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Abstract

Wavelet methods have demonstrated considerable success in function estimation through term-by-term
thresholding of the empirical wavelet coe2cients. However, it has been shown that grouping the em-
pirical wavelet coe2cients into blocks and making simultaneous threshold decisions about all the co-
e2cients in each block has a number of advantages over term-by-term wavelet thresholding, including
asymptotic optimality and better mean squared error performance in 5nite sample situations. An empir-
ical Bayes approach to incorporating information on neighbouring empirical wavelet coe2cients into
function estimation that results in block wavelet shrinkage and block wavelet thresholding estimators
is considered. Simulated examples are used to illustrate the performance of the resulting estimators,
and to compare these estimators with several existing non-Bayesian block wavelet thresholding esti-
mators. It is observed that the proposed empirical Bayes block wavelet shrinkage and block wavelet
thresholding estimators outperform the non-Bayesian block wavelet thresholding estimators in 5nite
sample situations. An application to a data set that was collected in an anaesthesiological study is also
presented. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Over the last decade, the non-parametric regression literature has been dominated
by non-linear wavelet methods. These methods are based on the idea of thresholding,
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which typically amounts to individual assessment of every empirical wavelet coef-
5cient. If a coe2cient is su2ciently large in magnitude, that is if its magnitude
exceeds a predetermined threshold, then the corresponding term in the empirical
wavelet expansion is retained (or shrunk towards zero); otherwise it is omitted. The
resulting estimators are typically implemented through fast algorithms which makes
them very appealing in practice.

Since the seminal papers by Donoho and Johnstone (1994) and Donoho et al.
(1995), a range of alternative wavelet methods has been developed. This range in-
cludes Bayesian term-by-term wavelet shrinkage and wavelet thresholding estimators.
(To introduce terminology, a shrinkage rule shrinks empirical wavelet coe2cients to
zero, whilst a thresholding rule shrinks and, in addition, sets to zero all empiri-
cal wavelet coe2cients below a certain level.) Such estimators have been shown
to be eDective and have been argued to be less ad hoc than their classical coun-
terparts. Extensive reviews and descriptions of the various classical and Bayesian
term-by-term wavelet schemes can be found in, for example, the books by Ogden
(1997) and Vidakovic (1999), the papers appearing in the edited volume by MEuller
and Vidakovic (1999), and the review papers by Antoniadis (1997), Vidakovic
(1998b) and Abramovich et al. (2000).

Hall et al. (1997), Hall et al. (1998, 1999), Cai (1999) and Cai and Silverman
(2001), amongst others, described another approach based on block thresholding.
In this approach, the empirical wavelet coe2cients are thresholded in blocks rather
than individually. The resulting estimators have been found to possess a number of
advantages over term-by-term wavelet thresholding estimators, including asymptotic
optimality and better mean squared error performance in 5nite sample situations. The
aim of this paper is to build on the advantages of block thresholding. We propose
an empirical Bayes approach to incorporating information on neighbouring coe2-
cients into wavelet function estimation that results in block wavelet shrinkage and
block wavelet thresholding estimators. Simulated examples are used to illustrate the
performance of the resulting estimators, and to compare these estimators with sev-
eral existing non-Bayesian block wavelet thresholding estimators. It is shown that
the proposed empirical Bayes block wavelet shrinkage and block wavelet threshold-
ing estimators outperform the non-Bayesian block wavelet thresholding estimators in
5nite sample situations.

The paper is organized as follows. In Section 2 we introduce the wavelet paradigm
to the classical non-parametric regression setting. In Section 3 we introduce the prior
model imposed on the wavelet coe2cients of the unknown response function, and
obtain the posterior-based block wavelet shrinkage and block wavelet thresholding
estimators. We also discuss an empirical Bayes approach to estimating the hyper-
parameters of the prior model. In Section 4, we provide simulated examples to
illustrate the resulting estimators, and we compare these with several existing non-
Bayesian block wavelet thresholding estimators. We also present an application to a
data set that was collected in an anaesthesiological study. Some concluding remarks
are made in Section 5.
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2. Wavelet regression

Consider the classical non-parametric regression setting

yi = g(ti) + ��i; i= 1; : : : ; n; (1)

where ti = i=n; n= 2J for some positive integer J , �i are independent and identically
distributed N(0; 1) random variables and the noise level � may, or may not, be
known. The problem is to estimate the underlying function g from the observations
y= (y1; : : : ; yn)′ without assuming any particular parametric structure on its form.

The wavelet approach to this problem is easily described. Given a suitable wavelet
basis and primary resolution level j0¿ 0, the discrete wavelet transform (DWT) of y
gives rise to an n-dimensional vector d̂ consisting of what are known as the empirical
scaling coe2cients ĉj0k (k = 0; : : : ; 2j0 − 1) and the empirical wavelet coe2cients d̂jk
(j= j0; : : : ; J −1; k = 0; 1; : : : ; 2j−1). In practice, the DWT (and its inverse (IDWT))
may be performed through a computationally fast algorithm developed by Mallat
(1989) that requires only O(n) operations. Due to the orthogonality of the DWT, it
follows from (1) that

ĉj0k = cj0k + ��j0k ; k = 0; 1; : : : ; 2j0 − 1; (2)

d̂jk =djk + ��jk ; j= j0; : : : ; J − 1; k = 0; 1; : : : ; 2j − 1; (3)

where the �jk are themselves independent and identically distributed N(0; 1) ran-
dom variables, and the cj0k and djk are, respectively, the true scaling and wavelet
coe2cients of the (unknown) vector of function values g= (g(t1); : : : ; g(tn))′.

The problem can now be cast as that of estimating the true wavelet coe2cients djk
from the empirical wavelet coe2cients d̂jk . The sparseness of the wavelet expansion
comes here to the foreground. Most of the information about the underlying function
g in the djk is concentrated in few large wavelet coe2cients while small wavelet
coe2cients can be attributed to the presence of noise which uniformly contaminates
all wavelet coe2cients. We would thus obtain a reasonable estimate of g if we could
extract the wavelet coe2cients of largest magnitude accurately, even if we set the
rest to zero. This is the idea behind term-by-term wavelet thresholding. Here, each
empirical wavelet coe2cient d̂jk is compared with a predetermined threshold and
retained (or shrunk towards zero) if its magnitude exceeds the threshold; otherwise
it is discarded. This approach achieves a trade-oD between the variance and bias
contributions to the mean squared error. However, the trade-oD is not optimal and
results in biased estimators (too many terms are removed from the empirical wavelet
expansion) with sub-optimal L2-risk rates (see, for example, Hall et al., 1998, 1999).

One way of increasing estimation precision is by utilising information on neigh-
bouring empirical wavelet coe2cients. In other words, at each resolution level j, the
empirical wavelet coe2cients d̂jk could be thresholded in blocks (or groups) rather
than individually. As a result, the amount of information available from the data for
estimating the ‘average’ empirical wavelet coe2cient within a block, and making
a decision about retaining or discarding it, would be an order of magnitude larger
than the case of a term-by-term threshold rule. This would allow threshold decisions
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to be made more accurately (see, for example, Hall et al., 1997; Hall et al., 1998,
1999; Cai, 1999 and Cai and Silverman, 2001).

In the next section, we propose an empirical Bayes approach to incorporating in-
formation on neighbouring coe2cients into wavelet function estimation that results in
level-dependent block wavelet shrinkage and block wavelet thresholding estimators.

3. Empirical Bayes block wavelet estimators

3.1. The prior model

Consider the sequence model given by (2) and (3). A typical characteristic of the
Bayesian term-by-term wavelet shrinkage and wavelet thresholding estimation meth-
ods is the use of diDerent but mostly independent priors on the wavelet coe2cients
(see, for example, Chipman et al., 1997; Abramovich et al., 1998; Clyde et al., 1998,
Johnstone and Silverman, 1998; Vidakovic, 1998a; Abramovich and Sapatinas, 1999;
Clyde and George, 1999, 2000). It is reasonable to expect that a model allowing for
correlations between neighbouring wavelet coe2cients would be more parsimonious.
Accordingly, we suggest placing priors on blocks of wavelet coe2cients rather than
on each one individually.

More precisely, at each resolution level j (j= j0; : : : ; J−1), the wavelet coe2cients
djk are grouped into mj non-overlapping blocks, bjK (K = 1; : : : ; mj), of length lj.
(The choice of lj will be discussed in Section 4.) For each of the blocks bjK , we
assume the following prior model:

bjK |�jK ∼ N(0; �jKVj); (4)

�jK ∼ Bernoulli (�j); (5)

independently for K = 1; : : : ; mj, where 06 �j6 1. We also assume block indepen-
dence across the diDerent resolution levels j (j= j0; : : : ; J − 1). According to this
prior model, a block is either zero with probability 1 − �j or, with probability �j,
multivariate normally distributed with mean zero and variance–covariance matrix Vj.
Thus, our prior model allows for the fact that a wavelet coe2cient is more likely to
contain signal if neighboring wavelet coe2cients do also. To complete the prior for-
mulation, we assume vague priors for the scaling coe2cients cj0k (k = 0; 1; : : : ; 2j0−1)
and in particular we take cj0k ∼ N(0; �); �→ ∞.

Through the covariance matrix Vj, we may allow for various forms of dependency
between the wavelet coe2cients within each block. Since the correlation between two
wavelet coe2cients generally weakens as the distance between them increases, we
choose Vj to be the lj × lj matrix with elements

Vj[k; l] = �2j �
|k−l|
j where |�j|¡ 1; k; l= 1; : : : ; lj: (6)

A similar choice of covariance structure has been employed by Vidakovic and MEuller
(1995) and Vannucci and Corradi (1999a,b) in a diDerent context.



F. Abramovich et al. / Computational Statistics & Data Analysis 39 (2002) 435–451 439

The above model can be regarded as an extension of the prior mixture model
of a univariate normal distribution and a point mass at zero (i.e. lj = 1), used in
Bayesian term-by-term wavelet function estimation by, for example, Clyde et al.
(1998), Abramovich et al. (1998), Johnstone and Silverman (1998), Abramovich
and Sapatinas (1999) and Clyde and George (1999, 2000).

3.2. Posterior-based block shrinkage and block thresholding estimators

At each resolution level j (j= j0; : : : ; J − 1), we now consider the corresponding
non-overlapping blocks b̂jK (K = 1; : : : ; mj) of the empirical wavelet coe2cients d̂jk .
Combining the prior model (4) and (5) with the likelihood from b̂jK ∼ N(bjK ; �2I),
and averaging over all possible �jK , yields the marginal posterior distribution

bjK |b̂jK ∼ 1
1 + OjK

N (Ajb̂jK ; �2Aj) +
OjK

1 + OjK
�(0); (7)

where �(0) is a vector of point masses at zero, Aj = (�2V−1
j + I)−1 and OjK is the

posterior odds ratio that �jK = 0 versus �jK = 1, given by

OjK =
1 − �j
�j

(
det(Vj)
�2ljdet(Aj)

)1=2

exp

{
− b̂

′
jKAjb̂jK
2�2

}
: (8)

For the jK th block, de5ne the vector d̂
?
jK =Ajb̂jK and its elements d̂

?
jk . Applying

diDerent losses, one can generate various block shrinkage and block thresholding
estimators. In particular, we have:

• Posterior mean (L2-loss): it is straightforward to show that the posterior mean of
bjK is given by

b̃jK =E(bjK | b̂jK) =
1

1 + OjK
d̂
?
jK : (9)

This is a block (non-linear) shrinkage rule where each empirical wavelet coef-
5cient within a block is shrunk by the same shrinkage factor depending on all
coe2cients within the block.

• Marginal posterior median (L1-loss): in this case, for the posterior distribution in
(7), the marginal posterior distribution of djk is given by

djk | b̂jK ∼ 1
1 + OjK

N (d̂
?
jk ; �

2Aj[j; j]) +
OjK

1 + OjK
�(0);

where �(0) is a point mass at zero and Aj[j; j] is the entry that appears on the
diagonal of Aj (they are the same for all k). Hence, following the arguments of
Abramovich et al. (1998) and Abramovich and Sapatinas (1999) in the Bayesian
term-by-term wavelet function estimation framework, the marginal posterior me-
dian of djk has the following closed form:

d̃jk = median (djk | b̂jK) = sign(d̂
?
jk)max(0; "jK); (10)
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where

"jK = |d̂?jk | − �
(
Aj[j; j]

)1=2#−1

(
1 + min(OjK ; 1)

2

)

and # is the standard normal cumulative distribution function. This is an individual
thresholding rule where each empirical wavelet coe2cient is thresholded utilising
information about neighbouring coe2cients within a block.

• Hypothesis testing (0=1-loss): adjusting the Bayes Factor (BF) procedure of
Vidakovic (1998a) in the Bayesian term-by-term wavelet function estimation frame-
work to our model, test

H0 : bjK = 0 versus H1 : bjK �= 0

and reject H0 if the posterior odds ratio OjK =P(H0|b̂jK)=P(H1|b̂jK)¡ 1, where
OjK is de5ned in (8). This implies

b̃jK =

{
b̂jK if OjK ¡ 1;

0 otherwise:
(11)

This is a block thresholding rule where the whole block of empirical coe2cients
is thresholded.
Finally, due to the vague priors imposed on the scaling coe2cients cj0k and using

(2), any of the above losses will result in estimating cj0k by their empirical counter-
parts ĉj0k . Hence, estimates of the values g at the sampling points can be obtained by
inverting the DWT on the vector consisting of both the empirical scaling coe2cients
and the shrunken or thresholded empirical wavelet coe2cients, obtained from one
of (9), (10), or (11). We call the resulting estimators of g as the BlockPostMean,
BlockPostMed and BlockBF estimators, respectively.

3.3. An empirical Bayes approach to estimating the hyperparameters

In order to apply the Bayesian block shrinkage and block thresholding estima-
tors described in the previous section, one needs to specify the hyperparameters
�j; �j; �j (j= j0; : : : ; J − 1) and �. Ideally, they could be obtained from some prior
information about, for example, the regularity of the unknown function g. Such an
approach has been considered in Abramovich et al. (1998) and Abramovich and Sap-
atinas (1999) for independent priors, and extension to our model is quite straightfor-
ward. In practice, however, one can use an empirical Bayes approach to estimating
the hyperparameters in order to get a completely data-based procedure (see, for
example, Johnstone and Silverman, 1998; Clyde and George, 1999, 2000).

In this paper, we have used the latter approach to obtain marginal maximum likeli-
hood estimates of the hyperparameters �j; �j and �j given �. More speci5cally, at
each resolution level j, since the marginal distribution of the empirical blocks b̂jK is a
mixture of two multivariate normal distributions, the marginal log-likelihood function
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‘j is proportional to

‘j(�j; �j; �j; �)˙
mj∑
K=1

log
{
�j(det(Bj))−1=2 exp

(
−1

2
b̂
′
jKB

−1
j b̂jK

)

+(1 − �j)�−lj exp
(
− 1

2�2 b̂
′
jK b̂jK

)}
; (12)

where Bj = �2I + Vj and Vj is de5ned in (6). A system of maximum likelihood
equations can be formed by diDerentiating (12) with respect to the parameters, and
setting the resulting expressions equal to zero. However, these equations cannot be
solved explicitly and so numerical iterative techniques have to be adopted.

The usual iterative procedure for obtaining the maximum likelihood estimates
(MLEs) in mixture distributions is the EM algorithm of Dempster et al. (1977).
For independent priors, by applying the EM algorithm, one can 5nd the MLEs for
�j and �j given � (as in Johnstone and Silverman, 1998 and Clyde and George,
1999) or the MLEs for �j; �j and � (as in Clyde and George, 2000). However, in
our case, the M-step of the EM algorithm is not explicit, resulting somewhat in an
impractical application of the procedure.

In this paper, we have considered the following approach. We have estimated �
by the median absolute deviation (as suggested by Donoho and Johnstone (1994)
and usually applied in practice)

�̂=
median(|{d̂J−1; k : k = 0; 1; : : : ; 2J−1 − 1}|)

0:6745
; (13)

and have minimized −‘j(�j; �j; �j; �̂) with respect to �j; �j and �j directly. The
log-likelihood function was reparametrised with

�j =
1

1 + exp(−'1j)
; �j = |'2j| and �j =

2
�

arctan ('3j)

so that the parameter estimates would lie in the ranges

06 �̂j6 1; �̂j¿ 0 and − 1¡�̂j ¡ 1:

The algorithm that we have used for the minimization of −‘j is the Nelder–Mead
simplex search method which does not require 5rst derivatives of −‘j (see, for
example, Everitt 1987, pp. 16–20).

The advantages of 5xing the value of � to, for example, the median absolute de-
viation in (13) are three-fold. First, it reduces the dimension of the parameter space.
Second, it eliminates all the singularities in the likelihood function. Third, simula-
tions indicated that the choice of initial values is not so crucial in 5nding the MLEs
for �j; �j and �j. In particular, a small scale simulation study was carried out in
order to examine the importance of starting values for the above estimation prob-
lem. It was found that the convergence from diDerent starting values for �j; �j and
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�j was always to be of the same parameter estimates, a result that held for various
sets of random sample from the prior mixture model (4) and (5).

4. Applications and comparisons

The purpose of this section is to illustrate the performance of the proposed em-
pirical Bayes block wavelet shrinkage and block wavelet thresholding estimators,
and to compare these estimators with several existing non-Bayesian block wavelet
thresholding estimators. Simulated samples and a data set collected in an anaesthesi-
ological study have been used for this purpose. The computational algorithms related
to wavelet analysis were performed using the WaveLab software that is freely avail-
able from http:==www-stat.stanford.edu=software=software.html. The entire
study was carried out using the Matlab programming environment.

4.1. Simulation study

The results of the simulation study will now be presented, with the remainder of
this section devoted to the discussion of these results. We compare the BlockPost-
Mean, BlockPostMed and BlockBF estimators with the non-overlapping BlockJS
estimator of Cai (1999) and the overlapping NeighBlock and NeighCoe? estima-
tors of Cai and Silverman (2001). These estimators have been shown to be supe-
rior in mean squared error to the VisuShrink (see Donoho and Johnstone, 1994),
SureShrink (see Donoho and Johnstone, 1995) and Translation Invariant (see Coif-
man and Donoho, 1995) estimators, which have become very popular in term-by-term
wavelet thresholding. The BlockJS estimator is a blockwise James–Stein rule, with
properly chosen block size and threshold value. The NeighBlock and NeighCoeD
estimators are, actually, variants of the BlockJS estimator, where the empirical wavelet
coe2cients are considered in overlapping blocks. We refer to the papers of Cai
(1999) and Cai and Silverman (2001) for more details.

In this simulation study, we evaluate the various wavelet estimators using
Daubechies’s compactly supported wavelets Symmlet 8 (see Daubechies, 1992,
p. 198) and Coi@et 3 (see Daubechies, 1992, p. 258), and primary resolution lev-
els j0 = 3 and 5. We have considered the Blocks, Bumps, HeaviSine and Doppler
functions of Donoho and Johnstone (1994, 1995), which constitute standard tests for
wavelet estimators. These functions are supposed to caricature spatially variable sig-
nals arising in a number of scienti5c 5elds, including imaging and spectroscopy. For
each test function, M = 100 samples were generated by adding independent random
noise j ∼ N(0; �2) to n= 256 (small sample size), 512 (moderate sample size) and
1024 (large sample size) equally spaced points on [0,1]. The value of � was taken
to correspond to the values 3 (high noise level), 5 (moderate noise level) and 7 (low
noise level) for the root signal-to-noise ratio (RSNR)

RSNR(g; �) =

√
(1=n)

∑n
i=1 (g(ti) − Qg)2

�
; where Qg=

1
n

n∑
i=1

g(ti):
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The goodness-of-5t for an estimator ĝ of g was measured by its average mean
squared error (AMSE) from the M simulations, de5ned as

AMSE(g) =
1
nM

M∑
m=1

n∑
i=1

(ĝm(ti) − g(ti))2;

its average mean absolute deviation (AMAD) from the M simulations, de5ned as

AMAD(g) =
1
nM

M∑
m=1

n∑
i=1

|ĝm(ti) − g(ti)|;

and its average maximal absolute deviation (AMXD) from the M simulations, de5ned
as

AMXD(g) =
1
M

M∑
m=1

max
16i6n

|ĝm(ti) − g(ti)|:

In order to examine the eDect of the block lengths on the numerical performance
of the proposed wavelet estimators, we performed a preliminary simulation study.
In particular, we considered two choices of block length at each resolution level j,
namely lj = j and lj = 2[log2(Cj)], where 2[x] is the largest dyadic integer smaller than
or equal to x. For the values of C that we examined, the former choice resulted in
longer blocks and it was found to be less adequate than the latter choice, whose
block lengths evenly divide the empirical wavelet coe2cients into non-overlapping
blocks. Furthermore, we found that a value of C ∈ [0:4; 0:7] was the most reasonable
choice uniformly across various test functions, sample sizes and RSNRs. This 5nding
is consistent with the remark of Hall et al. (1999) that the selection of block length
is not critical if it is chosen within an appropriate range of values. Accordingly,
and somewhat arbitrarily, we have taken C = 0:5 and suggest lj = 2[log2( j=2)] to be the
reference of block length at each resolution level j for the proposed empirical Bayes
block wavelet shrinkage and block wavelet thresholding estimators. Thus, there will
be 8 blocks of length 1 on the 3rd level, 8 blocks of length 2 on the 4th level, 16
blocks of length 2 on the 5th level, 32 blocks of length 2 on the 6th level, 64 blocks
of length 2 on the 7th level, 64 blocks of length 4 on the 8th level, 128 blocks of
length 4 on the 9th level and so on.

For brevity, we only report in detail the results for the Bumps function using
Symmlet 8, j0 = 3 and AMSE. DiDerent combinations of test functions, wavelets,
primary resolution levels and goodness-of-5t measures yield basically similar re-
sults. Fig. 1 contains the results of the simulation study. As observed in the 5g-
ure, the BlockPostMean, BlockPostMed and BlockBF estimators produced estimates
with smaller AMSE than the BlockJS, NeighBlock and NeighCoeD estimators, uni-
formly across the various combinations of signal morphology and RSNR. Amongst
the non-Bayesian block wavelet thresholding estimators, the NeighCoeD estimator
always produced the smallest AMSE whilst the BlockJS estimator always produced
the largest. (This is consistent with the conclusions drawn by Cai and Silverman,
2001.) We note that each of the BlockPostMean, BlockPostMed and BlockBF estima-
tors produced less variable estimates than the BlockJS, NeighBlock and NeighCoeD
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Fig. 1. Boxplots of 100 simulation results for the Bumps function for all nine combinations of signal
points (top: 256; middle: 512; bottom: 1024) and RSNRs (left: 3; middle: 5; right: 7). In each panel,
there are six boxplots indicating the mean squared error, from left to right, for the estimates produced by
(1) BlockPostMean, (2) BlockPostMed, (3) BlockBF, (4) BlockJS, (5) NeighBlock and (6) NeighCoeD.

estimators in every case. Quantitatively, the BlockPostMed and BlockBF estimators
are almost identical and both appear to be slightly outperformed by the BlockPost-
Mean estimator in every case.

Table 1 shows the mean and standard deviation of the CPU times involved in
computing 100 estimates for the Bumps function by each wavelet estimator and
sample size. As anticipated, the BlockJS, NeighBlock and NeighCoeD estimators are
superior in terms of CPU time to the BlockPostMean, BlockPostMed and BlockBF
estimators. This is due to the maximisation step described in Section 3.3 that can
be computationally expensive, depending on the number of iterations and the con-
vergence criterion used. However, with the fast computing environments that exist
nowadays, computing time is not a major issue.

To illustrate that the proposed empirical Bayes block wavelet shrinkage and block
wavelet thresholding estimators are appealing visually as well as quantitatively, we
present in Fig. 2 a noisy HeaviSine function sampled at n= 1024 equally spaced
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Table 1
Mean and standard deviation (in brackets) of the CPU times involved in computing 100 estimates for
the Bumps function by the six wavelet estimators (BlockJS, NeighBlock, NeighCoeD, BlockPostMean,
BlockPostMed and BlockBF) and the three sample sizes (n= 256, 512 and 1024)

Method CPU time CPU time CPU time
(n= 256) (n= 512) (n= 1024)

BlockJS 0.0181 0.0272 0.0345
(0.0042) (0.0035) (0.0026)

NeighBlock 0.0309 0.0619 0.1238
(0.0051) (0.0032) (0.0022)

NeighCoeD 0.0289 0.0608 0.1221
(0.0048) (0.0033) (0.0024)

BlockPostMean 4.7554 6.4543 8.658
(0.7123) (0.7256) (0.7434)

BlockPostMed 4.8763 6.5324 8.7324
(0.7134) (0.7265) (0.7543)

BlockBF 4.6563 6.3787 8.5472
(0.7012) (0.7123) (0.7234)

points on [0; 1] with RSNR = 7. Fig. 3 displays the reconstructions obtained from
one simulation using the six wavelet estimators. All the wavelet estimators re-
cover the underlying function reasonably well. The BlockPostMean, BlockPostMed
and BlockBF estimators give a better reconstruction of the discontinuities in the
HeaviSine function than the BlockJS, NeighBlock and NeighCoeD estimators. At
the same time, although they appear to be slightly noisier over the regions where
the underlying function is smooth, they are not noisy enough to be visually
unpleasant.

4.2. Inductance plethysmography data

We further illustrate the performance of the above wavelet estimators using a data
set from anaesthesiology collected by inductance plethysmography. The recordings
were made by the Department of Anaesthesia at the Bristol Royal In5rmary and mea-
sure the Uow of air during breathing. The same data set has been analysed in Nason
(1996) and Abramovich et al. (1998). We refer to these papers for more details.

Fig. 4 shows a section of plethysmograph recording lasting approximately 80 s
(n= 4096 signal points). The two main sets of regular oscillations correspond to
normal breathing. The disturbed behaviour in the centre of the plot, where the nor-
mal breathing pattern disappears, corresponds to the patient vomiting. Fig. 5 shows
the various reconstructions of the plethysmograph recording. The recommended block
length lj = 2[log2( j=2)] for the proposed BlockPostMean, BlockPostMed and BlockBF
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Fig. 2. (Left): the HeaviSine function based on 1024 signal points; (Right): a noisy version of the
HeaviSine function with RSNR = 7.

Table 2
Highest peak value (5rst peak) in the data and the corresponding function
estimates shown in Fig. 5 for the inductance plethysmography recording of
Fig. 4

Plethysmography data 0.8472

BlockPostMean 0.8433
BlockPostMed 0.8433
BlockBF 0.8433
BlockJS 0.8268
NeighCoeD 0.8249
NeighBlock 0.8214

estimators was used. As observed in the 5gure, the BlockJS and NeighBlock estima-
tors remove the noise but tend to attenuate the peaks, whilst the NeighCoeD estimator
contains some high frequency eDects in the region near time 0.8 and also attenu-
ates the peaks. On the other hand, although the BlockPostMean, BlockPostMed and
BlockBF estimators do not eliminate completely the large Uuctuation in the region
near time 0.8, they produce a satisfying smooth 5t without the attenuation. This is
apparent, for example, from the heights of the 5rst peak tabulated in Table 2. It
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Fig. 3. Reconstructions of the HeaviSine function from one simulation based on 1024 signal
points and RSNR = 7 for the estimates produced by, from left to right, (top) BlockPostMean,

BlockPostMed and BlockBF, (bottom) BlockJS, NeighBlock and NeighCoeD.

is interesting to note that the heights of the 5rst peak value yielded by the Block-
PostMean, BlockPostMed and BlockBF estimators are identical. This common value
is also equal to two decimal places to the value given by the BayesThresh method
of Abramovich et al. (1998), in which adjustment of one of the hyperparameters of
their prior distribution was necessary (see Eq. (9) and Table 1 in this paper for more
details). The main point here is that the BlockPostMean, BlockPostMed and BlockBF
estimators automatically produce estimates similar to that obtained by BayesThresh
after ad hoc tuning of the hyperparameters.

5. Concluding remarks

An empirical Bayes approach to incorporating information on neighbouring em-
pirical wavelet coe2cients into function estimation that results in block wavelet
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Fig. 4. Section of an inductance plethysmography recording lasting approximately 80 s.

shrinkage and block wavelet thresholding estimators has been discussed. A simula-
tion study has been conducted to illustrate the resulting wavelet estimators, and these
estimators have been compared with several existing non-Bayesian block wavelet
thresholding estimators. An application to a data set collected in an anaesthesiologi-
cal study has also been presented.

It has been demonstrated that, with an adequate choice of block length at each
resolution, the empirical Bayes block wavelet shrinkage and block wavelet threshold-
ing estimators are superior to several existing non-Bayesian block wavelet threshold-
ing estimators in 5nite sample situations. However, due to the maximization inherent
in their methodology described in Section 3.3, they are computationally more ex-
pensive. The proposed empirical Bayes block wavelet shrinkage and block wavelet
thresholding estimators could been presented as a possibly useful addition to the
growing range of wavelet-based function estimation tools.

The position of the blocks has a signi5cant eDect on the performances of the
proposed estimators. Although not presented here, by averaging over diDerent block
centers, the resulting empirical Bayes block wavelet shrinkage and block wavelet
thresholding estimators have been found to have superior numerical performances,
at the cost of higher computational complexity. This technique was also used for
the classical block wavelet thresholding estimators discussed in Hall et al. (1997),
Cai (1999) and Cai and Silverman (2001) to show improvements in mean squared
error over the standard position of the blocks. However, we believe that, by 5rst
choosing the positions and the lengths of the blocks adaptively and then applying
our empirical Bayes wavelet estimators to the resulting blocks will produce better
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Fig. 5. Smooth estimates of the inductance plethysmography recording shown in Fig. 4 obtained by,
from left to right, (top) BlockPostMean, BlockPostMed and BlockBF (bottom) BlockJS, NeighBlock

and NeighCoeD.

estimates of the unknown response function. This is an interesting topic for further
research we hope to address elsewhere.
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