b%)lay\

+ {X- b%)am ~ b%)la) + (X + b%)om + b%)/a} (11)

for hard thresholding, where <f> and 0 are the standard normal probability density and
cumulative distribution functions, and $ = 1 — 0.

Since the wavelet basis (i/^) is orthonormal, even though the fej* a r e not independent,
the average mean squared error of the wavelet-vaguelette decomposition estimator is
given by

AMSE(/rD) = n - 1 I Z l l ^ H 2 £ [ { ^ ) - ^ } 2 ] , (12)
J k

where E[_{Sx(S°k) — b%}22 is given by (10) or (11) as appropriate.
The discrete wavelet transform of y used in vaguelette-wavelet decomposition yields

noisy wavelet coefficients ^ ~ i\"(dj1k, a
2). The mean squared error E\_{5x0jk) — djk}

2~\
of individual thresholded coefficients is given by essentially the same formulae as (10) and
(11), substituting dJk for b°k throughout. Note, however, that the wavelet coefficients cljk

are independent because of the orthogonality of the discrete wavelet transform, while the
vaguelette coefficients S^ are not.

Using the fact that the ^ are independent, we have

AMSE
* - i

j.k

A 2 * « > (13)

and by straightforward calculations

dJk)/a} -

-dJk= -

for the soft and hard thresholding rules respectively.
From (12) and (13) we can find, by numerical minimisation over A, ideal opti-

mum thresholds that minimise the average mean squared errors for particular wavelet-
vaguelette decomposition and vaguelette-wavelet decomposition estimators of a given
function / with operator K.

To study the efficiency of the wavelet methods we also compare their average mean
squared errors with that of truncated singular value decomposition as described in § 21.
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122 F. ABRAMOVICH AND B. W. SILVERMAN

Since the ei are orthogonal and c} ~ N(cj, y"2^2),

)• (14)

For given K and / we can then use a search to find the value of M that minimises (14).

4. COMPARISON OF METHODS

41. General approach
To compare the methods, we consider the estimation of the derivative of a function.

From (12) and (13) we find ideal optimal wavelet-vaguelette decomposition and vague-
lette-wavelet decomposition estimators in terms of average mean squared error for various
test functions. In addition, we compare them with the optimal truncated singular value
decomposition estimator.

4-2. Wavelet decomposition approaches for estimating a derivative
Suppose that / is a function of interest, defined on the interval [0,1] . Let / be the

w-vector of values f(i/n), for i = 1 , . . . , n, and Kf be the n-vector defined by

(*/),= I/(;/")•
Suppose we observe a vector y = (y 1 ; . . . , yn)

T of independent normally distributed obser-
vations with means {Kf)t and variance a2. Define A to be the finite difference operator
(Ag)i = g{(i+ 1)/"} —g{i/n). In order to avoid complications caused by boundary effects,
we shall consider functions for which /(0) = / ( l ) and / = w ~ 1 E / ( is zero, and use the
periodic versions of the discrete wavelet and vaguelette transforms.

First we consider wavelet-vaguelette decomposition. To derive the vaguelette vectors
^ji, it is easy to verify that (-K*"?^), = \J/Jk>i implies that ^jki = — (Ai/^t)(. From (6) we then
have

J k

To perform the vaguelette-wavelet decomposition note that (K~1f)i = (Af)i-l and the
vaguelette vectors corresponding to the expansion (8) are xVjk,t = {K-~1\l/jk)i = {
The resulting vaguelette—wavelet decomposition estimator is

J k

where the wavelet coefficients (y,ipJk} are obtained by a discrete wavelet transform of
the data.

4-3. Examples
Our four test functions are based on those used by Donoho & Johnstone (1995). In

each case, n was set to 512, so the various wavelet transforms have nine levels. The actual
test vector/was defined by standardising the vector of values/0 of the Donoho-Johnstone
function t o / = ( / ° - / 0 ) / | | / 0 - / ° | | , so that 7( = 0 and E / ? = 1 in each case.

The discrete wavelet or vaguelette transform yields n — 1 wavelet or vaguelette
coefficients d^ or b^ for j = 0 , . . . , J — 1 and k = 0 , . . . , 2j: — 1, together with a scaling
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Wavelet approaches to inverse problems 123

function coefficient that corresponds in the periodic case to the overall mean of the values
of the function under consideration. Since the shift transformation results in the condition
/ = 0, this coefficient was not considered in the average mean squared error; this corre-
sponds to an estimator transformed to satisfy the condition / = 0.

For each of the test functions and for a range of signal-to-noise ratios, we used our
exact risk formulae to find the optimal values, in terms of average mean squared error,
of the thresholds X for the wavelet-vaguelette decomposition and vaguelette-wavelet
decomposition estimators. Soft threshold functions were used throughout. Since we are
estimating the derivative of the directly observed function Kf, the root signal-to-noise
ratio was taken to be the ratio of the root-mean-square of the function values / to the
population standard deviation a^Jl of the differenced noise Ae(t,). Note that b°jk =
{Kf, fyjk) = </, t/^>, so the b% in (12) can be calculated simply by performing a discrete
wavelet transform of/.

Since integration increases the order of a function's smoothness by one, the regularity
of the mother wavelet in the vaguelette-wavelet decomposition should be larger by one
than that in the wavelet-vaguelette decomposition for a proper comparison. The wavelets
used were the compactly supported extremal phase wavelets as defined in § 6.4 of
Daubechies (1992), writing Dm for the wavelet with N = m in Daubechies' notation.
These wavelets have m vanishing moments. The mother wavelets D4 and D8 were used
in the wavelet-vaguelette decomposition and D5 and D9 in the vaguelette-wavelet
decomposition.

The various average mean squared errors based on the exact risk formulae are given
in Table 1, which also contains the minimal average mean squared error for a truncated
singular value decomposition estimator with optimally chosen cut-off point Af. Table 2
gives the optimal values of the thresholds in terms of a, each found by a grid search at
grid interval 005a, where a is the standard deviation of the noise, as well as the ideal
value of the threshold for the estimation of Kf itself by a wavelet thresholding method,
for the wavelet D5; the results for D9 were very similar. All computations were done in
the statistical package S-Plus using the WaveThresh software (Nason & Silverman, 1994),
available from the StatLib archive.

Table 1. Exact ideal average mean squared error for the estimation of various test functions
using the singular value decomposition (SVD), wavelet-vaguelette decomposition (WVD),

and vaguelette-wavelet decomposition (VWD) approaches, for various levels of the root
signal-to-noise ratio (RSNR) and wavelet Dm

Ideal average mean squared error
WVD VWD WVD VWD

RSNR SVD (D4) (D3) (D8) (£>,)

Bumps
10 O00999 0-00466 O00478 0-00529 O-OO53O

5 0-03946 0-01598 001662 0-01855 O01870
2 0-12337 0-07369 007466 008411 008576
1 021752 019462 019165 021340 020711

HeaviSine
10 000099 000074 000063 000080 000071
5 000146 000159 000137 000156 000134
2 000238 000311 000301 000307 000262
1 000340 000481 000465 000453 000443

Ideal average mean squared error
WVD VWD WVD VWD

SVD (D4) (£>5) (D8) (D9)

Blocks
000947 0-00368 000341 000436 000394
001855 0-01143 001118 001322 001219
003475 003809 003732 003943 003705
005223 006754 006686 006798 006441

Doppler
000532 000248 000260 000231 000216
001070 O00678 000738 000693 000668
002224 002222 002091 001913 002029
003636 004629 003942 004092 003975
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124 F. ABRAMOVICH AND B. W. SILVERMAN

Table 2. Optimal thresholds, in terms of the standard deviation a of the
noise, for various test functions using the wavelet-vaguelette decomposition
(WVD), and vaguelette-wavelet decomposition (VWD) approaches, for vari-
ous levels of the root signal-to-noise ratio (RSNR). The last column gives
the optimal threshold for the estimation of the integral of f rather than f

itself, using the D5 wavelet

RSNR

10
5
2
1

10
5
2
1

WVD

(D4)

0-95
105
1-25
1-55

2-00
2-35
2-85
3-15

Optimal thresholds
VWD

(D5)

1-00
1-05
1-35
1-65

2-40
2-85
3-20
3-35

WVD

(Ds)

Bumps
0-85
0-95
1-20
1-55

HeaviSine
215
2-35
2-90
3-20

VWD

(D9)

0-90
100
1-25
1-60

210
2-45
2-90
315

Kf

0-60
0-65
0-75
O90

115
1-25
1-35
1-45

WVD

(D4)

115
1-30
1-75
2-20

1-35
1-60
1-95
2-25

Optimal thresholds
VWD

(Ds)

1-20
1-35
1-80
2-25

1-35
1-55
205
2-40

WVD

(D,)

Blocks
100
1-20
1-75
2-20

Doppler
1-30
1-60
2-05
2-25

VWD

(D9)

1-15
1-30
1-80
2-25

1-45
1-60
2-05
2-35

Kf

0-70
0-80
0-90
1-00

0-90
0-95
110
1-20

4-4. Analysis of the results
Table 1 exhibits no strong difference in performance between the two wavelet methods,

nor between the different wavelet functions considered. Both wavelet-based methods out-
perform the singular value decomposition method, especially at the larger signal-to-noise
ratios. The Blocks and Doppler functions have a reasonable amount of signal at low
frequencies, which may explain why it is only at higher signal-to-noise ratios that the
wavelet-based methods begin to show substantial improvements, and also why the relative
advantage of a nonlinear method increases more rapidly with the signal-to-noise ratio.
The relatively favourable performance of singular value decomposition for the HeaviSine
function may be accounted for by its reasonable approximation by a limited length Fourier
expansion.

Since the signal-to-noise ratio may be considered as a surrogate for sample size, we can
examine the convergence for different methods by studying their performance as a function
of signal-to-noise ratio. Table 1 indicates that the rates of convergence for the wavelet-
based methods are much faster than that of the singular value decomposition approach,
especially for the Blocks and Doppler functions. The theoretical grounds for this phenom-
enon are given in § 5.

Table 2 indicates that to a first approximation the same thresholds should be used for
either wavelet-based approach. The best threshold depends substantially on the unknown
function, so universal thresholding is not likely to be always the best choice in practice.
The variation of the threshold with the signal-to-noise ratio is more dramatic in the case
of the more inhomogeneous Blocks and Doppler functions. Because of the overall greater
importance of high frequency effects, smaller thresholds were needed for Bumps and
Blocks. Finally, note that much smaller thresholds were appropriate for the estimation of
Kf than of / . In terms of the vaguelette-wavelet decomposition method as a plug-in
approach, this indicates that the estimator of Kf to be plugged in is more strongly smoothed
than the best estimate of Kf itself.
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5. THEORETICAL RESULTS

5-1. Preamble, notation and assumptions
In this section we consider the theoretical aspects of the wavelet-based estimators

more rigorously, establish the asymptotic near-optimality, in the minimax sense, of the
vaguelette-wavelet decomposition estimator and compare with analogous results for
wavelet-vaguelette decomposition.

Consider the original model (1) and suppose that the operator K acts on some space
B\ , from the Besov scale of functions of a real variable. This includes Sobolev spaces H'
(JB2J2)> Holder spaces C (Bt>tOO), spaces of functions of bounded variation (p= 1, s= 1)
and many others; see Meyer (1992) or Donoho & Johnstone (1998) for rigorous definitions
and details. The parameter s measures the number of derivatives whose existence is under-
stood in an Lp-sense, while q provides some further flexibility. The fundamental property
of wavelets is that, given the mother wavelet of regularity T, the corresponding wavelet
basis is an unconditional basis within the whole range of Besov scale with s < T. This
allows a parsimonious wavelet expansion for a wide set of different functions.

Define

r = (s + a + i)~1s. (15)

Let s' = s + \— 1/p, and assume that the parameters are such that s>s 0 , where
1-a-^). (16)

We shall assume that the function Kf is observed at regular intervals with independent
iV(0, a2) noise as described in § 4, with a2 known and n = 2J for some integer J, and the
same periodicity assumptions. We measure estimation accuracy by the standard risk func-
tion R(f, f) = E{ J ( / - ff }•

5-2. Minimax risks for particular Besov balls
Within the structure defined in § 51, let R* be the minimax risk for the estimation of

/ within a particular Besov ball BJ,,(C0) with radius Co. The result of Donoho (1995)
shows that R* converges to zero at exactly rate n~r as n tends to infinity, with r defined
as in (15), and that this rate of estimation is obtained by a suitable wavelet estimator,
necessarily tuned to the particular Besov space. On the other hand, for p < 2 the corre-
sponding rate of convergence n~p for the minimax linear estimator has exponent p =
(s' + a + \)~ls', which is strictly less than r. Thus, neither the truncated singular value
decomposition estimator nor any other linear estimator can attain the optimal perform-
ance within Besov spaces with p < 2, and this explains the inferior performance of singular
value decomposition relative to wavelet-vaguelette decomposition for spatially inhomo-
geneous functions, especially for large values of the signal-to-noise ratio.

We shall call an estimator / near-minimax in B*Piq(C0) if up to a logarithmic factor it
achieves the optimal rate of convergence, i.e. if, for all sufficiently large n,

sup R(},f)*ZC(logn)R;

for some constant C. Under suitable conditions, it is possible to construct estimators that
are simultaneously near-minimax over a wide range of Besov scales. Such estimators may
be considered as being spatially adaptive to the unknown smoothness. The logarithmic
factor that the definition of near-minimaxity includes is a price for such spatial adaptivity
that cannot be avoided; see also Lepskii (1990) and Goldenshluger & Nemirovski (1997).
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126 F. ABRAMOVICH AND B. W. SILVERMAN

5-3. Universal thresholding for linear inverse problems
Assume the mother wavelet \p has regularity x > s. We shall consider the use of soft

threshold estimators with threshold

}. (17)

With this threshold, both the wavelet approaches lead to spatially adaptive near-minimax
estimators.

The threshold (17) can be considered as a universal threshold for the estimation of/
from observations of Kf. It is higher by a factor of yj(\ + 2a) than the usual universal
threshold used for the estimation of a function itself. Universal thresholding is known to
be excessively conservative in general: note that the thresholds in Table 2 for the estimation
of Kf are substantially less than the value a^J(2 log 512) = 3-53<x. However, the best thresh-
olds for the estimation of/ are generally between 1-5 and 2 times their value for Kf, in
line with the ratio of ^/3 between the universal thresholds.

We can now state the main theorem. The proof is given in the Appendix.

THEOREM 1. For some fixed x suppose that the wavelet-vaguelette decomposition esti-
mator is constructed using wavelets of regularity x and that the vaguelette-wavelet decompo-
sition estimator is constructed using wavelets in the expansion (7) of regularity T + a. With
threshold (17), both the wavelet-vaguelette decomposition and vaguelette-wavelet decompo-
sition estimators of f are then simultaneously near-minimax over all BJ,9(C0) with p,q~^l,
Co > 0 and s satisfying s0 < s < x, where s0 is defined in (16).

By considering the zero function, which is a member of all the function classes con-
sidered, it can be shown that the Theorem will not hold for any smaller value of the
threshold Xn. Indeed if Xn < N/(4a logn), the estimator of/ will not even be consistent in
mean integrated square.

6. CONCLUDING REMARKS

Though the theoretical basis for the two methods is apparently very similar, deeper
examination of the results reveals some interesting differences. The thresholding of vague-
lette coefficients in wavelet-vaguelette decomposition is performed within coloured noise,
while in vaguelette-wavelet decomposition the coefficients are independent. The results of
Johnstone & Silverman (1997) imply that the behaviour attained by these estimators is
within a constant of the best possible. The constant is affected by the dependence between
the coefficients, and the theory indicates that, of the two wavelet-based estimators, the
vaguelette-wavelet decomposition will be closer to being uniformly minimax, if we measure
performance only in terms of mean squared error in coefficient space. However, in the
case of vaguelette-wavelet decomposition, the non-orthogonality of the vaguelette basis
allows an extra factor in the bounding constant when we consider the integrated squared
error of the functions themselves.

To conclude, our proposed vaguelette-wavelet decomposition approach has two features
that are conceptually attractive. First, for independent errors the thresholding is performed
within white noise. Thresholding treats every coefficient separately, and, while arguments
such as those presented by Johnstone & Silverman (1997) show that thresholding corre-
lated coefficients need not damage the order of magnitude of the estimation error, it is
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nevertheless clearly preferable for the individual thresholded quantities actually to be
independent of one another. Secondly, the plug-in characterisation of vaguelette-wavelet
decomposition makes it conceptually straightforward, and opens the possibility of using
the approach for a wide range of linear inverse problems, though the computational details
may have to be worked out in individual cases. It is certainly interesting that the use of
a simple plug-in estimate gives performance as good as the conceptually somewhat more
involved wavelet-vaguelette decomposition method, though further research is needed to
understand in what situations and problems the wavelet-vaguelette decomposition or the
vaguelette-wavelet decomposition is to be preferred.
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APPENDIX

Proof of Theorem 1
Setting up the wavelet-vaguelette decomposition case in sequence space. Assume that the wavelets

i/fjn have regularity T. Write / = HjHk Qjk4'jk> where 0^ = </, i/^> are continuous wavelet coeffici-
ents. We modify our notation slightly to draw connections between the two approaches and to
avoid confusion about the ^n factor introduced by the discrete wavelet transform. The condition
that a set & has bounded Wp, norm is equivalent to a condition on the coefficients 0Jk of the form

fE;io2^l |0j l l^C« forq<oo,

|0,||p<C foM = oo, .

where each 9j is the 2-'-vector with elements 9jk; see, for example, Meyer (1992).
Following the standard wavelet theory approach set out in Johnstone & Silverman (1997),

for example, we consider the estimation problem within a sequence space context, and assume
that we have observations X^ ~ N(9Jk, aj) for j = O,...,J—l and k = 0 , . . . , 2J — 1, where
erf = a^l2*1. By assuming, without loss of generality, that the constant Cp as denned in § 2-2 is equal
to 1, we have o% = c^/n. Note that the observations XJk are not in general independent. The estimator
of/ is obtained by setting

« , . ( W for'<J« (A2)
* \0 for;>J.

By the orthogonality of the wavelet basis,

\(f-ff=\\0-O\\l= tl^Jk-Ojt?-
J 7 = 0 k

The vaguelette-wavelet decomposition case in sequence space. This time we have / =
HjTdk0JkvJk, where the v^ are non-orthogonal vaguelettes and the 9^ are continuous vaguelette
coefficients. The available observations and the definition of the estimator 6 are exactly as above,
only in this case the observations X^ are independent
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Under the assumption that K is a homogeneous operator of index a > 0, the image of any Besov
space B],^ under K is another Besov space B1^". Since we have assumed that the wavelets ip^ in
the expansion (7) are of regularity z> s + a, the function Kf will be in B^" if and only if its wavelet
coefficients <K/, i/^> = P^O^ satisfy condition (Al) with s' replaced by s' + a. Since, without loss
of generality, the coefficients / ^ are equal to 2*", the coefficients 8^ will satisfy exactly the same
sequence space condition for / in BJ_, as if the v^ had been orthogonal wavelets of suitable
regularity.

Finally, by the Riesz basis property (3), error as measured in terms of || 9 — 9 \\l will be equivalent
in order of magnitude, though not in this case necessarily equal, to the integrated squared error
of/

The maximum risk of the sequence space problem. The above discussion shows that, whether one
is considering the wavelet-vaguelette decomposition or the vaguelette-wavelet decomposition case,
the proof can be completed by bounding the risk E\\9 — 9\\2 over 9 satisfying (Al), with the
estimator § being defined as in (A2) on the basis of observations XJk ~ N(9Jk, a1), where
aj = n~lo222aJ. Without loss of generality we will assume that a2=l.

An argument given in §9.3 of Johnstone & Silverman (1997) shows that the tail sum

l-9jt?=tl.0% (A3)
J-J k J=J k

is Oin'21) if p ^ 2, and 0(n~2M) if p < 2. In either case, the definitions and conditions of Theorem 1
ensure that the sum is o(n~r) as n-> oo.

The bound given by Donoho & Johnstone (1994) for the mean squared error of a single coefficient
implies that, for j < J.

-Bjtf^ {1+2(1+ 2a) log n}{n-(1+2a)a? + min(<^, a?)},

so that, since the sum (A3) for j ^ J is o(n~r),

E\\9-
j"0 J-0 k

< {1 + 2(1 + 2a) logn}{iT1(21+2 ' - I ) - 1 + S2} + o(n"r), (A4)

where we define S2 = YJjZo £* mm(02*» CTo22<*-').
To obtain a bound for S2, we extend the argument of the main part of § 9.3 of Johnstone &

Silverman (1997), which shows that for 9 in &
J-I

where

Jmin(m^2, cp(52"p) i fp<2 ,

Define C by 2c = (Cn1/2)1/(*'+a+1/'1). Then for ; < { the summands in (A5) are proportional to
2<i+2aW) a geometrically increasing sequence. For j ^ C the summands are proportional to 2~2jJ if
p*s2 and 2~Ua'~(2~p)a)}J if p<2. In both cases the conditions of the theorem ensure that the
sequence is geometrically decreasing. Hence, uniformly for all 9 in !F, S2 is bounded by a constant
multiple of 2(1+2"Koo. This is proportional to n~T, since

s' + a + p ' 1

by definition. Substituting back into (A4) completes the proof of Theorem 1.
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