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Abstract 

Wavelet techniques have become an attractive and efficient tool in function estimation. Given noisy 
data, its discrete wavelet transform is an estimator of the wavelet coefficients. It has been shown by 
Donoho and Johnstone (Biometrika 81 (1994) 425-455) that thresholding the estimated coefficients 
and then reconstructing an estimated function reduces the expected risk close to the possible 

minimum. They offered a global threshold 2 ~ a 2 1 ~ / ~  for j >Jo, while the coefficients of the first 
coarse jo levels are always included. 

We demonstrate that the choice ofjo may strongly affect the corresponding estimators. Then, we 
use the connection between thresholding and hypotheses testing to construct a thresholding proced- 
ure based on the false discovery rate (FDR) approach to multiple testing of Benjamini and Hochberg 
(J. Roy. Statist. Soc. Set. B 57 (1995) 289-300). The suggested procedure controls the expected 
proportion of incorrectly included coefficients among those chosen for the wavelet reconstruction. 
The resulting procedure is inherently adaptive, and responds to the complexity of the estimated 
function and to the noise level. Finally, comparing the proposed FDR based procedure with the fixed 
global threshold by evaluating the relative mean-square-error across the various test-functions and 
noise levels, we find the FDR-estimator to enjoy robustness of MSE-efficiency. 

Keywords: False discovery rate; Nonparametric regression; Robust smoothing; Multiple comparison 
procedures 

1. Introduction 

Suppose we are given data 

Yi  = 9 ( t i )  + e l ,  i = 1 ,  . . .  , n ,  (1) 
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where t~ = i/n, ei's are i.i.d, normal variables with zero mean and variance 0 "2, 
and we wish to estimate the unknown response function O(') from the data 
without assuming any particular parametric form of 9. There exists a variety 
of non-parametric regression methods based on the ideas of kernel estimation, 
spline smoothing, or Fourier series expansion, Recently developed wavelet 
techniques have become an attractive and efficient tool in adaptive function 
estimation. Basic wavelet theory may be found in Daubechies (1992), while 
applications of wavelets for various statistical problems are discussed in 
Donoho  et al. (1995). The function 9 is expanded in terms of some orthonor- 
mal basis functions Ot in a way similar to the generalized Fourier series 
expansion. While for the classical Fourier series the basis functions are 
sine and cosine functions at different frequencies, in the case 
of wavelet series the basis functions O~k are translations and dilations of a single 
fixed function ~O called the mother wavelet ~jk(t)= 2J/21]1 (2Jt - k), j, k ~ Z. For 
certain choices of ~ the corresponding set of ~Ojk forms an orthonormal  basis in 
L 2(R) (examples of such mother  wavelets are given in Daubechies, 1992). In this 
case, 

g(t)--- Z Z d j k  ~jk(t), 
j k 

where the wavelet coefficients djk = (9, ~Ogk) = ]" 9 (t) ~Ojk (t) dt = 2 j/2 ~ g (t) ~O (2 ~ t -- k) dr. 
In contrast to sines and cosines, wavelets are local in both frequency (via 

dialations) and in time (via translations). This localization offers an advantage, 
since fewer wavelet basis functions are usually needed to represent the function to 
a given level of approximation. Moreover, choosing the mother  wavelet with 
corresponding regularity properties, one can generate an unconditional wavelet 
basis in a wide set of function spaces, such as Besov or Triebel scales. These scales 
include, in particular, the well-known Sobolev or H61der scales of smooth func- 
tions, but in addition less traditional spaces, like the space of functions of bounded 
variation (see Meyer, 1992; Donoho  et al., 1995, for precise definitions and details). 
Such "universality" allows a parsimonious wavelet expansion for large variety of 
different functions. 

Suppose we have data at the points ti = i/n where the sample size n = 2 J + 1 for 
some J. In the absence of random noise in the data we may find 
m = n -  1 = 2 J + l -  1 wavelet coefficients of the function 9, d f s ,  j = 0 . . . .  ,J; 
k = 0, . . . ,  2 j - 1, by performing a discrete wavelet transform (DWT) of the vector 
of the noiseless data g = (9 (t 1), .- . ,  9 (t,))'. The fast DWT algorithm for finding djk'S 
was derived by Mallat (1989). "Noisy" data only allow us to find the MLE estimates 
of the coefficients, d, which is the DWT of the vector y of the real data. White noise 
contaminates all wavelet coefficients djk'S equally (the DWT of the white noise 
vector e is also a white noise). However, due to the parsimonious representation by 
wavelets, it is reasonable to assume that only a few dig'S contain information about 
the real signal while others appear as a consequence of signal's corruption by 
random noise. The goal is to extract these significant coefficients and to ignore 
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others. Such an extraction may be done by thresholding the djk'S: 

la, l 
=/o, 

where 2 is the threshold value. 
In particular, Donoho and Johnstone (1994) proposed to use the universal global 

threshold 2 -~ trx/2 log n for all j greater than some jo- The estimator obtained by 
such thresholding and reconstructing the function from the remaining coefficients 
can be shown to have risk "close" to the minimal risk corresponding to the optimal 
(but unknown) thresholding rule. Practically tr is usually unknown, and is estimated 
from the coefficients at the finest level. It should be emphasized, though, that the 
threshold depends on the data only through the estimated a, and for fixed n is 
otherwise the same for all samples and for all kinds of functions. Donoho and 
Johnstone further suggested to always include the coefficients of the first "coarse"jo 
levels, even if these coefficients do not pass the thresholding level. In their paper 
they used j0 = 5. Intuitively, the proper choice ofjo should depend on the smooth- 
ness of the estimated function and on the noise level. It might be argued that J0 
should be greater for oscillating functions but smaller for smooth ones. The 
examples considered in Section 3 illustrate the fact that the choice of jo may 
strongly affect the corresponding estimators. 

From the statistical viewpoint, thresholding, as was also pointed out by Donoho 
and Johnstone (1994) and Fan (1994), is closely related to hypotheses testing, where 
each coefficient is tested whether it is zero or not. Model building involves the use of 
the "significantly different from zero" coefficients. If the results of hypothesis testing 
should guide us to the choice of the appropriate coefficients, one cannot test each 
hypotheses at the usual significance level, say 0.05, as if it were the only one tested. 
With 1023 hypotheses to be tested (for 1024 observations) about 50 would be found 
(1023 x 0.05 on the average) significant, even when the representation of the true 
function needs none. Hence, a stronger control of error is needed, and the most 
commonly used alternative is to control the probability that no truly zero coeffi- 
cient enters the model. The control of such a stringent criterion is well-known to 
reduce power, implying that too few coefficients will enter the model. It is therefore 
hardly used in practice in other similar problems such as variable selection in 
regression, or choosing autoregressive terms in time series analysis. 

Recently, Benjamini and Hochberg (1995) have suggested the false discovery 
error rate (FDR) criterion as an appropriate but less stringent alternative in 
multiple hypothesis testing problems. This paper proposes a statistical procedure 
for thresholding of wavelet coefficients which is based on the FDR-approach. In 
a way it controls the expected proportion of incorrectly included coefficients among 
those chosen for the model. The resulting false discovery rate of coefficients (FDRC) 
procedure is inherently adaptive due to the adaptiveness of the criterion being 
controlled. 

The following section describes the underlying approach and the corresponding 
testing (thresholding) procedure. Several test-cases are considered in Section 3 
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where the limitations of non-adaptive thresholding are demonstrated using simula- 
tions. In Section 4 the performance of the proposed FDRC-thresholding procedure 
is contrasted for these examples at various noise levels. Comparing the proposed 
FDRC-based procedure with the fixed global threshold procedure by evaluating 
the relative mean-square-error (MSE) across the various test-functions and noise 
levels, we find the FDR-estimator to enjoy robustness of MSE-efficiency. Finally, 
while this paper only deals with the estimation of functions on the real line, it is 
straightforward to extend the suggested thresholding procedure to general R p and 
to image reconstruction on R 2 in particular. The details are obvious, and we do not 
not give them here. 

2. The FDR-procedure 

We consider here the problem of testing the m = n - 1 hypotheses Hjk: djk = O. 

Of these hypotheses, ml are false, or equivalently the corresponding coefficients 
should be included in the wavelet expansion. The other mo = m - rnl coefficients 
are in fact 0 and ideally should all be set to zero. 

Separating the coefficients into those which are zero and those which are not zero 
may seem an idealization of the real situation: in practice few coefficients of a true 
function are identically zero, while many more of them will be merely very small. 
Nevertheless, if we consider a coefficient to be incorrectly included in the model 
either if it is truely zero and included, or it it is truly of one sign but is included in the 
model with the wrong sign (directional error), then the case where such coefficients 
are considered to be exactly zero is the extreme case that needs to be controlled (see 
Tukey, 1991, for a discussion of this point of view). 

Adapting the general idea of Benjamini and Hochberg (1995) we analyse the 
performance of a thresholding procedure as follows. Let R be the number of 
coefficients that are not zeroed by the thresholding procedure for a given sample, 
and are thus included in the representation. Of these R coefficients S are correctly 
kept in the model and V are erroneously included, R = V + S. The error in such 
a procedure is expressed in terms of the random variable Q = V / R  - the proportion 
of the coefficients included in the representation that should have been zeroed. 
Naturally we define Q = 0 when R = 0 since no error of this type can be made when 
no coefficient is included. 

The FDRC can be now defined as the expectation of Q, and thus reflects the 
expected proport ion of erroneously included coefficients among the ones included 
in the representation. 

Following Benjamini and Hochberg (1995) we suggest maximizing the number of 
included coefficients subject to controlling of the FDRC to some level q. 

Two properties of the FDRC are important  to note: 
(a) If the data are pure noise, i.e., all true coefficients are zero, then each 

coefficient kept in the model has been erroneous ly  included. We have S = 0, V = R 
and, hence, Q = 0 if V = 0 and Q = 1 if v >_ 1, yielding E ( Q )  = P ( V  >__ 1). Thus, 
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controlling the FDRC in this case implies the control of the probability of including 
incorrectly even one coefficient (Bonferroni's approach). Because of this property 
the traditional levels for significance testing were used, e.g., q = 0.01 or q = 0.05. 

(b) The FDRC increases with an increase in the number of incorrectly chosen 
coefficients, and decreases as more coefficients are chosen to be included. If a large 
number of non-zero true coefficients are present, R will tend to be larger and, 
therefore, the FDRC will tend to be smaller making it easier for more estimated 
coefficients to be included. Thus, the error rate will respond to the complexity of the 
estimated function. 

Applying the procedure of Benjamini and Hochberg (1995) for wavelet thre- 
sholding yields the following procedure. 

FDRC thresholdin9 procedure: 
(1) For each arik calculate the corresponding two-sided p-value, Pjk, testing Hjk: 

dik = O, 

Pjk = 2(1 - (I~(Idjkl/a)). 
(2) Order the pig'S according to their size, Ptl) ~ P t 2 )  ~ " '"  --< Ptm), where each of 

the p,)'s corresponds to some coefficient djk. 
(3) Let io be the largest i for which Pti)<(i/m)q. For this io calculate 

2io = O ' q ~ -  1 (1 - -  p6o)/2). 

(4) Threshold all coefficients at level 2~o. 

Benjamini and Hochberg (1995) proved that for independent Gaussian noise in 
the model (1), the above procedure controls the FDRC at the (unknown) level 
(mo/m) q < q. The procedure also controls the FDRC if the marginal distribution of 
the noise in model (1) is other than Gaussian, say F, with the only change in the 
above procedure being to replace q~ by F. Furthermore, as adaptive as it is, the 
procedure is still conservative, controlling the FDRC below q. 

Computational note. Step (4) can be replaced by taking the io coefficients corres- 
ponding to the smallest i0 p-values. Furthermore, since a coefficient can be included 
in the model only if the corresponding P(i) < q, it has to be at least larger (in 
absolute value) than 2ml, = trt0-I(1 -q /2) .  Therefore, the above steps could be 
performed only for I d~l _> '~mi., making large computational savings in sorting, etc. 

Note that in a specific sample thresholding is done effectively at some (adaptive) 
level between /]-max = O" ~ -  1 (1 - q/2n) and ~'mln = t Y ~ -  1 (1 - -  q/2). For practically 
used sample sizes n = 2 J+ 1, j + 1 = 7,8, . . . ,  14 and the traditional q = 0.05, the 
Donoho-Johnstone global threshold 2 satisfies 2rain < 2 _< 2max- In fact, over this 
range 2max is larger than 2 by 5-15%. Fig. 1 displays some FDRC-thresholds for 
n = 1024, assuming a = 1. While Donoho-Johnstone's 2 = 3.723, if only one (the 
largest) coefficient enters the representation it should pass the threshold of 4.061. If 
exactly four coefficients are significant, the corresponding FDRC-threshold is equal 
to the global D J-threshold. As more coefficients are included, the corresponding 
FDRC-threshold is set at lower values. 
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Fig. 1. Threshold for the kth largest coefficient (n = 1024, q = 0.05). 

The procedure can be motivated as a samplewise implementation of the "maxi- 
mization subject to control" approach. If Pt0 corresponds to a potential threshold, 
exactly i coefficients will pass the threshold and be included in the representation. 
The expected number of incorrectly included coefficients is mop~o <- rnpto, as for 
these coefficients the estimated p-values are uniformly distributed. Thus, the ex- 
pected proportion of incorrectly included coefficients among the included ones can 
be given by mopti~/i <_ mpto/i, which we wish to control below q. Selecting as many 
as possible coefficients means choosing the largest possible i, leading to step (3) of 
the procedure. 

3. Examples 

We consider first the performance of three versions of Donoho and Johnstone 
estimators corresponding to three different thresholding starting levels ofjo: J0 = 1 
(DJ1), Jo = 3 (DJ3), the default value in Nason and Silverman (1994), and Jo = 5 
(D J5) used by Donoho and Johnstone. These thresholding procedures were tried 
with following test cases (see Fig. 2): 
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Fig. 2. Test-cases. 

(1)  g ( t )  = (t - -  0 . 4 )  2 (quadrat ic  function).  
(2) g( t )  = min(2t ,  - 2(t  - 1)) (triangular function).  
(3) g( t )  = (t - 0.3)+ - (t - 0.7)+ (b lock function).  
(4) 9 ( 0  = y . j h j K ( t  - tj), where  K ( t )  = (1 + sign(t))/2,  ( 0  = (0.1, 0.13, 0.15, 0.23, 

0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81), (hi) = (4, - 5,3, - 4,5, - 4.2, 2.1,4.3, - 3.1, 
5.1, - 4.2) ( D o n o h o  and Johns tone ,  1994, b locks  example) .  

(5) g (t) = Y j h i K ((t - ti)/w~), where  K ( t )  = m a x  ((1 - 10) 4, 0), (ti) are the same  as 
in the prev ious  example ,  (hi) -- (4, 5, 3 ,4,  5 ,4 .2 ,2 .1 ,4 .3 ,  3.1, 5 .1 ,4 ,2) ,  (wj) = (0.005, 
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0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008, 0.005) (similar to Donoho and 
Johnstone, 1994, bumps example). 

For every case we ran simulations with four different values of a to satisfy the 
signal-to-noise ratio ~ = SD(g)/a = 7,4,2 and 1 respectively. 1024 design points 
were taken equally spaced on [-0, 1] and the data were generated for 500 replica- 
tions of every combination of cases and a's by adding to 9(t(i/n)) independent 
random noise ei ~ Y (0, o-z). 

To find the vector of wavelet estimates ~ Mallat's (1989) well-known algorithm of 
decomposition-reconstruction was used. The Mallat's algorithm is even faster than 
Fast Fourier Transform and requires only O(n) operations. On the decomposition 
step we found the wavelet coefficients djk'S, where the wavelet basis was formed by 
the compactly supported mother wavelet D4 from Daubechies' family (see 
Daubechies, 1992). The boundary correction is needed for DWT in non-periodic 
Cases 1 and 2. The correction was based on the symmetric reflection of the function 
beyond its boundaries. Thresholding djk'S and performing the fast inverse DWT of 
the thresholded coefficients on the reconstruction step we derived the correspond- 
ing function estimates. The noise level a was estimated by the standard deviation of 
the wavelet coefficients djk at the finest level J and performed quite satisfactorily, 
All the programming was done in the statistical package S-Plus using the 
S WaveThresh software developed by Nason and Silverman (the description may 
be found in Nason and Silverman, 1994), and the built in normal random numbers 
generator. The goodness-of-fit of each estimator was measured by its mean squared 
error MSE = n-1 Jig - g  tlz 2 averaged over all 500 replications. The standard error 
of MSE was about 0.5-2% of its estimated mean value. 

For every test-case, we found the best D J-estimator among the three ones, i.e., the 
one achieving the minimum MSE. Then the relative MSE for each estimator was 
evaluated as (min MSEj)/MSE~, i = 1, 2, 3. From Table 1 one sees that the relative 
MSE of DJ-estimators for different Jo varies and depends on smoothness of the 
function. For example, for relatively smooth functions (Cases 1, 2) DJ3 is highly 
preferable over D J5, while in oscillating examples (Cases 4, 5) D J5 performs much 
better. Interestingly, although DJ1 is never the best among the three, its relative 
MSE does not get as low as the 0.676 of DJ5 (see Table 1). 

Table 1 
Relative MSE of D J-estimators (aver- 
aged over 500 replications), 6 = 4 

DJ1 DJ3 D J5 

Case 1 0.798 1 . 0 0 0  0.676 
Case 2 0.844 1.000 0.885 
Case 3 0.896 0.913 1.000 
Case 4 0.912 0.920 1.000 
Case 5 0.878 0.878 1.000 
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4. Why bother with FDRC? 

As demonstrated in the previous section, the DJ-thresholding procedure with the 
prefixed jo suffers from the lack of flexibility. In the following we compare its 
performance with that based on FDR control. Two versions of the latter were used 
corresponding to FDR of q = 0.01 (FDR01) and q = 0.05 (FDR05). In order to 
compare the wavelet estimators we again used the minimax approach. Fixing first 
the signal-to-noise ratio, 6, and also the test-case, we find the best estimator among 
the five candidates, i.e., the one achieving minimum MSE. Then the relative MSE 
for each estimator was evaluated as in the previous section. The results are 
summarized in the Table 2. For smooth functions (Cases 1, 2) FDR01 performs 
slightly better than FRD05 (for such functions we would like to be more conserva- 
tive in including additional coefficients in the representation) but both of them give 
in to D J3 which is undoubtedly the best estimator for these cases for all 6's. 
However, in oscillating examples (Cases 4, 5) FDR05 is highly preferable over 
FDR01 and D J3, and even somewhat better than DJ5, the best (for these cases) 
among D J-estimators. 

Table 2 
Relative MSE (averaged over 500 replications) 

FDR05 FDR01 D J1 D J3 D J5 

6 = 7  
Case 1 0.859 0.962 0.917 1.000 0.690 
Case 2 0.716 0.702 0.714 0.818 1.000 
Case 3 1.000 0.951 0.923 0.923 0.941 
Case 4 1.000 0.784 0.658 0.658 0.713 
Case 5 1.000 0.747 0.602 0.604 0.680 

6 = 4  
Case 1 0.774 0.806 0.798 1.000 0.676 
Case 2 0.799 0.849 0.844 1.000 0.885 
Case 3 1.000 0.875 0.857 0.873 0.956 
Case 4 1.000 0.848 0.774 0.781 0.849 
Case 5 1.000 0.763 0.631 0.631 0.719 

6 = 2  
Case 1 0.761 0.786 0.796 1.000 0.527 
Case 2 0.767 0.791 0.793 1.000 0.729 
Case 3 0.816 0.752 0.770 0.867 1.000 
Case 4 0.992 0.934 0.913 0.922 1.000 
Case 5 1.000 0.857 0.787 0.793 0.880 

6 = 1  
Case 1 0.760 0.805 0.767 1.000 0.470 
Case 2 0.686 0.687 0.697 1.000 0.553 
Case 3 0.722 0.694 0.718 0.793 1.000 
Case 4 0.801 0.733 0.737 0.765 1.000 
Case 5 1.000 0.857 0.845 0.878 0.959 
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Fig. 3. Minimal relative MSE (MRMSE). 

Bolded numbers in Table 2 and Fig. 3 show the minimal relative MSE (MRMSE) 
of each estimator over all the cases. The MRMSE reflects the loss of effectiveness at 
the most challenging test-case for each estimator and is a natural measure of its 
robustness to the test-cases. This measure is further studied as a function of signal 
-to-noise ratio, which characterizes the robustness of the procedure in face of 
different noise levels. Fig. 3 implies that the proper choice of jo in the Do- 
noho-Johnstone algorithm should depend on the noise level. For large noise (6 
small) the optimal J0 is small since the wavelet coefficients are strongly influenced 
by noise and we should threshold them starting from the very coarse levels in order 
to decrease the noise in the reconstruction. For moderate noise "significant" 
coefficients (especially those at low levels) reflect the real signal and should not be 
zeroed. In contrast to the behavior of the D J-estimators, FDR-estimators are much 
less sensitive to the noise level due to their adaptiveness, and perform quite 
satisfactorily for all noise levels and test cases studied. 

5. Discussion 

We have demonstrated the sensitivity of the universal global threshold of 
Donoho and Johnstone with pre-chosen number of unthresholded coarse levels jo 
to the signal and the noise level. Unlike universal thresholding, the proposed 
adaptive FDRC-procedure has been found to be robust. Some other adaptive 
thresholding procedures have been suggested recently. Donoho and Johnstone's 
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(1995) SureShrink procedure combines an adaptive threshold, chosen to minimize 
the Stein unbiased risk estimator, and the universal global threshold, used when the 
signal is sparse (or when the signal-to-noise ratio is low). Again the low level 
coefficients remain untouched by this hybrid method and the number of low levels 
may be still crucial, Nason (1996) uses cross-validation criterion to choose the 
threshold that minimizes the predicted MSE. Although SureShrink has some 
appealing asymptotic properties, the current study demonstrates the importance of 
finite sample properties: any choice of Jo is asymptotically equivalent. No such 
theoretical comparison between these methods has been done. For the time being, 
simulation based comparisons, as demonstrated here, are essential and a compre- 
hensive study of the emerging adaptive methods is desirable. 

In conclusion, it might be interesting to note that the FDR-approach for 
choosing coefficients in the wavelet representation is philosophically very different 
from traditional methods. Usually, we seek the most compact presentation possible 
and enrich the model only if some condition is met. Here we try to include 
coefficients as possible but subject them to a certain control rule. While this 
approach might be carried over to other problems of model selection, its usefulness 
should be demonstrated at each case separately, as it was done here. 
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