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SUMMARY

We consider estimating a sparse group of sparse normal mean vectors, based on penalized
likelihood estimation with complexity penalties on the number of nonzero mean vectors and
the numbers of their significant components, which can be performed by a fast algorithm. The
resulting estimators are developed within a Bayesian framework and can be viewed as maximum
a posteriori estimators. We establish their adaptive minimaxity over a wide range of sparse and
dense settings. A simulation study demonstrates the efficiency of the proposed approach, which
successfully competes with the sparse group lasso estimator.
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1. INTRODUCTION

Suppose we observe m independent n-dimensional Gaussian vectors y1, . . . , ym with inde-
pendent components and common variance:

y j =μ j + ε j ( j = 1, . . . ,m), (1)

where ε j ∼Nn(0, σ 2
n In) and are independent. The variance σ 2

n > 0, which may depend on n, is
assumed to be known, and the goal is to estimate the unknown mean vectors μ1, . . . , μm .

The key extra assumption on (1) is sparsity both within and between vectors. Hereafter we will
refer to them as within- and between-sparsity for brevity. More specifically, between-sparsity
assumes that some of the vectors μ j are identically zero vectors and the entire information in the
noisy data is contained only in a small fraction of them, while within-sparsity means that even
within nonzero vectors μ j , most of their components are zero or at least negligible. Neither the
indices of nonzero vectors μ j nor the locations of their significant components are known in
advance.

Such a model appears in a variety of statistical applications.

Example 1. Consider a regression model yi = f (x1i , . . . , xmi )+ εi (i = 1, . . . , n), where
f : R

m → R is the unknown regression function assumed to belong to some class of functions,
e.g., Hólder, Sobolev or Besov classes, and the εi are independent N (0, σ 2

n ) variates. Estimat-
ing f in such a general set-up suffers from a severe curse of dimensionality, where typically the
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356 F. ABRAMOVICH AND V. GRINSHTEIN

sample size n should grow exponentially with the dimension m to achieve consistent estimation.
It is then essential to place extra restrictions on the complexity of f . One of the most common
approaches is to consider the additive models, where f (x1, . . . , xm)= f1(x1)+ · · · + fm(xm)

and each component f j lies in some smoothness class. In addition, similar to sparse linear
regression models, it is often reasonable to assume that only some of the predictors among the
x1, . . . , xm are really significant, while the impact of others is negligible. Such sparse addi-
tive models are especially relevant for m ∼ n and m � n set-ups and have been considered in
Lin & Zhang (2006), Meier et al. (2009), Ravikumer et al. (2009) and Raksutti et al. (2012).

Expand each f j into univariate orthonormal series (ψi j ) as
∑
μi jψi j (x j ), where μi j =∫

f j (x j )ψi j (x j ) dx j . The original nonparametric additive model is then transformed into the
equivalent problem (1) of estimating vectors of corresponding coefficients μ1, . . . , μm within
Gaussian noise, where for sparse additive models, most of the vectors μ j are zero. Moreover, for
properly chosen bases (ψi j ), e.g., Fourier series for Sobolev, or wavelets for more general Besov
classes, the nonzero μ j will also be sparse.

Example 2. In time-course microarray experiments the data consist of measurements of dif-
ferences in the expression levels between treated and control samples of m genes recorded at
different times. A record on the j th gene at time-point ti is modelled as a measurement of an
unknown expression profile function f j (t) at time ti , corrupted by Gaussian noise. The expres-
sions of most genes are the same in both groups, that is, f j ≡ 0, and the goal is to identify the
differentially expressed genes and estimate the corresponding profile functions f j . Similarly to
the previous example, each f j is commonly expanded into some parsimonious orthonormal basis,
e.g., Legendre polynomials, harmonic functions or wavelets, as f j (t)=

∑
i μi jψi j (t), and in the

coefficient domain the functional model becomes

yi j =μi j + zi j ( j = 1, . . . ,m; i = 1, . . . , n),

where the yi j are empirical coefficients of the data on the j th gene and the zi j are Gaussian
variates (see, e.g., Angelini et al., 2007). For most genes, μ j = 0, while due to the parsimony of
the chosen basis, for differentially expressed genes, the μ j will still have a sparse representation.

To estimate μ1, . . . , μm in (1) under the assumptions of between- and within-sparsity we pro-
ceed as follows. From Donoho & Johnstone (1994a, b), it is known that the optimal strategy for
estimating a single sparse vectorμ j from y j is thresholding. Various threshold estimators μ̂ j can
be considered as penalized likelihood estimators, where

μ̂ j = arg min
μ̃ j ∈Rn

‖y j − μ̃ j‖2
2 + P j (μ̃ j ),

corresponding to different choices of penalties P j (μ̃). In particular, the l1 penalty P j (μ̃ j )=
λ‖μ̃ j‖1 leads to soft thresholding of components of μ̃ j with the constant threshold λ/2 that
coincides with the lasso estimator of Tibshirani (1996). Wider classes of penalties on the
magnitudes of components μ̃i j are discussed in Antoniadis & Fan (2001). In this paper we
consider l0 or complexity penalties P j (‖μ̃ j‖0) on the number of nonzero components μ̃i j ,
where ‖μ̃ j‖0 = #{i : μ̃i j |= 0}, which yield hard thresholding rules. In the simplest case, where
P j (‖μ̃ j‖0)= λ‖μ̃ j‖0, the resulting constant threshold is

√
λ. More general complexity penalties

were studied in Birgé & Massart (2001), Abramovich et al. (2007, 2010) and Wu & Zhou (2013).
Penalizing each μ̃ j separately, however, ignores the between-sparsity, where it is assumed

that most of the μ j are identically zero and should be estimated by μ̂ j = 0. Thus, simultaneous
estimation of all m mean vectors in model (1) should involve an additional penalty P0(·) on the
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Estimation of sparse vectors 357

number of nonzero μ̂ j . The estimators μ̂ j are then defined as solutions of

min
μ̃1,...,μ̃m∈Rn

⎡
⎣ m∑

j=1

{‖y j − μ̃ j‖2
2 + P j (‖μ̃ j‖0)} + P0(k)

⎤
⎦ , (2)

where k = |{ j : μ̃ j |= 0}|. In this paper we investigate the optimality of such an approach for esti-
mating μ1, . . . , μm under various within- and between-sparsity set-ups. In particular, we spec-
ify the classes of complexity penalties P j (‖μ̃ j‖0) and P0(k) on within- and between-sparsity
respectively for which the resulting estimators μ̂1, . . . , μ̂m achieve asymptotically minimax rates
simultaneously for a wide range of sparse and dense cases. Such types of penalties naturally arise
within a Bayesian model selection framework. In this sense, this paper extends the results of the
Bayesian maximum a posteriori approach of Abramovich et al. (2007, 2010) to simultaneous
estimation of a group of m vectors in model (1).

It is interesting to compare the proposed complexity penalization (2) with lasso-type pro-
cedures. Similar to l0-type penalization, the vector-wise use of the original lasso of Tibshirani
(1996) for estimating each μ j in (1) results in per-component soft thresholding within each
y j that handles within-sparsity but ignores between-sparsity. To address the latter, Yuan & Lin
(2006) proposed a group lasso that for model (1) solves

min
μ̃1,...,μ̃m∈Rn

m∑
j=1

(‖y j − μ̃ j‖2
2 + λ‖μ̃ j‖2).

It can be shown that in such a set-up, the group lasso estimator is available in closed form, namely,

μ̂ j = y j

(
1 − λ/2

‖y j‖2

)
+

( j = 1, . . . ,m),

which is vector-level shrink-or-kill thresholding with the threshold λ/2. The μ̂ j are, therefore,
either entirely zero or do not have zero components at all. As a result, the group lasso does not
handle within-sparsity. To combine both types of sparsity, Friedman, Hastie & Tibshirani in an
unpublished 2010 Stanford University manuscript entitled ‘A note on the group lasso and a sparse
group lasso’ introduced the sparse group lasso that for model (1) is defined as

min
μ̃1,...,μ̃m∈Rn

m∑
j=1

(‖y j − μ̃ j‖2
2 + λ1‖μ̃ j‖2 + λ2‖μ̃ j‖1) (3)

yielding

μ̂ j = ỹ j

(
1 − λ1/2

‖ỹ j‖2

)
+

( j = 1, . . . ,m),

where the ỹi j = sign(yi j )(|yi j | − λ2/2)+ (i = 1, . . . , n) is the result of component-level soft
thresholding of each y j with the threshold λ2/2.

To the best of our knowledge, there are no theoretical results on optimality of the sparse group
lasso similar to those presented here for the complexity penalized estimators (2). Moreover, we
believe that, generally, l0-type penalties are more natural for representing sparsity and the main
reasons for other types of penalties are mostly computational. For a general regression model,
complexity penalties imply a combinatorial search over all possible models, while, for example,
the sparse group lasso estimator can be efficiently computed by numerical iterative algorithms
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(Simon et al., 2013). However, for model (1), which can be viewed as a special case of a general
regression set-up, (2) can also be solved by fast algorithms.

2. BAYESIAN SPARSE GROUP MAXIMUM A POSTERIORI ESTIMATION

Consider again model (1). If we knew the indices of the nonzero vectors μ j and the locations
of their significant entries μi j , we would estimate them by the corresponding yi j and set the
others to zero. Hence, the original problem is reduced to finding an n × m indicator matrix D,
where di j indicates whether μi j is significant or not, and can be viewed as a model selection
problem. Due to between- and within-sparsity assumptions, the matrix D should be sparse in the
double sense: only some of the columns of D are nonzero, and even nonzero columns are sparse.

We first introduce some notation. Let J0 and J c
0 be the sets of indices corresponding respec-

tively to the zero and nonzero μ j , and let m0 = |J c
0 | = |{ j :μ j |= 0, j = 1, . . . ,m}|. Let h j =∑n

i=1 di j = |{i :μi j |= 0, i = 1, . . . , n}| denote the number of nonzero components in μ j , where
evidently h j = 0 for j ∈J0.

Consider the following Bayesian model selection procedure for identifying the nonzero com-
ponents μi j or, equivalently, the indicator matrix D. To capture the between- and within-sparsity
assumptions we place a hierarchical prior on D. We first assume some prior distribution on the
number of nonzero mean vectors, m0 ∼ π0(m0) > 0 (m0 = 0, . . . ,m). For a given m0, assume
that all different configurations of the zero and nonzero μ j are equally likely, that is, condition-
ally on m0,

pr
(J c

0 | |J c
0 | = m0

)=
(

m

m0

)−1

.

Obviously, h j | ( j ∈J0)∼ δ(0) and, thus, d j | ( j ∈J0)∼ δ(0) and μ j | ( j ∈J0)∼ δ(0). For the
nonzero μ j we place independent priors π j (·) on the number of their nonzero components, that
is, h j | ( j ∈J c

0 )∼ π j (h j ) > 0 (h j = 1, . . . , n). In this case, we again assume that for a given h j ,
all possible indicator vectors d j with h j nonzero components have the same prior probabilities
and, therefore,

pr
(
d j | ‖d j‖0 = h j , j ∈J c

0

)=
(

n

h j

)−1

.

Finally, to complete the prior for model (1), we haveμi j | {di j = 0} ∼ δ(0), while the nonzeroμi j

are assumed to be independent identically distributed N (0, γ σ 2
n ) variates, where γ > 0.

The posterior probability for a given indicator matrix D is therefore

pr(D | y)∝ π0(m0)

(
m

m0

)−1 ∏
j∈J c

0

⎧⎨
⎩π j (h j )

(
n

h j

)−1

(1 + γ )−h j/2 exp

(
γ

γ + 1

∑n
i=1 y2

i j di j

2σ 2
n

)⎫⎬
⎭ .

Given the posterior distribution pr(D | y) we apply the maximum a posteriori rule to choose the
most likely configuration of zero and nonzero μi j , yielding the following criterion:

max
D

⎛
⎝∑

j∈J c
0

⎡
⎣ n∑

i=1

y2
i j di j + 2σ 2

n (1 + 1/γ ) log

⎧⎨
⎩π j (h j )

(
n

h j

)−1

(1 + γ )−h j/2

⎫⎬
⎭
⎤
⎦

+ 2σ 2
n (1 + 1/γ ) log

⎧⎨
⎩π0(m0)

(
m

m0

)−1
⎫⎬
⎭
⎞
⎠ . (4)
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Estimation of sparse vectors 359

From (4) it follows that for a given h j > 0 the optimal choice d̂ j (h j ) for d j is d̂i j (h j )= 1 for the
h j largest |yi j | and zero otherwise. Criterion (4) then reduces to

max
D

⎛
⎝∑

j∈J c
0

⎡
⎣ h j∑

i=1

y2
(i) j + 2σ 2

n (1 + 1/γ ) log

⎧⎨
⎩π j (h j )

(
n

h j

)−1

(1 + γ )−h j/2

⎫⎬
⎭
⎤
⎦

+ 2σ 2
n (1 + 1/γ ) log

⎧⎨
⎩π0(m0)

(
m

m0

)−1
⎫⎬
⎭
⎞
⎠ , (5)

where |y(1) j | � · · · � |y(n) j |. For each j = 1, . . . ,m define

ĥ j = arg min
1�h j �n

⎡
⎣ n∑

i=h j +1

y2
(i) j + 2σ 2

n (1 + 1/γ ) log

{
π−1

j (h j )

(
n

h j

)
(1 + γ )h j/2

}⎤⎦

= arg min
1�h j �n

⎡
⎣−

h j∑
i=1

y2
(i) j + 2σ 2

n (1 + 1/γ ) log

{
π−1

j (h j )

(
n

h j

)
(1 + γ )h j/2

}⎤⎦ . (6)

Then, (5) is equivalent to minimizing

∑
j∈J c

0

⎡
⎣−

ĥ j∑
i=1

y2
(i) j + 2σ 2

n (1 + 1/γ ) log

{
π−1

j (ĥ j )

(
n

ĥ j

)
(1 + γ )ĥ j/2

}⎤⎦

+ 2σ 2
n (1 + 1/γ ) log

{
π−1

0 (m0)

(
m

m0

)}
(7)

over all subsets of indices J0 ⊆ {1, . . . ,m}. Define

W j = −
ĥ j∑

i=1

y2
(i) j + 2σ 2

n (1 + 1/γ ) log

{
π−1

j (ĥ j )

(
n

ĥ j

)
(1 + γ )ĥ j/2

}
. (8)

Then, (7) reduces to

min
0�m0�m

⎡
⎣ m0∑

j=1

W( j) + 2σ 2
n (1 + 1/γ ) log

{
π−1

0 (m0)

(
m

m0

)}⎤⎦ , (9)

where W(1) � · · · � W(m), and the sums
∑

j∈J c
0

in (7) and
∑m0

j=1 in (9) do not appear for m0 = 0.
The resulting algorithm for finding the proposed sparse group maximum a posteriori estima-

tors of μ1, . . . , μm in (1) is as follows:

Algorithm 1. Sparse group maximum a posteriori estimation algorithm.
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Step 1. For j = 1 to m, find ĥ j in (6) and calculate the corresponding W j in (8). Order W j

in ascending order W(1) � · · · � W(m) and find

m̂0 = arg min
0�m0�m

⎡
⎣ m0∑

j=1

W( j) + 2σ 2
n (1 + 1/γ ) log

{
π−1

0 (m0)

(
m

m0

)}⎤⎦ .
Step 2. Let Ĵ c

0 be the set of indices corresponding to the m̂0 smallest W j . Set μ̂ j = 0 for all

j ∈ Ĵ0. For j ∈ Ĵ c
0 , take the ĥ j largest |yi j | and threshold the others, that is, μ̂i j = yi j I{|yi j | �

|y
(ĥ j ) j |} (i = 1, . . . , n), where |y(1) j | � · · · � |y(n) j |.

The resulting estimation procedure therefore combines vector-wise and componentwise
thresholding. It is easily verified that the minimizer of (7) is, in fact, the penalized likelihood
estimator (2) with the complexity penalties

P j (0)= 0,P j (h j )= 2σ 2
n (1 + 1/γ ) log

{
π−1

j (h j )

(
n

h j

)
(1 + γ )h j/2

}
(h j = 1, . . . ,m)

(10)
and

P0(m0)= 2σ 2
n (1 + 1/γ ) log

{
π−1

0 (m0)

(
m

m0

)}
(m0 = 0, . . . ,m). (11)

The penalties P j (·) and P0(·) depend on the priors π j (·) and π0(·). For example, bino-
mial priors m0 ∼ B(m, ξ0) and h j ∼ B(n, ξ j ) yield linear type penalties P0(m0)= 2σ 2

n λ
2
0m0

and P j (h j )= 2σ 2
n λ

2
j h j respectively, where λ2

0 = (1 + 1/γ ) log{(1 − ξ0)/ξ0} and λ2
j = (1 +

1/γ ) log{(1 + γ )1/2(1 − ξ j )/ξ j }. For such a choice of π j (·), W j in (8) is obtained by hard
thresholding of the y j with the constant threshold

√
2σnλ j . In particular, ξ j = (γ + 1)1/2/{(γ +

1)1/2 + nγ /(γ+1)} leads to the universal thresholding of Donoho & Johnstone (1994a) with

λ j = √
log n. The truncated geometric priorsπ j (h j )∝ q

h j
j (h j = 1, . . . , n), for some 0< q j < 1,

imply the nonlinear so-called 2k log(n/k)-type penalties. The optimality of the resulting hard
thresholding estimator with a data-driven threshold for estimating a single normal mean vector
has been shown in Abramovich et al. (2007, 2010) and Wu & Zhou (2013).

3. ADAPTIVE MINIMAXITY OF SPARSE GROUP MAXIMUM A POSTERIORI ESTIMATORS

In this section we investigate the goodness of the proposed sparse group maximum a poste-
riori estimators (2) with the penalties (10)–(11), where the goodness of fit is measured by the
global quadratic risk

∑m
j=1 E(‖μ̂ j − μ j‖2

2). We establish their asymptotic minimaxity over a
wide range of sparse and dense settings. To derive these results we need the following assump-
tion on the priors π j (·).

Assumption 1. Assume that

π j (h)�
(

n

h

)
e−c(γ )h (h = 1, . . . , n; j = 1, . . . ,m), (12)

where c(γ )= 8(γ + 3/4)2 > 9/2.
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Estimation of sparse vectors 361

Assumption 1 is not restrictive. Indeed, the obvious inequality

(
n
h

)
�
(

n

h

)h

implies that for any π j (·), (12) holds for all h � ne−c(γ ). In particular, Assumption 1 is satisfied
for binomial priors B(n, ξ j ) with ξ j � e−c(γ )/(1 + e−c(γ )) and truncated geometric priors.

First, we obtain a general upper bound for the quadratic risk of the sparse group maximum a
posteriori estimator that will be the key for deriving its asymptotic minimaxity.

THEOREM 1. Consider model (1). Let μ̂1, . . . , μ̂m be the sparse group maximum a posteri-
ori estimators (2) of μ1, . . . , μm with the complexity penalties (10)–(11). Under Assumption 1
we have

m∑
j=1

E
(
‖μ̂ j − μ j‖2

2

)
� c1(γ ) min

J0⊆{1,...,m}

⎡
⎣∑

j∈J c
0

min
1�h j �n

⎧⎨
⎩

n∑
i=h j +1

μ2
(i) j + P j (h j )

⎫⎬
⎭

+
∑
j∈J0

n∑
i=1

μ2
i j + P0(|J c

0 |)
⎤
⎦+ c2(γ )σ

2
n {1 − π0(0)}, (13)

where |μ(1) j | � · · · � |μ(n) j | and c1(γ ), c2(γ ) depend only on γ .

Theorem 1 holds for any normal mean vectors μ1, . . . , μm . Now we consider model (1) under
the extra within- and between-sparsity assumptions defined rigorously below.

Between-sparsity is measured by the number m0 of the nonzero μ j . Within-sparsity can be
introduced in several ways. An obvious measure for a single normal mean vector μ ∈ R

n is the
number of its nonzero components, that is, its l0 quasi-norm ‖μ‖0. Define an l0-ball l0(η) of
standardized radius η as a set of μ with at most a proportion η of nonzero entries, that is

l0(η)= {μ ∈ R
n : ‖μ‖0 � ηn}.

One can argue that in many practical settings, it is more reasonable to assume that the components
μi of μ are not exactly zero but are small. In a wider sense the within-sparsity of μ can then
be defined by the proportion of its large entries. Formally, define a weak l p-ball m p(η) with a
standardized radius η as

m p(η)=
{
μ ∈ R

n : |μ|(i) � σnη(n/ i)1/p, i = 1, . . . , n
}
,

where μ(1) � · · · �μ(n) are the ordered components of μ. For μ ∈ m p(η), the proportion of the
|μi | larger than σnδ for some δ > 0 is at most (η/δ)p.

Within-sparsity can also be measured in terms of the l p-norm of μ, where a strong l p-ball
l p(η) with a standardized radius η is defined as

l p(η)=
{
μ ∈ R

n :
1

n

n∑
i=1

|μi |p � σ p
n η

p

}
.
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Table 1. Minimax rates over various l0(ηn), l p(ηn), and m p(ηn)-
balls. The rates are the same for lp(ηn) and m p(ηn) except for
p = 2, where for m p(ηn) there appears an additional log term

not presented for brevity

Case p = 0 0< p< 2 p � 2

Dense σ 2
n n σ 2

n n σ 2
n n

Sparse σ 2
n nηn(log η−1

n ) σ 2
n nηp

n (log η−p
n )1−p/2 σ 2

n nη2
n

Super-sparse − σ 2
n n2/pη2

n σ 2
n nη2

n

There are well-known relationships between these types of balls. The l p-norm approaches l0 as
p decreases, while a weak l p-ball contains the corresponding strong l p-ball, but only just:

l p(η)⊂ m p(η) ⊂ l p′(η) (p′ > p). (14)

First we recall the known results on minimax rates for estimating a single normal mean vec-
tor μ over different types of balls introduced above. Let �(ηn)⊂ R

n be any of l0(ηn), l p(ηn)

or m p(ηn), where the standardized radius η might depend on n. The corresponding min-
imax quadratic risk for estimating a single μ over �(ηn) in model (1) is R{�(ηn)} =
inf μ̃ supμ∈�(ηn)

E(‖μ̃− μ‖2
2), where the infimum is taken over all estimates μ̃ of μ. For p> 0

define η0n = n−1/min(p,2)√log n. Depending on the behaviour of ηn as n increases, we distin-
guish between three cases for p> 0 and two cases for p = 0:

(a) dense, where ηn → 0 for p � 0;
(b) sparse, where ηn → 0, ηn/η0n → 0 for p> 0 and ηn � n−1 for p = 0;
(c) super-sparse, where ηn/η0n → 0 for p> 0.

The corresponding minimax convergence rates R{�(ηn)} for various cases and p are summarized
in Table 1 (Donoho et al., 1992; Johnstone, 1994; Donoho & Johnstone, 1994b). The rates for
m p(ηn) are the same as for l p(ηn) except for p = 2, where there is an additional log term. Table 1
defines dense and sparse zones for p = 0 and p � 2, and dense, sparse, and super-sparse zones
for 0< p< 2 of different minimax rates.

Consider now model (1) for m � 1. Recall that m0 = |{ j :μ j |= 0}| and J c
0 is the set of indices

for the nonzeroμ j . In what follows we assume thatμ j ∈� j (η jn) for j ∈J c
0 , where the types and

the parameters p of the corresponding balls are not necessarily the same for all j . Furthermore,
we allow the priors π0(·) and π j (·) to depend respectively on m and n.

Theorem 2 below defines the upper bounds for the quadratic risks of the sparse group maxi-
mum a posteriori estimator in model (1) under within- and between-sparsity assumptions.

THEOREM 2. Consider model (1), where J c
0 |= ∅. Assume that μ j ∈� j (η jn) for all j ∈J c

0 ,
where η jn � n−1/min(p j ,2)

√
log n for all p j > 0, thus excluding super-sparse cases.

Let μ̂1, . . . , μ̂m be the sparse group maximum a posteriori estimators (2) with the complex-
ity penalties (10)–(11), where we assume that there exist constants c0, c1 > 0 and c2 > c(γ )
such that

1. π0(k)� (k/m)c0k (k = 1, . . . , �m/e�) and π0(m)� e−c0m;
2. for all j = 1, . . . ,m, the π j (·) satisfies Assumption 1 and, in addition, π j (h)�
(h/n)c1h (h = 1, . . . , �ne−c(γ )�); π j (n)� e−c2n.
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Then, for any J c
0 ⊆ {1, . . . ,m} with |J c

0 | = m0 and all � j (η jn), j ∈J c
0 ,

sup
μ j ∈� j (η jn), j∈J c

0

m∑
j=1

E
(
‖μ̂ j − μ j‖2

2

)
� C1(γ )max

⎡
⎣∑

j∈J c
0

R{� j (η jn)}, σ 2
n m0 log(m/m0)

⎤
⎦
(15)

for some constant C1(γ ) depending only on γ , where up to multiplying constants, the corre-
sponding R{� j (ηn)} are given in Table 1.

Theorem 2 shows that as both m and n increase, the asymptotic convergence rates in (15) are
either of order

∑
j∈J c

0
R{� j (η jn)} or σ 2

n m0 log(m/m0). The former is associated with the opti-
mal rates of estimating m0 single sparse vectors in � j (η jn) ( j ∈J c

0 ), while the latter appears
in the optimal rates in the model selection and corresponds to the error of selecting a sub-
set of m0 nonzero elements out of m (Abramovich & Grinshtein, 2010; Raskutti et al., 2011;
Rigollet & Tsybakov, 2011). From Table 1 it follows that for all within-dense and within-sparse
cases, C1σ

2
n log n � R{� j (η jn)} � C2σ

2
n n ( j ∈J c

0 ) for some C1, C2 > 0 and, therefore, the first
term

∑
j∈J c

0
R{� j (ηn)} in the upper bound (15) is always dominating for m0/m > n−1, while

the second term σ 2
n m0 log(m/m0) is necessarily the main one for m0/m < e−n .

One can verify that the conditions on the priors π0(·) and π j (·) required in Theorem 2 are
satisfied, for the truncated geometric priors from § 2. On the other hand, no binomial priors π0 =
B(m, ξ0) or π j = B(n, ξ j ) can satisfy all of them: the requirement π j (n)= ξn

j � e−c2n yields

ξ j � e−c2 , while one needs ξ j → 0 as n increases to have π j (1)= nξ j (1 − ξ j )
n−1 � n−c1 .

To establish the corresponding lower bound for the minimax risk, for simplicity of exposition
we consider only the two cases where the p j for j ∈J c

0 are either all zeros or all positive. These
are the two main scenarios appearing in various set-ups. Similar results for minimax lower bounds
in the particular context of sparse nonparametric additive models appear in Raksutti et al. (2012).

THEOREM 3. Consider model (1), whereμ j ∈ l0(η jn) for j ∈J c
0 . Assume that |J c

0 | = m0 > 0.
Then there exists a constant C2 > 0 such that

inf
μ̃1,...,μ̃m

sup
μ j ∈l0(η jn), j∈J c

0

m∑
j=1

E
(
‖μ̃ j − μ j‖2

2

)
� C2 max

⎡
⎣∑

j∈J c
0

R{l0(η jn)}, σ 2
n m0 log(m/m0)

⎤
⎦ ,

(16)
where the infimum is taken over all estimators μ̃1, . . . , μ̃m of μ1, . . . , μm.

Theorem 3 shows that, as m and n increase, the rates in (15) cannot be improved for l0-balls.
The proposed sparse group maximum a posteriori estimator in this case is, therefore, adaptive
to the unknown degrees of within- and between-sparsity and is simultaneously minimax rate-
optimal over the entire range of dense and sparse l0-ball settings.

The analysis of the case p j > 0 is slightly more delicate. Note first that due to the embedding
properties of l p-balls for p> 0 in (14), it is sufficient to establish the minimax lower bounds for
strong l p-ball settings.

THEOREM 4. Consider model (1), where μ j ∈ l p j (η jn) for j ∈J c
0 and |J c

0 | = m0 > 0.

In addition, assume that η2
jn � n−2/min(p j ,2) max{log n, log(m/m0)}. Under this additional
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constraint, there exists a constant C2 > 0 such that

inf
μ̃1,...,μ̃m

sup
μ j ∈l p j (η jn), j∈J c

0

m∑
j=1

E
(
‖μ̃ j − μ j‖2

2

)
� C2 max

⎡
⎣∑

j∈J c
0

R{l p j (η jn)}, σ 2
n m0 log(m/m0)

⎤
⎦ ,

(17)

where the infimum is taken over all estimators μ̃1, . . . , μ̃m of μ1, . . . , μm.

Similar to Theorem 3, Theorem 4 implies simultaneous minimaxity of the sparse group
maximum a posteriori estimator over strong and weak l p-balls as both m and n increase but
with the restriction on η jn and m0. In particular, it does not cover settings with within-super-
sparsity but depending on m0 might also exclude part of the corresponding within-sparse zone.
Within- and between-sparsity cannot be simultaneously strong. In fact, the condition η2

jn <

n−2/min(p j ,2) max{log n, log(m/m0)} for j ∈J c
0 can be viewed as an extended definition of

super-sparsity for m > 1. For such a super-sparse case, the minimax bound (17) does not hold
and can be reduced. Indeed, consider the trivial zero estimators μ̃ j = 0 ( j = 1, . . . ,m), where,
evidently,

sup
μ j ∈l p j (η jn), j∈J c

0

m∑
j=1

E
(
‖μ̃ j − μ j‖2

2

)
= sup
μ j ∈l p j (η jn), j∈J c

0

∑
j∈J c

0

‖μ j‖2
2. (18)

The least favourable sequences that maximize ‖μ j‖2
2 over l p j (η jn) are (σnη jn, . . . , σnη jn)

T and
(σnη jnn1/p j , 0, . . . , 0)T for p j � 2 and 0< p j < 2 respectively. Thus, supμ j ∈l p j (η jn)

‖μ j‖2
2 =

σ 2
n η

2
jnn2/min(p j ,2) and the right-hand side of (18) is less than σ 2

n m0 log(m/m0) for η2
jn <

n−2/min(p j ,2) log(m/m0), j ∈J c
0 . This goes along the lines of the corresponding results for esti-

mating a single normal mean vector, where a zero estimator is known to be rate-optimal for the
super-sparse case (Donoho & Johnstone, 1994b).

4. SIMULATION STUDY

We generated data according to model (1) with m = 10, each vector μ j of length n = 100.
Five of the μ j were identically zero, while the other five had respectively 100, 70, 50, 20, and 5
nonzero components randomly sampled from N (0, τ 2) (τ = 1, 3, 5). Such a set-up covers vari-
ous types of within-sparsity. Finally, independent standard Gaussian noise was added to all com-
ponents of each μ j . The corresponding variance ratios γ = τ 2/σ 2 are therefore 1, 9, and 25.

We tried binomial and truncated geometric priors for sparse group maximum a posteriori
estimators. For the binomial prior, we performed componentwise universal hard thresholding
of Donoho & Johnstone (1994a) with the threshold λ= σ(2 log n)1/2 within each vector that
essentially corresponds to ξ j = (γ + 1)1/2/{(γ + 1)1/2 + nγ /(γ+1)} and used ξ0 = 1/m. For the
truncated geometric prior we set q0 = q j = 0·3. In addition, we compared the performances of
sparse group maximum a posteriori estimators with the sparse group lasso estimator (3) from
the unpublished 2010 manuscript of Friedman, Hastie & Tibshirani mentioned in § 1. They do
not discuss the optimal choices for λ1 and λ2 in (3). Some heuristic arguments are given in
Simon et al. (2013). In our simulation study we instead considered two oracle-based choices for
these tuning parameters, thus giving a significant advantage to sparse group lasso estimators.
Since in simulation examples we know the true mean vectors μ j , they can be used for choosing
λ1 and λ2 to minimize the mean squared error. In particular, we considered a semi-oracle sparse
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Table 2. Scaled mean squared errors, MSE/τ 2, averaged over 1000 replications
for four sparse group estimators and various τ

τ Sparse group MAP Sparse group MAP Sparse group lasso Sparse group lasso
(binomial) (geometric) (semi-oracle) (fully oracle)

1 247·4 245·5 236·9 161·9
3 67·6 42·1 124·6 44·9
5 22·0 14·1 63·8 19·0

group lasso estimator, where we set λ2 = 2σ(2 log n)1/2 yielding universal soft thresholding
within each vector to compare the sparse group lasso with the binomial sparse group maxi-
mum a posteriori estimator. The threshold λ1 was chosen by minimizing the mean squared error∑m

j=1 E(‖μ̂ j (λ1)− μ j‖2
2) estimated by averaging over a series of 1000 replications for each

value of λ1 using a grid search. In addition, we applied a fully oracle sparse group lasso estimator,
where both λ1 and λ2 were chosen to minimize the mean squared error by the two-dimensional
grid. This can be considered as a benchmark for the performance of the sparse group lasso.

The resulting choices for the fully oracle sparse group lasso estimator were λ1 = 11·8, λ2 = 0·9
for τ = 1; λ1 = 7·2, λ2 = 1·1 for τ = 3; and λ1 = 4·7, λ2 = 1·3 for τ = 5. For all τ , the oracle
choice for λ2 in the sparse group lasso is much smaller than the conservative universal thresh-
old 2σ(2 log n)1/2 ≈ 6·06. The oracle thresholding within each vector is thus significantly less
severe and keeps many more coefficients. The oracle choices for λ1 are also quite small and,
as a result, for any τ , no single vector was thresholded by the fully oracle sparse group lasso
estimator; all the μ̂ j were nonzero. Thus, it was not really a between-sparse estimator for the
considered set-up.

The parameter γ = τ 2/σ 2 can be essentially viewed as a signal-to-noise ratio within individual
vectors. Thus, to demonstrate the behaviour of estimators as n increases we compared them for
increasing values of τ keeping n and σ fixed. The resulting mean squared errors should then be
normalized by the corresponding values of τ 2 to be on the same scale. In Table 2 we present the
resulting scaled mean squared errors averaged over 1000 replications for the four sparse group
estimators for τ = 1, 3 and 5.

For all estimators the scaled mean squared errors decrease as τ increases but at different rates.
The semi-oracle sparse group lasso estimator has the slowest rate, while both sparse group maxi-
mum a posteriori estimators converge faster and successfully compete even with the fully oracle
sparse group lasso estimator.

Small τ corresponds to a sparse setting, where only a few of the largest nonzero components
can be distinguished from the noise. This explains the good performance of the binomial sparse
group maximum a posteriori and the semi-oracle sparse group lasso estimators based respectively
on universal hard and soft thresholding within each vector in this case. For larger τ , univer-
sal thresholding becomes over-conservative. The negative effect of its conservativeness is much
stronger for the soft than for the hard version. The fully oracle sparse group lasso estimator
strongly outperforms its semi-oracle counterpart especially for τ = 3 and τ = 5, also indicating
that the universal thresholding is far from being optimal for the sparse group lasso, especially for
moderate and large τ . See also our previous comments on the optimal choice of λ2.

On the other hand, the geometric sparse group maximum a posteriori estimator corresponding
to a nonlinear 2k log(n/k)-type penalty provides good results for all τ , following the theoretical
results of § 3. Moreover, for τ = 3 and τ = 5, it outperforms even the fully oracle sparse group
lasso estimator that was thought of as a benchmark rather than a fair competitor. This indicates
that the sparse group lasso faces general problems. This is unsurprising since soft shrink-or-kill
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thresholding inherent for the sparse group lasso is well known to be superior to hard keep-or-kill
thresholding in sparse group maximum a posteriori estimation for small coefficients, but to be
inferior for large ones due to the additional shrinkage. Moreover, the sparse group lasso in (3)
involves a double amount of shrinkage: both within vectors and at each entire vector as a whole. It
thus causes unnecessary extra bias that increases with τ , which outweighs the benefits of variance
reduction. A similar phenomenon appears also for naı̈ve elastic set estimation (Zou & Hastie,
2005).

We also analysed the performance of the four estimators for each individual μ j . See the Sup-
plementary Material for the results. The sparser the true mean vector, the better it was estimated
by all methods. The main contribution to the overall errors always came from estimating dense
μ j . However, the general tendencies discussed above hold uniformly across all vectors. Thus,
for all μ j the fully oracle sparse group lasso estimator is much better than its semi-oracle coun-
terpart for all τ ; the binomial sparse group maximum a posteriori estimator and especially the
semi-oracle sparse group lasso estimator perform worse for larger τ ; and the geometric sparse
group maximum a posteriori estimator provides good results for all τ and uniformly outperforms
even the fully oracle sparse group lasso estimator for large τ . Simulation results indicate that a
possible way to improve the performance of a sparse group lasso would be to consider different
thresholds λ2 j and possibly λ1 j in (3).

In addition, we compared the four methods for estimating the vector supports even though
this is a different problem from our original goal of estimating vectors in the l2-norm. Indeed,
for minimizing a quadratic risk it may be worthwhile to threshold small nonzero coefficients
instead of paying a price in terms of the variance for their estimation. Being conservative, the
semi-oracle sparse group lasso and the binomial sparse group maximum a posteriori estimators
thresholded too many nonzero coefficients. As already mentioned, the thresholds λ1 and λ2 in
the fully-oracle sparse group lasso were too small for a proper recovery of supports of sparse
vectors and all the μ̂ j were nonzero even for zero μ j . The geometric sparse group maximum
a posteriori estimator provided similar results with its binomial counterpart and the semi-oracle
sparse group lasso estimator for sparse vectors but strongly outperformed them for dense cases.
The results are given in the Supplementary Material.
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simulation study. The R-code used for the simulation study is available from the first author.

APPENDIX

Below we use C to denote a generic positive constant, not necessarily the same each time it is used,
even within a single equation. Similarly, C(γ ) is a generic positive constant depending on γ .

Proof of Theorem 1. The proposed sparse group maximum a posteriori estimator can be viewed as a
penalized likelihood estimator (2) with the complexity penalties (10) and (11). We first rewrite it in a
different form that will allow us then to apply the general results of Birgé & Massart (2001) for complexity
penalized estimators.
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Let y = (y11, . . . , yn1, . . . , y1m, . . . , ynm)
T be an amalgamated nm × 1 vector of data. Similarly, μ=

(μ11, . . . , μn1, . . . , μ1m, . . . , μnm)
T, ε = (ε11, . . . , εn1, . . . , ε1m, . . . , εnm)

T and the original model (1) can
be rewritten as

yi =μi + εi (i = 1, . . . , nm), (A1)

where the εi ∼N (0, σ 2
n ) are independent. Define an indicator vector d, where di = I{μi |= 0} (i =

1, . . . , nm). In terms of the model (A1), h j =∑nj
i=n( j−1)+1 di ( j = 1, . . . ,m) and m0 = #{ j : h j > 0}.

For a given d, define Dd =∑m
j=1 h j = #{i : di = 1, i = 1, . . . , nm} and

Ld = 1

Dd

⎡
⎣ m∑

j=1

log

{
π−1

j (h j )

(
n

h j

)}
+ log

{
π−1

0 (m0)

(
m

m0

)}⎤⎦

for d |= 0 and L0 = 2 logπ−1
0 (0), where we formally set π j (0)= 1. Then, the sparse group maximum a

posteriori estimator μ̂= (μ̂11, . . . , μ̂n1, . . . , μ̂1m, . . . , μ̂nm)
T is the penalized likelihood estimator of μ

with the complexity penalty

P(d)= 2σ 2
n (1 + 1/γ )

⎡
⎣ m∑

j=1

log

{
π−1

j (h j )

(
n

h j

)
(1 + γ )h j/2

}
+ log

{
π−1

0 (m0)

(
m

m0

)}⎤⎦
= σ 2

n (1 + 1/γ )Dd{2Ld + log(1 + γ )}

for d |= 0 and P(0)= σ 2
n (1 + 1/γ )L0.

One can verify that

∑
d |= 0

e−Dd Ld =
m∑

k=1

π0(k)= 1 − π0(0).

Straightforward computation similar to that in the proof of Theorem 1 of Abramovich et al. (2007) implies
also that for any d under Assumption 1,

(1 + 1/γ ){2Ld + log(1 + γ )} � C(γ ){1 + (2Ld)
1/2}2,

where C(γ ) > 1. One can then apply Theorem 2 of Birgé & Massart (2001) to get

m∑
j=1

E
(‖μ̂ j − μ j‖2

2

)
� c1(γ ) min

J0⊆{1,...,m}

⎡
⎣∑

j∈J c
0

min
1�h j �n

⎧⎨
⎩

n∑
i=h j +1

μ2
(i) j + P j (h j )

⎫⎬
⎭

+
∑
j∈J0

n∑
i=1

μ2
i j + P0(m0)

⎤
⎦+ c2(γ )σ

2
n {1 − π0(0)} (A2)

and the proof is complete. �

Proof of Theorem 2. One can check from Table 1 that for η jn � n−1/min(p j ,2)
√

log n if p j > 0 and for
η jn > n−1 if p j = 0, the last term c2(γ )σ

2
n {1 − π0(0)} in the right-hand side of (13) is of order O(σ 2

n )=
o[R{� j (η jn)}] for all nonzero μ j .

Let J c∗
0 be the true unknown subset of nonzero vectors μ j and m∗

0 = |J c∗
0 |.
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I. Consider m∗
0 � �m/e�. Apply Theorem 1 for J0 =J ∗

0 to get

m∑
j=1

E
(‖μ̂ j − μ j‖2

2

)
� c1(γ )

⎛
⎝∑

j∈J c∗
0

min
1�h j �n

⎡
⎣ n∑

i=h j +1

μ2
(i) j + 2σ 2

n (1 + 1/γ ) log

{
π−1

j (h j )

(
n

h j

)
(1 + γ )h j/2

}⎤⎦

+ 2σ 2
n (1 + 1/γ ) log

{
π−1

0 (m0)

(
m

m0

)}⎞⎠+ c2(γ )σ
2
n {1 − π0(0)}.

Since for m0 = 1, . . . , �m/e�, (
m

m0

)
�
(

m

m0

)2m0

(Lemma A1 of Abramovich et al., 2010), the required conditions on π0(·) ensure that

2σ 2
n (1 + 1/γ ) log

{
π−1

0 (m0)

(
m

m0

)}
� C(γ )σ 2

n m0 log(m/m0).

To complete the proof for this case we now consider separately

min
1�h j �n

⎡
⎣ n∑

i=h j +1

μ2
(i) j + 2σ 2

n (1 + 1/γ ) log

{
π−1

j (h j )

(
n

h j

)
(1 + γ )h j/2

}⎤⎦ (A3)

for each j ∈J c∗
0 and show that it is O[R{� j (η jn)}], where R{� j (η jn)} are given in Table 1. We distinguish

between several cases, where the proofs for strong l p-balls will follow immediately from the proofs for the
corresponding weak l p-balls due to the embedding properties mentioned in § 3.

Case 1. Let μ j ∈� j (η jn), η jn > e−c(γ ) for p j = 0, and η
p j

jn > e−c(γ ) for p j > 0. Taking h∗
j = n, under

the condition on π j (n), implies that (A3) is O(σ 2
n n)= O[R{� j (η jn)}].

Case 2. Let μ j ∈ l0(η jn), η jn � e−c(γ ). Since μ j |= 0, η jn � n−1. Choose h∗
j = nη jn and repeat the

arguments in the proof of Theorem 3 of Abramovich et al. (2007) using a slightly more general version
of Lemma A1 of Abramovich et al. (2010) for approximating the binomial coefficient in (A3) instead of
their original Lemma A1.

Case 3. Let μ j ∈ m p j (η jn), 0< p j < 2, and n−1(log n)p j /2 � η
p j

jn � e−c(γ ). Take 1 � h∗
j =

nη
p j

jn(log η
−p j

jn )−p j /2 � ne−c(γ ) and follow the proof of Theorem 4 of Abramovich et al. (2007) with
a more general version of Lemma A1, see Case 2.

Case 4. Let μ j ∈ m p j (η jn), p j � 2 and n−p j /2(log n)p j /2 � η
p j

jn � e−c(γ ). Take h∗
j = 1. Then, for p j >

2,
n∑

i=h∗
j +1

μ2
(i) j <σ

2
n n2/p jη2

jn

∫ n

1
x−2/p j dx <

p j

p j − 2
σ 2

n n2/p jη2
jnn1−2/p j = O(σ 2

n nη2
jn)

and, similarly, for p j = 2,

n∑
i=h∗

j +1

μ2
(i) j <σ

2
n nη2

jn

∫ n

1
x−1 dx = σ 2

n nη2
jn log n.

On the other hand, under the conditions on π j (·), π j (1)� n−c1 , which yields

2σ 2
n (1 + 1/γ ) log

{
π−1

j (1)n(1 + γ )
1
2

}
= O(σ 2

n log n)= O(σ 2
n nη2

jn)

for η jn � (n−1 log n)1/2.
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II. Consider �m/e�<m∗
0 � m. Applying Theorem 1 for J c

0 = {1, . . . ,m} or, equivalently, for J0 = ∅ and
h j = 1 for j ∈J ∗

0 , yields

m∑
j=1

E
(‖μ̂ j − μ j‖2

2

)
� c1(γ )

⎡
⎣∑

j∈J c∗
0

min
1�h j �n

⎧⎨
⎩

n∑
i=h j +1

μ2
(i) j + P j (h j )

⎫⎬
⎭+

∑
j∈J ∗

0

P j (1)+ P0(m)

⎤
⎦

+ c2(γ )σ
2
n {1 − π0(0)}, (A4)

where the conditions on π j (1) and π0(m) imply that
∑

j∈J ∗
0

P j (1)= O(σ 2
n m log n) and P0(m)= O(σ 2

n m).

From Table 1 one can verify that for all dense and sparse cases, σ 2
n log n = O[R{� j (η jn)}] ( j ∈J c∗

0 ) and,
therefore, the first term

∑
j∈J c∗

0
in the right-hand side of (A4) is dominating for m∗

0 ∼ m. �

Proof of Theorems 3–4. The ideas of the proofs of Theorems 3–4 are similar and can be combined.
No estimator can perform better than an oracle that knows the true J0. In this ideal case one would

obviously set μ̂ j = 0 for all j ∈J0 with zero risk and, therefore, due to the additivity of the risk function,

inf
μ̃1,...,μ̃m

sup
μ j ∈� j (η jn), j∈J c

0

m∑
j=1

E
(‖μ̃ j − μ j‖2

2

)
� C

∑
j∈J c

0

R{� j (η jn)}

for any � jn(η jn). See, e.g., Proposition 4.14 of an unpublished 2011 Stanford University, Department of
Statistics manuscript of Johnstone entitled Gaussian estimation: Sequence and wavelet methods.

Furthermore, following II in the proof of Theorem 2,
∑

j∈J c
0

R{� j (η jn)} dominates over

σ 2
n m0 log(m/m0) in (16) and (17) for m0 >m/2. To complete the proof we need to show, therefore, that

for m0 � m/2, the minimal unavoidable price for not being an oracle for selecting nonzero μ j is of order
σ 2

n m0 log(m/m0).
The main idea of the proof is to find a subset Mm0 of vectors μ= (μ11, . . . , μn1, . . . , μ1m, . . . , μnm)

T

with m0 nonzero μ j = (μ1 j , . . . , μnj )
T ∈� j [η jn] such that for any pair μ1, μ2 ∈Mm0 and some

C > 0, ‖μ1 − μ2‖2
2 � Cσ 2

n m0 log(m/m0), while the Kullback–Leibler divergence K (Pμ1 ,Pμ2)= ‖μ1 −
μ2‖2

2/(2σ
2
n )� (1/16) log card(Mm0). The result then follows immediately from Lemma A.1 of

Bunea et al. (2007).
Define the subset D̃m0 of all m-dimensional indicator vectors with m0 entries of ones, that is D̃m0 =

{d : d ∈ {0, 1}m, ‖d‖0 = m0}. By Lemma A.3 of Rigollet & Tsybakov (2011), for m0 � m/2 there exists
a subset Dm0 ⊂ D̃m0 such that for some constant c̃> 0, log card(Dm0)� c̃m0 log(m/m0), and for any pair
d1, d2 ∈Dm0 , the Hamming distance ρ(d1, d2)=

∑m
j=1 I{d1 j |= d2 j } � c̃m0.

To any indicator vector d ∈Dm0 assign the corresponding mean vector μ ∈Mm0 as fol-
lows. Let C̃2 = (1/16)σ 2

n c̃ log(m/m0). Define μ j = (C̃, 0, . . . , 0)T
I{d j = 1} for 0 � p j < 2 and μ j =

(C̃n−1/2, C̃n−1/2, . . . , C̃n−1/2)T
I{d j = 1} for p j � 2 ( j = 1, . . . ,m). Hence, card(Mm0)= card(Dm0).

Obviously, the resultingμ j ∈ l0[η jn] and straightforward calculus show that under the additional constraint
on η jn and m0 in Theorem 4, μ j ∈ l p j (η jn).

For any μ1, μ2 ∈Mm0 and the corresponding d1, d2 ∈Dm0 , we then have

‖μ1 − μ2‖2
2 = C̃2

m∑
j=1

I{d1 j |= d2 j } � C̃2 c̃ m0 = 1

16
σ 2

n c̃2m0 log(m/m0),

K (Pμ1 ,Pμ2)= C̃2

2σ 2
n

m∑
j=1

I{d1 j |= d2 j } � C̃2m0

σ 2
n

� 1

16
log card(Mm0),

which completes the proof. �
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